Non-cell autonomous and spatiotemporal signalling from a tissue organizer orchestrates root vascular development
Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
714055
European Research Council - International
PubMed
34782768
PubMed Central
PMC7612341
DOI
10.1038/s41477-021-01017-6
PII: 10.1038/s41477-021-01017-6
Knihovny.cz E-zdroje
- MeSH
- Arabidopsis růst a vývoj MeSH
- cytokininy * MeSH
- kořeny rostlin růst a vývoj MeSH
- oxidoreduktasy MeSH
- proteiny huseníčku MeSH
- signální transdukce MeSH
- trans-aktivátory MeSH
- transkripční faktory bHLH MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- cytokinin oxidase MeSH Prohlížeč
- cytokininy * MeSH
- LHW protein, Arabidopsis MeSH Prohlížeč
- oxidoreduktasy MeSH
- proteiny huseníčku MeSH
- TARGET OF MP 5 protein, Arabidopsis MeSH Prohlížeč
- trans-aktivátory MeSH
- transkripční faktory bHLH MeSH
During plant development, a precise balance of cytokinin is crucial for correct growth and patterning, but it remains unclear how this is achieved across different cell types and in the context of a growing organ. Here we show that in the root apical meristem, the TMO5/LHW complex increases active cytokinin levels via two cooperatively acting enzymes. By profiling the transcriptomic changes of increased cytokinin at single-cell level, we further show that this effect is counteracted by a tissue-specific increase in CYTOKININ OXIDASE 3 expression via direct activation of the mobile transcription factor SHORTROOT. In summary, we show that within the root meristem, xylem cells act as a local organizer of vascular development by non-autonomously regulating cytokinin levels in neighbouring procambium cells via sequential induction and repression modules.
Department of Applied Mathematics Computer Science and Statistics Ghent University Ghent Belgium
Department of Biomedical Molecular Biology Ghent University Ghent Belgium
Department of Plant Biotechnology and Bioinformatics Ghent University Ghent Belgium
School of Biosciences University of Nottingham Loughborough UK
School of Mathematical Sciences University of Nottingham Nottingham UK
VIB Center for Inflammation Research Data Mining and Modelling for Biomedicine Ghent Belgium
VIB Center for Plant Systems Biology Ghent Belgium
VIB Flow Core VIB Center for Inflammation Research Ghent Belgium
VIB Protein Service Facility VIB Center for Inflammation Research Ghent Belgium
Zobrazit více v PubMed
Lucas WJ, et al. The plant vascular system: evolution, development and functions. J Integr Plant Biol. 2013;55:294–388. doi: 10.1111/jipb.12041. PubMed DOI
De Rybel B, Mahonen AP, Helariutta Y, Weijers D. Plant vascular development: from early specification to differentiation. Nature reviews Molecular cell biology. 2016;17:30–40. doi: 10.1038/nrm.2015.6. PubMed DOI
Bishopp A, et al. A mutually inhibitory interaction between auxin and cytokinin specifies vascular pattern in roots. Current biology. 2011;21:917–926. doi: 10.1016/j.cub.2011.04.017. PubMed DOI
De Rybel B, et al. Plant development. Integration of growth and patterning during vascular tissue formation in Arabidopsis. Science. 2014;345:1255215. doi: 10.1126/science.1255215. PubMed DOI
Ohashi-Ito K, et al. A bHLH complex activates vascular cell division via cytokinin action in root apical meristem. Curr Biol. 2014;24:2053–2058. doi: 10.1016/j.cub.2014.07.050. PubMed DOI
De Rybel B, et al. A bHLH complex controls embryonic vascular tissue establishment and indeterminate growth in Arabidopsis. Developmental cell. 2013;24:426–437. doi: 10.1016/j.devcel.2012.12.013. PubMed DOI
Katayama H, et al. A Negative Feedback Loop Controlling bHLH Complexes Is Involved in Vascular Cell Division and Differentiation in the Root Apical Meristem. Curr Biol. 2015;25:3144–3150. doi: 10.1016/j.cub.2015.10.051. PubMed DOI
Ohashi-Ito K, Bergmann DC. Regulation of the Arabidopsis root vascular initial population by LONESOME HIGHWAY. Development (Cambridge, England) 2007;134:2959–2968. doi: 10.1242/dev.006296. PubMed DOI PMC
Ohashi-Ito K, Matsukawa M, Fukuda H. An atypical bHLH transcription factor regulates early xylem development downstream of auxin. Plant Cell Physiol. 2013;54:398–405. doi: 10.1093/pcp/pct013. PubMed DOI
Ohashi-Ito K, Oguchi M, Kojima M, Sakakibara H, Fukuda H. Auxin-associated initiation of vascular cell differentiation by LONESOME HIGHWAY. Development. 2013;140:765–769. doi: 10.1242/dev.087924. PubMed DOI
Vera-Sirera F, et al. A bHLH-Based Feedback Loop Restricts Vascular Cell Proliferation in Plants. Dev Cell. 2015;35:432–443. doi: 10.1016/j.devcel.2015.10.022. PubMed DOI
Miyashima S, et al. Mobile PEAR transcription factors integrate positional cues to prime cambial growth. Nature. 2019;565:490–494. doi: 10.1038/s41586-018-0839-y. PubMed DOI PMC
Smet W, et al. DOF2.1 Controls Cytokinin-Dependent Vascular Cell Proliferation Downstream of TMO5/LHW. Current biology : CB. 2019;29:520–529.:e526. doi: 10.1016/j.cub.2018.12.041. PubMed DOI PMC
Wybouw B, De Rybel B. Cytokinin - A Developing Story. Trends in plant science. 2019;24:177–185. doi: 10.1016/j.tplants.2018.10.012. PubMed DOI
Kuroha T, et al. Functional analyses of LONELY GUY cytokinin-activating enzymes reveal the importance of the direct activation pathway in Arabidopsis. The Plant Cell. 2009;21:3152–3169. doi: 10.1105/tpc.109.068676. PubMed DOI PMC
Tokunaga H, et al. Arabidopsis lonely guy (LOG) multiple mutants reveal a central role of the LOG-dependent pathway in cytokinin activation. The Plant journal. 2012;69:355–365. doi: 10.1111/j.1365-313X.2011.04795.x. PubMed DOI
Mähönen AP, et al. A novel two-component hybrid molecule regulates vascular morphogenesis of the Arabidopsis root. Genes & development. 2000;14:2938–2943. PubMed PMC
Wendrich JR, et al. Vascular transcription factors guide plant epidermal responses to limiting phosphate conditions. Science. 2020;370 doi: 10.1126/science.aay4970. PubMed DOI PMC
Xu Z, et al. Functional genomic analysis of Arabidopsis thaliana glycoside hydrolase family 1. Plant Mol Biol. 2004;55:343–367. doi: 10.1007/s11103-004-0790-1. PubMed DOI
Leah R, Kigel J, Svendsen I, Mundy J. Biochemical and molecular characterization of a barley seed beta-glucosidase. J Biol Chem. 1995;270:15789–15797. doi: 10.1074/jbc.270.26.15789. PubMed DOI
Dharmawardhana DP, Ellis BE, Carlson JE. A beta-glucosidase from lodgepole pine xylem specific for the lignin precursor coniferin. Plant Physiol. 1995;107:331–339. doi: 10.1104/pp.107.2.331. PubMed DOI PMC
Brzobohatý B, et al. Release of active cytokinin by a beta-glucosidase localized to the maize root meristem. Science. 1993;262:1051–1054. doi: 10.1126/science.8235622. PubMed DOI
Weijers D, et al. An Arabidopsis Minute-like phenotype caused by a semi-dominant mutation in a RIBOSOMAL PROTEIN S5 gene. Development. 2001;128:4289–4299. PubMed
Bartrina I, Otto E, Strnad M, Werner T, Schmülling T. Cytokinin regulates the activity of reproductive meristems, flower organ size, ovule formation, and thus seed yield in Arabidopsis thaliana. Plant Cell. 2011;23:69–80. doi: 10.1105/tpc.110.079079. PubMed DOI PMC
Zurcher E, et al. A robust and sensitive synthetic sensor to monitor the transcriptional output of the cytokinin signaling network in planta. Plant Physiology. 2013;161:1066–1075. doi: 10.1104/pp.112.211763. PubMed DOI PMC
Werner T, Motyka V, Strnad M, Schmülling T. Regulation of plant growth by cytokinin. Proc Natl Acad Sci U S A. 2001;98:10487–10492. doi: 10.1073/pnas.171304098. PubMed DOI PMC
Matsumoto-Kitano M, et al. Cytokinins are central regulators of cambial activity. Proceedings of the National Academy of Sciences of the United States of America. 2008;105:20027–20031. doi: 10.1073/pnas.0805619105. PubMed DOI PMC
Schmülling T, Werner T, Riefler M, Krupková E, Bartrina y Manns I. Structure and function of cytokinin oxidase/dehydrogenase genes of maize, rice, Arabidopsis and other species. J Plant Res. 2003;116:241–252. doi: 10.1007/s10265-003-0096-4. PubMed DOI
Lee DJ, et al. Genome-wide expression profiling of ARABIDOPSIS RESPONSE REGULATOR 7(ARR7) overexpression in cytokinin response. Mol Genet Genomics. 2007;277:115–137. doi: 10.1007/s00438-006-0177-x. PubMed DOI
Rashotte AM, Carson SD, To JP, Kieber JJ. Expression profiling of cytokinin action in Arabidopsis. Plant Physiol. 2003;132:1998–2011. doi: 10.1104/pp.103.021436. PubMed DOI PMC
Cui H, et al. Genome-wide direct target analysis reveals a role for SHORT-ROOT in root vascular patterning through cytokinin homeostasis. Plant Physiol. 2011;157:1221–1231. doi: 10.1104/pp.111.183178. PubMed DOI PMC
Marquès-Bueno MDM, et al. A versatile Multisite Gateway-compatible promoter and transgenic line collection for cell type-specific functional genomics in Arabidopsis. Plant J. 2016;85:320–333. doi: 10.1111/tpj.13099. PubMed DOI PMC
Levesque MP, et al. Whole-genome analysis of the SHORT-ROOT developmental pathway in Arabidopsis. PLoS biology. 2006;4:e143. PubMed PMC
Mellor N, et al. Theoretical approaches to understanding root vascular patterning: a consensus between recent models. Journal of experimental botany. 2017;68:5–16. doi: 10.1093/jxb/erw410. PubMed DOI
Mähönen AP, et al. Cytokinin signaling and its inhibitor AHP6 regulate cell fate during vascular development. Science (New York, NY. 2006;311:94–98. doi: 10.1126/science.1118875. PubMed DOI
Help H, Mahonen AP, Helariutta Y, Bishopp A. Bisymmetry in the embryonic root is dependent on cotyledon number and position. Plant signaling & behavior. 2011;6:1837–1840. doi: 10.4161/psb.6.11.17600. PubMed DOI PMC
Helariutta Y, et al. The SHORT-ROOT gene controls radial patterning of the Arabidopsis root through radial signaling. Cell. 2000;101:555–567. PubMed
Nakajima K, Sena G, Nawy T, Benfey PN. Intercellular movement of the putative transcription factor SHR in root patterning. Nature. 2001;413:307–311. PubMed
Sozzani R, et al. Spatiotemporal regulation of cell-cycle genes by SHORTROOT links patterning and growth. Nature. 2010;466:128–132. doi: 10.1038/nature09143. PubMed DOI PMC
Möller BK, et al. Auxin response cell-autonomously controls ground tissue initiation in the early. Proc Natl Acad Sci U S A. 2017;114:E2533–E2539. doi: 10.1073/pnas.1616493114. PubMed DOI PMC
Cytokinins - regulators of de novo shoot organogenesis
IPT9, a cis-zeatin cytokinin biosynthesis gene, promotes root growth