Germline-restricted chromosome of songbirds has different centromere compared to regular chromosomes

. 2025 Jul 30 ; () : . [epub] 20250730

Status Publisher Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid40745398

Grantová podpora
23-07287S Grantová Agentura České Republiky (Grant Agency of the Czech Republic)
23-07287S Grantová Agentura České Republiky (Grant Agency of the Czech Republic)
SVV 260684/2024 Univerzita Karlova v Praze (Charles University)
SVV 260684/2024 Univerzita Karlova v Praze (Charles University)
SVV 260684/2024 Univerzita Karlova v Praze (Charles University)
314222 Grantová Agentura, Univerzita Karlova (Charles University Grant Agency)

Odkazy

PubMed 40745398
DOI 10.1038/s41437-025-00779-5
PII: 10.1038/s41437-025-00779-5
Knihovny.cz E-zdroje

Centromeres are an important part of chromosomes which direct chromosome segregation during cell division. Their modifications can therefore explain the unusual mitotic and meiotic behaviour of certain chromosomes, such as the germline-restricted chromosome (GRC) of songbirds. This chromosome is eliminated from somatic cells during early embryogenesis and later also from male germ cells during spermatogenesis. Although the mechanism of elimination is not yet known, it is possible that it involves a modification of the centromeric sequence on the GRC, resulting in problems with the attachment of this chromosome to the mitotic or meiotic spindle and its lagging during anaphase, which eventually leads to its elimination from the nucleus. However, the repetitive nature and rapid evolution of centromeres make their identification and comparative analysis across species and chromosomes challenging. Here, we used a combination of cytogenetic and genomic approaches to identify the centromeric sequences of two closely related songbird species, the common nightingale (Luscinia megarhynchos) and the thrush nightingale (L. luscinia). We found a 436-bp satellite repeat present in the centromeric regions of all regular chromosomes (i.e., autosomes and sex chromosomes), making it a strong candidate for the centromeric repeat. This centromeric repeat was highly similar between the two nightingale species. Interestingly, hybridization of the probe to this satellite repeat on meiotic spreads suggested that this repeat is missing on the GRC. Our results indicate that the change of the centromeric sequence may underlie the unusual inheritance and programmed DNA elimination of the GRC in songbirds.

Zobrazit více v PubMed

Altemose N, Logsdon GA, Bzikadze AV, Sidhwani P, Langley SA, Caldas GV et al. (2022) Complete genomic and epigenetic maps of human centromeres. Science 376:eabl4178 PubMed PMC

Banaei-Moghaddam AM, Schubert V, Kumke K, Weiβ O, Klemme S, Nagaki K et al. (2012) Nondisjunction in favor of a chromosome: the mechanism of Rye B chromosome drive during pollen mitosis. Plant Cell 24:4124 PubMed PMC

Begun DJ, Aquadro CF (1992) Levels of naturally occurring DNA polymorphism correlate with recombination rates in D. melanogaster. Nature 356:519–520

Begun DJ, Holloway AK, Stevens K, Hillier LW, Poh Y-P, Hahn MW et al. (2007) Population genomics: whole-genome analysis of polymorphism and divergence in Drosophila simulans. PLoS Biol 5:e310 PubMed PMC

Blommaert J, Sandoval-Castillo J, Beheregaray LB, Wellenreuther M (2024) Peering into the gaps: long-read sequencing illuminates structural variants and genomic evolution in the Australasian snapper. Genomics 116:110929 PubMed

Bolger AM, Lohse M, Usadel B (2014) Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30:2114–2120 PubMed PMC

Borodin P, Chen A, Forstmeier W, Fouché S, Malinovskaya L, Pei Y et al. (2022) Mendelian nightmares: the germline-restricted chromosome of songbirds. Chromosome Res 30:255–272

Camacho C, Coulouris G, Avagyan V, Ma N, Papadopoulos J, Bealer K et al. (2009) BLAST+: architecture and applications. BMC Bioinformatics 10:421

Chang X, He X, Li J, Liu Z, Pi R, Luo X et al. (2024) High-quality Gossypium hirsutum and Gossypium barbadense genome assemblies reveal the landscape and evolution of centromeres. Plant Commun 5:100722 PubMed

Chmátal L, Schultz RM, Black BE, Lampson MA (2017) Cell biology of cheating-transmission of centromeres and other selfish elements through asymmetric meiosis. Prog Mol Subcell Biol 56:377–396 PubMed

Clark FE, Akera T (2021) Unravelling the mystery of female meiotic drive: where we are. Open Biol 11:210074 PubMed PMC

Danecek P, Auton A, Abecasis G, Albers CA, Banks E, DePristo MA et al. (2011) The variant call format and VCFtools. Bioinformatics 27:2156–2158 PubMed PMC

Danecek P, Bonfield JK, Liddle J, Marshall J, Ohan V, Pollard MO et al. (2021) Twelve years of SAMtools and BCFtools. GigaScience 10:giab008 PubMed PMC

Dedukh D, Krasikova A (2022) Delete and survive: strategies of programmed genetic material elimination in eukaryotes. Biol Rev Camb Philos Soc 97:195–216 PubMed

Gamba R, Fachinetti D (2020) From evolution to function: two sides of the same CENP-B coin? Exp Cell Res 390:111959

Gao S, Zhang Y, Bush SJ, Wang B, Yang X, Ye K (2024) Centromere landscapes resolved from hundreds of human genomes. Genom Proteom Bioinform 22:qzae071

Henikoff S, Ahmad K, Malik HS (2001) The centromere paradox: stable inheritance with rapidly evolving DNA. Science 293:1098–1102 PubMed

Holland AJ, Cleveland DW (2009) Boveri revisited: chromosomal instability, aneuploidy and tumorigenesis. Nat Rev Mol Cell Biol 10:478–487 PubMed PMC

Huang Z, Xu Z, Bai H, Huang Y, Kang N, Ding X et al. (2023) Evolutionary analysis of a complete chicken genome. Proc Natl Acad Sci USA 120:e2216641120 PubMed PMC

Ishii T, Karimi-Ashtiyani R, Houben A (2016) Haploidization via chromosome elimination: means and mechanisms. Annu Rev Plant Biol 67:421–438 PubMed

Johnson Pokorná M, Reifová R (2021) Evolution of B chromosomes: from dispensable parasitic chromosomes to essential genomic players. Front Genet 12:727570 PubMed PMC

Kapusta A, Suh A (2017) Evolution of bird genomes—a transposon’s-eye view. Ann NY Acad Sci 1389:164–185

Katoh K, Rozewicki J, Yamada KD (2019) MAFFT online service: multiple sequence alignment, interactive sequence choice and visualization. Brief Bioinform 20:1160–1166 PubMed

Khost DE, Eickbush DG, Larracuente AM (2017) Single-molecule sequencing resolves the detailed structure of complex satellite DNA loci in Drosophila melanogaster. Genome Res 27:709 PubMed PMC

Kinsella CM, Ruiz-Ruano FJ, Dion-Côté A-M, Charles AJ, Gossmann TI, Cabrero J et al. (2019) Programmed DNA elimination of germline development genes in songbirds. Nat Commun 10:5468 PubMed PMC

Krasikova A, Fukagawa T, Zlotina A (2012) High-resolution mapping and transcriptional activity analysis of chicken centromere sequences on giant lampbrush chromosomes. Chromosome Res 20:995–1008

Kursel LE, Malik HS (2018) The cellular mechanisms and consequences of centromere drive. Curr Opin Cell Biol 52:58–65 PubMed PMC

Li H (2013) Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. arXiv https://doi.org/10.48550/arXiv.1303.3997

Logsdon GA, Rozanski AN, Ryabov F, Potapova T, Shepelev VA, Catacchio CR et al. (2024) The variation and evolution of complete human centromeres. Nature 629:136–145 PubMed PMC

Malinovskaya LP, Zadesenets KS, Karamysheva TV, Akberdina EA, Kizilova EA, Romanenko MV et al. (2020) Germline-restricted chromosome (GRC) in the sand martin and the pale martin (Hirundinidae, Aves): synapsis, recombination and copy number variation. Sci Rep 10:1058 PubMed PMC

Masumoto H, Masukata H, Muro Y, Nozaki N, Okazaki T (1989) A human centromere antigen (CENP-B) interacts with a short specific sequence in alphoid DNA, a human centromeric satellite. J Cell Biol 109:1963–1973 PubMed

Mchugh NJ (2007) 20—Centromere autoantibodies. In: Shoenfeld Y, Gershwin ME, Meroni PL (eds) Autoantibodies, 2nd edn. Elsevier, Burlington, pp 151–157

McKinley KL, Cheeseman IM (2016) The molecular basis for centromere identity and function. Nat Rev Mol Cell Biol 17:16–29 PubMed

Moens PB (2006) Zebrafish: chiasmata and interference. Genome 49:205–208 PubMed

Novák P, Neumann P, Macas J (2010) Graph-based clustering and characterization of repetitive sequences in next-generation sequencing data. BMC Bioinformatics 11:378

Novák P, Neumann P, Pech J, Steinhaisl J, Macas J (2013) RepeatExplorer: a galaxy-based web server for genome-wide characterization of eukaryotic repetitive elements from next-generation sequence reads. Bioinformatics 29:792–793 PubMed

Novák P, Ávila Robledillo L, Koblížková A, Vrbová I, Neumann P, Macas J (2017) TAREAN: a computational tool for identification and characterization of satellite DNA from unassembled short reads. Nucleic Acids Res. 45:e111 PubMed PMC

Novák P, Neumann P, Macas J (2020) Global analysis of repetitive DNA from unassembled sequence reads using RepeatExplorer2. Nat Protoc 15:3745–3776 PubMed

Pei Y, Forstmeier W, Ruiz-Ruano FJ, Mueller JC, Cabrero J, Camacho JPM et al. (2022) Occasional paternal inheritance of the germline-restricted chromosome in songbirds. Proc Natl Acad Sci USA 119:e2103960119 PubMed PMC

Peona V, Kutschera VE, Blom MPK, Irestedt M, Suh A (2023) Satellite DNA evolution in Corvoidea inferred from short and long reads. Mol Ecol 32:1288–1305 PubMed

Peters AH, Plug AW, van Vugt MJ, de, Boer P (1997) A drying-down technique for the spreading of mammalian meiocytes from the male and female germline. Chromosome Res 5:66–68

Piégu B, Arensburger P, Guillou F, Bigot Y (2018) But where did the centromeres go in the chicken genome models? Chromosome Res. 26:297–306

Pigozzi MI, Solari AJ (1998) Germ cell restriction and regular transmission of an accessory chromosome that mimics a sex body in the zebra finch, Taeniopygia guttata. Chromosome Res 6:105–113

Pigozzi MI, Solari AJ (2005) The germ-line-restricted chromosome in the zebra finch: recombination in females and elimination in males. Chromosoma 114:403–409 PubMed

Poignet M, Johnson Pokorná M, Altmanová M, Majtánová Z, Dedukh D, Albrecht T et al. (2021) Comparison of karyotypes in two hybridizing passerine species: conserved chromosomal structure but divergence in centromeric repeats. Front Genet 12:768987 PubMed PMC

R Core Team (2023) R: a language and environment for statistical computing. https://www.R-project.org/

Rosin LF, Mellone BG (2017) Centromeres drive a hard bargain. Trends Genet 33:101–117

Ruban A, Schmutzer T, Wu DD, Fuchs J, Boudichevskaia A, Rubtsova M et al. (2020) Supernumerary B chromosomes of Aegilops speltoides undergo precise elimination in roots early in embryo development. Nat Commun 11:2764 PubMed PMC

Saffery R, Earle E, Irvine DV, Kalitsis P, Choo KH (1999) Conservation of centromere protein in vertebrates. Chromosome Res 7:261–265

Saifitdinova AF, Derjusheva SE, Malykh AG, Zhurov VG, Andreeva TF, Gaginskaya ER (2001) Centromeric tandem repeat from the chaffinch genome: isolation and molecular characterization. Genome 44:96–103 PubMed

Schlebusch SA, Rídl J, Poignet M, Ruiz-Ruano FJ, Reif J, Pajer P et al. (2023) Rapid gene content turnover on the germline-restricted chromosome in songbirds. Nat Commun 14: 4579 PubMed PMC

Shang W-H, Hori T, Toyoda A, Kato J, Popendorf K, Sakakibara Y et al. (2010) Chickens possess centromeres with both extended tandem repeats and short non-tandem-repetitive sequences. Genome Res 20:1219–1228 PubMed PMC

Shang W-H, Hori T, Martins NMC, Toyoda A, Misu S, Monma N et al. (2013) Chromosome engineering allows the efficient isolation of vertebrate neocentromeres. Dev Cell 24:635–648 PubMed PMC

Smit AFA, Hubley R, Green P (2015) RepeatMasker Open-4.0. 2013–2015. http://www.repeatmasker.org

Solovei IV, Joffe BI, Gaginskaya ER, Macgregor HC (1996) Transcription on lampbrush chromosomes of a centromerically localized highly repeated DNA in pigeon (Columba) relates to sequence arrangement. Chromosome Res. 4:588–603

Sotelo-Muñoz M, Poignet M, Albrecht T, Kauzál O, Dedukh D, Schlebusch SA et al. (2022) Germline-restricted chromosome shows remarkable variation in size among closely related passerine species. Chromosoma 131:77–86 PubMed

Sottas C, Reif J, Piálek L, Poignet M, Kverek P, Dolata PT et al. (2023) Patterns of hybridization in a secondary contact zone between two passerine species, the common nightingale Luscinia megarhynchos and the thrush nightingale Luscinia luscinia. J Avian Biol 2023:e03061

Storchová R, Reif J, Nachman MW (2010) Female heterogamety and speciation: reduced introgression of the Z chromosome between two species of nightingales. Evolution 64:456–471

Suh A, Smeds L, Ellegren H (2018) Abundant recent activity of retrovirus-like retrotransposons within and among flycatcher species implies a rich source of structural variation in songbird genomes. Mol Ecol 27:99–111 PubMed

Takki O, Komissarov A, Kulak M, Galkina S (2022) Identification of centromere-specific repeats in the zebra finch genome. Cytogenet Genome Res. 162:55–63 PubMed

Talbert PB, Henikoff S (2020) What makes a centromere? Exp Cell Res 389:111895

Torgasheva AA, Malinovskaya LP, Zadesenets KS, Karamysheva TV, Kizilova EA, Akberdina EA et al. (2019) Germline-restricted chromosome (GRC) is widespread among songbirds. Proc Natl Acad Sci USA 116:11845–11850 PubMed PMC

Torgasheva A, Malinovskaya L, Zadesenets K, Shnaider E, Rubtsov N, Borodin P (2021) Germline-restricted chromosome (GRC) in female and male meiosis of the great tit (Parus major, Linnaeus, 1758). Front Genet 12:768056 PubMed PMC

Uno Y, Nishida C, Hata A, Ishishita S, Matsuda Y (2019) Molecular cytogenetic characterization of repetitive sequences comprising centromeric heterochromatin in three Anseriformes species. PLoS ONE 14:e0214028 PubMed PMC

Voleníková A, Lukšíková K, Mora P, Pavlica T, Altmanová M, Štundlová J et al. (2023) Fast satellite DNA evolution in Nothobranchius annual killifishes. Chromosome Res. 31:33

Weighill D, Macaya-Sanz D, DiFazio SP, Joubert W, Shah M, Schmutz J et al. (2019) Wavelet-based genomic signal processing for centromere identification and hypothesis generation. Front Genet 10:487 PubMed PMC

Weissensteiner MH, Pang AWC, Bunikis I, Höijer I, Vinnere-Petterson O, Suh A et al. (2017) Combination of short-read, long-read, and optical mapping assemblies reveals large-scale tandem repeat arrays with population genetic implications. Genome Res. 27:1–12

Wickham H (2016) ggplot2: elegant graphics for data analysis. https://ggplot2.tidyverse.org

Wu D, Ruban A, Fuchs J, Macas J, Novák P, Vaio M et al. (2019) Nondisjunction and unequal spindle organization accompany the drive of Aegilops speltoides B chromosomes. New Phytol 223:1340–1352

Yamada K, Shibusawa M, Tsudzuki M, Matsuda Y (2002) Molecular cloning and characterization of novel centromeric repetitive DNA sequences in the blue-breasted quail (Coturnix chinensis, Galliformes). Cytogenet Genome Res. 98:255–261 PubMed

Yi C, Wang M, Jiang W, Wang D, Zhou Y, Gong Z et al. (2015) Isolation and identification of a functional centromere element in the wild rice species Oryza granulata with the GG genome. J Genet Genomics 42:699–702 PubMed

Zhao M, Gordon Burleigh J, Olsson U, Alström P, Kimball RT (2023) A near-complete and time-calibrated phylogeny of the Old World flycatchers, robins and chats (Aves, Muscicapidae). Mol Phylogenet Evol 178:107646 PubMed

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...