Non-cell autonomous and spatiotemporal signalling from a tissue organizer orchestrates root vascular development

. 2021 Nov ; 7 (11) : 1485-1494. [epub] 20211115

Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid34782768

Grantová podpora
714055 European Research Council - International

Odkazy

PubMed 34782768
PubMed Central PMC7612341
DOI 10.1038/s41477-021-01017-6
PII: 10.1038/s41477-021-01017-6
Knihovny.cz E-zdroje

During plant development, a precise balance of cytokinin is crucial for correct growth and patterning, but it remains unclear how this is achieved across different cell types and in the context of a growing organ. Here we show that in the root apical meristem, the TMO5/LHW complex increases active cytokinin levels via two cooperatively acting enzymes. By profiling the transcriptomic changes of increased cytokinin at single-cell level, we further show that this effect is counteracted by a tissue-specific increase in CYTOKININ OXIDASE 3 expression via direct activation of the mobile transcription factor SHORTROOT. In summary, we show that within the root meristem, xylem cells act as a local organizer of vascular development by non-autonomously regulating cytokinin levels in neighbouring procambium cells via sequential induction and repression modules.

Zobrazit více v PubMed

Lucas WJ, et al. The plant vascular system: evolution, development and functions. J Integr Plant Biol. 2013;55:294–388. doi: 10.1111/jipb.12041. PubMed DOI

De Rybel B, Mahonen AP, Helariutta Y, Weijers D. Plant vascular development: from early specification to differentiation. Nature reviews Molecular cell biology. 2016;17:30–40. doi: 10.1038/nrm.2015.6. PubMed DOI

Bishopp A, et al. A mutually inhibitory interaction between auxin and cytokinin specifies vascular pattern in roots. Current biology. 2011;21:917–926. doi: 10.1016/j.cub.2011.04.017. PubMed DOI

De Rybel B, et al. Plant development. Integration of growth and patterning during vascular tissue formation in Arabidopsis. Science. 2014;345:1255215. doi: 10.1126/science.1255215. PubMed DOI

Ohashi-Ito K, et al. A bHLH complex activates vascular cell division via cytokinin action in root apical meristem. Curr Biol. 2014;24:2053–2058. doi: 10.1016/j.cub.2014.07.050. PubMed DOI

De Rybel B, et al. A bHLH complex controls embryonic vascular tissue establishment and indeterminate growth in Arabidopsis. Developmental cell. 2013;24:426–437. doi: 10.1016/j.devcel.2012.12.013. PubMed DOI

Katayama H, et al. A Negative Feedback Loop Controlling bHLH Complexes Is Involved in Vascular Cell Division and Differentiation in the Root Apical Meristem. Curr Biol. 2015;25:3144–3150. doi: 10.1016/j.cub.2015.10.051. PubMed DOI

Ohashi-Ito K, Bergmann DC. Regulation of the Arabidopsis root vascular initial population by LONESOME HIGHWAY. Development (Cambridge, England) 2007;134:2959–2968. doi: 10.1242/dev.006296. PubMed DOI PMC

Ohashi-Ito K, Matsukawa M, Fukuda H. An atypical bHLH transcription factor regulates early xylem development downstream of auxin. Plant Cell Physiol. 2013;54:398–405. doi: 10.1093/pcp/pct013. PubMed DOI

Ohashi-Ito K, Oguchi M, Kojima M, Sakakibara H, Fukuda H. Auxin-associated initiation of vascular cell differentiation by LONESOME HIGHWAY. Development. 2013;140:765–769. doi: 10.1242/dev.087924. PubMed DOI

Vera-Sirera F, et al. A bHLH-Based Feedback Loop Restricts Vascular Cell Proliferation in Plants. Dev Cell. 2015;35:432–443. doi: 10.1016/j.devcel.2015.10.022. PubMed DOI

Miyashima S, et al. Mobile PEAR transcription factors integrate positional cues to prime cambial growth. Nature. 2019;565:490–494. doi: 10.1038/s41586-018-0839-y. PubMed DOI PMC

Smet W, et al. DOF2.1 Controls Cytokinin-Dependent Vascular Cell Proliferation Downstream of TMO5/LHW. Current biology : CB. 2019;29:520–529.:e526. doi: 10.1016/j.cub.2018.12.041. PubMed DOI PMC

Wybouw B, De Rybel B. Cytokinin - A Developing Story. Trends in plant science. 2019;24:177–185. doi: 10.1016/j.tplants.2018.10.012. PubMed DOI

Kuroha T, et al. Functional analyses of LONELY GUY cytokinin-activating enzymes reveal the importance of the direct activation pathway in Arabidopsis. The Plant Cell. 2009;21:3152–3169. doi: 10.1105/tpc.109.068676. PubMed DOI PMC

Tokunaga H, et al. Arabidopsis lonely guy (LOG) multiple mutants reveal a central role of the LOG-dependent pathway in cytokinin activation. The Plant journal. 2012;69:355–365. doi: 10.1111/j.1365-313X.2011.04795.x. PubMed DOI

Mähönen AP, et al. A novel two-component hybrid molecule regulates vascular morphogenesis of the Arabidopsis root. Genes & development. 2000;14:2938–2943. PubMed PMC

Wendrich JR, et al. Vascular transcription factors guide plant epidermal responses to limiting phosphate conditions. Science. 2020;370 doi: 10.1126/science.aay4970. PubMed DOI PMC

Xu Z, et al. Functional genomic analysis of Arabidopsis thaliana glycoside hydrolase family 1. Plant Mol Biol. 2004;55:343–367. doi: 10.1007/s11103-004-0790-1. PubMed DOI

Leah R, Kigel J, Svendsen I, Mundy J. Biochemical and molecular characterization of a barley seed beta-glucosidase. J Biol Chem. 1995;270:15789–15797. doi: 10.1074/jbc.270.26.15789. PubMed DOI

Dharmawardhana DP, Ellis BE, Carlson JE. A beta-glucosidase from lodgepole pine xylem specific for the lignin precursor coniferin. Plant Physiol. 1995;107:331–339. doi: 10.1104/pp.107.2.331. PubMed DOI PMC

Brzobohatý B, et al. Release of active cytokinin by a beta-glucosidase localized to the maize root meristem. Science. 1993;262:1051–1054. doi: 10.1126/science.8235622. PubMed DOI

Weijers D, et al. An Arabidopsis Minute-like phenotype caused by a semi-dominant mutation in a RIBOSOMAL PROTEIN S5 gene. Development. 2001;128:4289–4299. PubMed

Bartrina I, Otto E, Strnad M, Werner T, Schmülling T. Cytokinin regulates the activity of reproductive meristems, flower organ size, ovule formation, and thus seed yield in Arabidopsis thaliana. Plant Cell. 2011;23:69–80. doi: 10.1105/tpc.110.079079. PubMed DOI PMC

Zurcher E, et al. A robust and sensitive synthetic sensor to monitor the transcriptional output of the cytokinin signaling network in planta. Plant Physiology. 2013;161:1066–1075. doi: 10.1104/pp.112.211763. PubMed DOI PMC

Werner T, Motyka V, Strnad M, Schmülling T. Regulation of plant growth by cytokinin. Proc Natl Acad Sci U S A. 2001;98:10487–10492. doi: 10.1073/pnas.171304098. PubMed DOI PMC

Matsumoto-Kitano M, et al. Cytokinins are central regulators of cambial activity. Proceedings of the National Academy of Sciences of the United States of America. 2008;105:20027–20031. doi: 10.1073/pnas.0805619105. PubMed DOI PMC

Schmülling T, Werner T, Riefler M, Krupková E, Bartrina y Manns I. Structure and function of cytokinin oxidase/dehydrogenase genes of maize, rice, Arabidopsis and other species. J Plant Res. 2003;116:241–252. doi: 10.1007/s10265-003-0096-4. PubMed DOI

Lee DJ, et al. Genome-wide expression profiling of ARABIDOPSIS RESPONSE REGULATOR 7(ARR7) overexpression in cytokinin response. Mol Genet Genomics. 2007;277:115–137. doi: 10.1007/s00438-006-0177-x. PubMed DOI

Rashotte AM, Carson SD, To JP, Kieber JJ. Expression profiling of cytokinin action in Arabidopsis. Plant Physiol. 2003;132:1998–2011. doi: 10.1104/pp.103.021436. PubMed DOI PMC

Cui H, et al. Genome-wide direct target analysis reveals a role for SHORT-ROOT in root vascular patterning through cytokinin homeostasis. Plant Physiol. 2011;157:1221–1231. doi: 10.1104/pp.111.183178. PubMed DOI PMC

Marquès-Bueno MDM, et al. A versatile Multisite Gateway-compatible promoter and transgenic line collection for cell type-specific functional genomics in Arabidopsis. Plant J. 2016;85:320–333. doi: 10.1111/tpj.13099. PubMed DOI PMC

Levesque MP, et al. Whole-genome analysis of the SHORT-ROOT developmental pathway in Arabidopsis. PLoS biology. 2006;4:e143. PubMed PMC

Mellor N, et al. Theoretical approaches to understanding root vascular patterning: a consensus between recent models. Journal of experimental botany. 2017;68:5–16. doi: 10.1093/jxb/erw410. PubMed DOI

Mähönen AP, et al. Cytokinin signaling and its inhibitor AHP6 regulate cell fate during vascular development. Science (New York, NY. 2006;311:94–98. doi: 10.1126/science.1118875. PubMed DOI

Help H, Mahonen AP, Helariutta Y, Bishopp A. Bisymmetry in the embryonic root is dependent on cotyledon number and position. Plant signaling & behavior. 2011;6:1837–1840. doi: 10.4161/psb.6.11.17600. PubMed DOI PMC

Helariutta Y, et al. The SHORT-ROOT gene controls radial patterning of the Arabidopsis root through radial signaling. Cell. 2000;101:555–567. PubMed

Nakajima K, Sena G, Nawy T, Benfey PN. Intercellular movement of the putative transcription factor SHR in root patterning. Nature. 2001;413:307–311. PubMed

Sozzani R, et al. Spatiotemporal regulation of cell-cycle genes by SHORTROOT links patterning and growth. Nature. 2010;466:128–132. doi: 10.1038/nature09143. PubMed DOI PMC

Möller BK, et al. Auxin response cell-autonomously controls ground tissue initiation in the early. Proc Natl Acad Sci U S A. 2017;114:E2533–E2539. doi: 10.1073/pnas.1616493114. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...