IPT9, a cis-zeatin cytokinin biosynthesis gene, promotes root growth

. 2022 ; 13 () : 932008. [epub] 20221014

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid36311087

Cytokinin and auxin are plant hormones that coordinate many aspects of plant development. Their interactions in plant underground growth are well established, occurring at the levels of metabolism, signaling, and transport. Unlike many plant hormone classes, cytokinins are represented by more than one active molecule. Multiple mutant lines, blocking specific parts of cytokinin biosynthetic pathways, have enabled research in plants with deficiencies in specific cytokinin-types. While most of these mutants have confirmed the impeding effect of cytokinin on root growth, the ipt29 double mutant instead surprisingly exhibits reduced primary root length compared to the wild type. This mutant is impaired in cis-zeatin (cZ) production, a cytokinin-type that had been considered inactive in the past. Here we have further investigated the intriguing ipt29 root phenotype, opposite to known cytokinin functions, and the (bio)activity of cZ. Our data suggest that despite the ipt29 short-root phenotype, cZ application has a negative impact on primary root growth and can activate a cytokinin response in the stele. Grafting experiments revealed that the root phenotype of ipt29 depends mainly on local signaling which does not relate directly to cytokinin levels. Notably, ipt29 displayed increased auxin levels in the root tissue. Moreover, analyses of the differential contributions of ipt2 and ipt9 to the ipt29 short-root phenotype demonstrated that, despite its deficiency on cZ levels, ipt2 does not show any root phenotype or auxin homeostasis variation, while ipt9 mutants were indistinguishable from ipt29. We conclude that IPT9 functions may go beyond cZ biosynthesis, directly or indirectly, implicating effects on auxin homeostasis and therefore influencing plant growth.

Zobrazit více v PubMed

Antoniadi I., Novák O., Gelov,á Z., Johnson A., Plíhal O., Simerský R., et al. . (2020). Cell-surface receptors enable perception of extracellular cytokinins. Nat. Commun. 11, 1–10. 10.1038/s41467-020-17700-9 PubMed DOI PMC

Antoniadi I., Plačková L., Simonovik B., Doležal K., Turnbull C., Ljung K., et al. . (2015). Cell-type-specific cytokinin distribution within the arabidopsis primary root apex. Plant Cell. 27, 1955–1967. 10.1105/tpc.15.00176 PubMed DOI PMC

Argyros R. D., Mathews D. E., Chiang Y-. H., Palmer C. M., Thibault D. M., Etheridge N., et al. . (2008). Type B response regulators of Arabidopsis play key roles in cytokinin signaling and plant development. Plant Cell. 20, 2102–2116. 10.1105/tpc.108.059584 PubMed DOI PMC

Bishopp A., Benková E., Helariutta Y. (2011). Sending mixed messages: Auxin-cytokinin crosstalk in roots. Curr. Opin. Plant Biol. 14, 10–16. 10.1016/j.pbi.2010.08.014 PubMed DOI

Brumos J., Robles L. M., Yun J., Vu T. C., Jackson S., Alonso J. M., et al. . (2018). Local auxin biosynthesis is a key regulator of plant article local auxin biosynthesis is a key regulator of plant development. Dev. Cell. 47, 306–318.e5. 10.1016/j.devcel.2018.09.022 PubMed DOI

Casanova-Sáez R., Mateo-Bonmatí E., Ljung K. (2021). Auxin metabolism in plants. Cold Spring Harb. Perspect. Med. 11, 1–23. 10.1101/cshperspect.a039867 PubMed DOI PMC

Casanova-Sáez R., Mateo-Bonmatí E., Šimura J., Pěnčík A., Novák O., Staswick P., et al. . (2022). Inactivation of the entire Arabidopsis group II GH3s confers tolerance to salinity and water deficit. New. Phytol. 235, 263. 10.1111/nph.18114 PubMed DOI PMC

Che P., Gingerich D. J., Lall S., Howell S. H. (2002). Global and hormone-induced gene expression changes during shoot development in arabidopsis. Plant Cell. 14, 2771–2785. 10.1105/tpc.006668 PubMed DOI PMC

Clough S. J., Bent A. F. (1998). Floral dip: A simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J. 16, 735–743. 10.1046/j.1365-313x.1998.00343.x PubMed DOI

Curtis M. D., Grossniklaus U. (2003). A Gateway cloning vector set for high-throughput functional analysis of genes in planta. Plant Physiol. 133, 462–469. 10.1104/pp.103.027979 PubMed DOI PMC

Dagert M., Ehrlich S. D. (1979). Prolonged incubation in calcium chloride improves the competence of Escherichia coli cells. Gene. 6, 23–28. 10.1016/0378-1119(79)90082-9 PubMed DOI

D'Agostino I. B., Deruère J., Kieber J. J. (2000). Characterization of the response of the Arabidopsis response regulator gene family to cytokinin. Plant Physiol. 124, 1706–1717. 10.1104/pp.124.4.1706 PubMed DOI PMC

Dello Ioio R., Nakamura K., Moubayidin L., Perilli S., Taniguchi M., Morita M. T., et al. . (2008). A genetic framework for the control of cell division and differentiation in the root meristem. Science. 322, 1380–1384. 10.1126/science.1164147 PubMed DOI

Dharmasiri N., Dharmasiri S., Jones A. M., Estelle M. (2003). Auxin action in a cell-free system. Curr. Biol. CB Biol. 13, 1418–1422. 10.1016/S0960-9822(03)00536-0 PubMed DOI

Dobra J., Motyka V., Dobrev P., Malbeck J., Prasil I. T., Haisel D., et al. . (2010). Comparison of hormonal responses to heat, drought and combined stress in tobacco plants with elevated proline content. J. Plant Physiol. 167, 1360–1370. 10.1016/j.jplph.2010.05.013 PubMed DOI

Emery J. R. N., Leport L., Barton J. E., Turner N. C., Atkins C. A., Agriculture M., et al. . (1998). cis-Isomers of Cytokinins Predominate in Chickpea Seeds throughout Their Development 1. Plant Physiol. 117, 1515–1523. 10.1104/pp.117.4.1515 PubMed DOI PMC

Gajdosová S., Spíchal L., Kamínek M., Hoyerová K., Novák O., Dobrev P. I., et al. . (2011). Distribution, biological activities, metabolism, and the conceivable function of cis-zeatin-type cytokinins in plants. J. Exp. Bot. 62, 2827–2840. 10.1093/jxb/erq457 PubMed DOI

Galuszka P., Popelková H., Werner T., Frébortová J., Pospíšilová H., Mik V., et al. . (2007). Biochemical Characterization of Cytokinin Oxidases/Dehydrogenases from Arabidopsis thaliana Expressed in Nicotiana tabacum L. J. Plant Growth Regul. 26, 255–267. 10.1007/s00344-007-9008-5 DOI

Hanania U., Velcheva M., Sahar N., Perl A. (2004). An Improved Method for Isolating High-Quality DNA From Vitis vinifera Nuclei. Plant Mol. Biol. Report. 22, 173–177. 10.1007/BF02772724 DOI

Havlová M., Dobrev P. I., Motyka V., Storchová H., Libus J., Dobrá J., et al. . (2008). The role of cytokinins in responses to water deficit in tobacco plants over-expressing trans-zeatin O-glucosyltransferase gene under 35S or SAG12 promoters. Plant Cell Environ. 31, 341–353. 10.1111/j.1365-3040.2007.01766.x PubMed DOI

Higuchi M., Pischke M. S., Miyawaki K., Hashimoto Y., Seki M., Mahonen A. P., et al. . (2004). In planta functions of the Arabidopsis cytokinin receptor family. PNAS. 101, 8821–8826. 10.1073/pnas.0402887101 PubMed DOI PMC

Hirose N., Takei K., Kuroha T., Kamada-Nobusada T., Hayashi H., Sakakibara H., et al. . (2008). Regulation of cytokinin biosynthesis, compartmentalization and translocation. J. Exp. Bot. 59, 75–83. 10.1093/jxb/erm157 PubMed DOI

Inoue T., Higuchi M., Hashimoto Y., Seki M., Kobayashi M., Kato T., et al. . (2001). Identi ® cation of CRE1 as a cytokinin receptor from Arabidopsis. Nature. 409, 1060–1063. 10.1038/35059117 PubMed DOI

Kamínek M., Vaněk T., Motyka V. (1987). Cytokinin activities of N6-benzyladenosine derivatives hydroxylated on the side-chain phenyl ring. J. Plant Growth Regul. 6, 113–120. 10.1007/BF02026460 DOI

Kiba T., Takei K., Kojima M., Sakakibara H. (2013). Side-chain modification of cytokinins controls shoot growth in Arabidopsis. Dev. Cell. 27, 452–461. 10.1016/j.devcel.2013.10.004 PubMed DOI

Kiba T., Yamada H., Mizuno T. (2002). Characterization of the ARR15 and ARR16 response regulators with special reference to the cytokinin signaling pathway mediated by the AHK4 histidine kinase in roots of Arabidopsis thaliana. Plant Cell Physiol. 43, 1059–1066. 10.1093/pcp/pcf121 PubMed DOI

Kiba T., Yamada H., Sato S., Kato T., Tabata S., Mizuno T., et al. . (2003). The type-a response regulator, ARR15, acts as a negative regulator in the cytokinin-mediated signal transduction in Arabidopsis thaliana. Plant Cell Physiol. 44, 868–874. 10.1093/pcp/pcg108 PubMed DOI

Kieber J. J., Schaller G. E. (2018). Cytokinin signaling in plant development. Development. 145, 1–7. 10.1242/dev.149344 PubMed DOI

Ko D., Kang J., Kiba T., Park J., Kojima M., Do J., et al. . (2014). Arabidopsis ABCG14 is essential for the root-to-shoot translocation of cytokinin. Proc. Natl. Acad. Sci. U S A. 111, 7150–7155. 10.1073/pnas.1321519111 PubMed DOI PMC

Kojima M., Kamada-Nobusada T., Komatsu H., Takei K., Kuroha T., Mizutani M., et al. . (2009). Highly sensitive and high-throughput analysis of plant hormones using MS-probe modification and liquid chromatography-tandem mass spectrometry: an application for hormone profiling in Oryza sativa. Plant Cell Physiol. 50, 1201–1214. 10.1093/pcp/pcp057 PubMed DOI PMC

Köllmer I., Novák O., Strnad M., Schmülling T., Werner T. (2014). Overexpression of the cytosolic cytokinin oxidase/dehydrogenase (CKX7) from Arabidopsis causes specific changes in root growth and xylem differentiation. Plant J. 78, 359–371. 10.1111/tpj.12477 PubMed DOI

Kowalska M., Galuszka P., Frébortová J., Šebela M., Béres T., Hluska T., et al. . (2010). Vacuolar and cytosolic cytokinin dehydrogenases of Arabidopsis thaliana: heterologous expression, purification and properties. Phytochemistry. 71, 1970–1978. 10.1016/j.phytochem.2010.08.013 PubMed DOI

Kudo T., Makita N., Kojima M., Tokunaga H., Sakakibara H. (2012). Cytokinin activity of cis-zeatin and phenotypic alterations induced by overexpression of putative cis-zeatin-o-glucosyltransferase in rice. Plant Physiol. 160, 319–331. 10.1104/pp.112.196733 PubMed DOI PMC

Kuroha T., Tokunaga H., Kojima M., Ueda N., Ishida T., Nagawa S., et al. . (2009). Functional analyses of LONELY GUY cytokinin-activating enzymes reveal the importance of the direct activation pathway in Arabidopsis. Plant Cell. 21, 3152–3169. 10.1105/tpc.109.068676 PubMed DOI PMC

Lomin S. N., Krivosheev D. M., Steklov M. Y., Osolodkin D. I., Romanov G. (2012). Receptor properties and features of cytokinin signaling. Acta Nat. 4, 31–45. 10.32607/20758251-2012-4-3-31-45 PubMed DOI PMC

Lomin S. N., Yonekura-Sakakibara K., Romanov G. A., Sakakibara H. (2011). Ligand-binding properties and subcellular localization of maize cytokinin receptors. J. Exp. Bot. 62, 5149–5159. 10.1093/jxb/err220 PubMed DOI PMC

Lup S. D., Wilson-sánchez D., Andreu-sánchez S. (2021). Easymap : a user-friendly software package for rapid mapping-by-sequencing of point mutations and large insertions. Front. Plant Sci. 12, 1–10. 10.3389/fpls.2021.655286 PubMed DOI PMC

Malamy J. E., Benfey P. N. (1997). Organization and cell differentiation in lateral roots of Arabidopsis thaliana. Development. 124, 33–44. 10.1242/dev.124.1.33 PubMed DOI

Mateo-Bonmatí E., Casanova-Sáez R., Šimura J., Ljung K. (2021). Broadening the roles of UDP-glycosyltransferases in auxin homeostasis and plant development. New Phytol. 232, 642–654. 10.1111/nph.17633 PubMed DOI

Matsumoto-Kitano M., Kusumoto T., Tarkowski P., Kinoshita-Tsujimura K., Václavíková K., Miyawaki K., et al. . (2008). Cytokinins are central regulators of cambial activity. Proc. Natl. Acad. Sci U S A. 105, 20027–20031. 10.1073/pnas.0805619105 PubMed DOI PMC

Miyawaki K., Matsumoto-Kitano M., Kakimoto T. (2004). Expression of cytokinin biosynthetic isopentenyltransferase genes in Arabidopsis : tissue specificity and regulation by auxin, cytokinin, and nitrate. Plant J. 37, 128–138. 10.1046/j.1365-313X.2003.01945.x PubMed DOI

Miyawaki K., Tarkowski P., Matsumoto-Kitano M., Kato T., Sato S., Tarkowska D., et al. . (2006). Roles of Arabidopsis ATP/ADP isopentenyltransferases and tRNA isopentenyltransferases in cytokinin biosynthesis. Proc. Natl. Acad. Sci. U S A. 103, 16598–16603. 10.1073/pnas.0603522103 PubMed DOI PMC

Moubayidin L., Di Mambro R., Sozzani R., Pacifici E., Salvi E., Terpstra I., et al. . (2013). Spatial coordination between stem cell activity and cell differentiation in the root meristem. Dev. Cell. 26, 405–415. 10.1016/j.devcel.2013.06.025 PubMed DOI PMC

Moubayidin L., Perilli S., Dello Ioio R., Di Mambro R., Costantino P., Sabatini S., et al. . (2010). The rate of cell differentiation controls the arabidopsis root meristem growth phase. Curr. Biol. 20, 1138–1143. 10.1016/j.cub.2010.05.035 PubMed DOI

Müller B., Sheen J. (2008). Cytokinin and auxin interplay in root stem-cell specification during early embryogenesis. Nature. 453, 1094–1097. 10.1038/nature06943 PubMed DOI PMC

Müller K., Dobrev P. I., Pencík A., Hosek P., Vondráková Z., Filepová R., et al. . (2021). Dioxygenase for auxin oxidation 1 catalyzes the oxidation of IAA amino acid conjugates. Plant Physiol. 187, 103–115. 10.1093/plphys/kiab242 PubMed DOI PMC

Nishimura C., Ohashi Y., Sato S., Kato T., Tabata S., Ueguchi C., et al. . (2004). Histidine kinase homologs that act as cytokinin receptors possess overlapping functions in the regulation of shoot and root growth in arabidopsis. Plant Cell. 16, 1365–1377. 10.1105/tpc.021477 PubMed DOI PMC

Pênčík A., Casanova-Sáez R., Pilarová V., Žukauskaite A., Pinto R., Micol J. L., et al. . (2018). Ultra-rapid auxin metabolite profiling for high-throughput mutant screening in Arabidopsis. J. Exp. Bot. 69, 2569–2579. 10.1093/jxb/ery084 PubMed DOI PMC

Pertry I., Václavíková K., Depuydt S., Galuszka P., Spíchal L., Temmerman W., et al. . (2009). Identification of Rhodococcus fascians cytokinins and their modus operandi to reshape the plant. Proc. Natl. Acad. Sci. U S A. 106, 929–934. 10.1073/pnas.0811683106 PubMed DOI PMC

Podlešáková K., Zalabák D., Cudejková M., Plíhal O., Szüčovǎ L., Doležal K., et al. . (2012). Novel cytokinin derivatives do not show negative effects on root growth and proliferation in submicromolar range. PLoS ONE. 7, e39293. 10.1371/journal.pone.0039293 PubMed DOI PMC

Porco S., Pěnčík A., Rasheda A., Vo U., Casanova-Sáez R., Bishopp A., et al. . (2016). Dioxygenase-encoding AtDAO1 gene controls IAA oxidation and homeostasis in arabidopsis. Proc. Natl. Acad. Sci. U S A. 113, 11016–11021. 10.1073/pnas.1604375113 PubMed DOI PMC

Quesnelle P. E., Emery R. J. N. (2007). cis -Cytokinins that predominate in Pisum sativum during early embryogenesis will accelerate embryo growth in vitro. Can. J. Bot. 85, 9–103. 10.1139/b06-149 DOI

Romanov G.A, Lomin S. N., Schmülling T. (2006). Biochemical characteristics and ligand-binding properties of Arabidopsis cytokinin receptor AHK3 compared to CRE1/AHK4 as revealed by a direct binding assay. J. Exp. Bot. 57, 4051–4058. 10.1093/jxb/erl179 PubMed DOI

Sakakibara H. (2006). Cytokinins: activity, biosynthesis, and translocation. Annu. Rev. Plant Biol. 57, 431–449. 10.1146/annurev.arplant.57.032905.105231 PubMed DOI

Sasaki T., Suzaki T., Soyano T., Kojima M., Sakakibara H., Kawaguchi M., et al. . (2014). Shoot-derived cytokinins systemically regulate root nodulation. Nat. Commun. 5, 4983. 10.1038/ncomms5983 PubMed DOI

Schindelin J. (2012). Arganda-carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, et al. (2012). Fiji : an open-source platform for biological-image analysis. Nat. Methods. 9, 676–682. 10.1038/nmeth.2019 PubMed DOI PMC

Schmitz R. Y., Skoog F., Playtisa J., Leonard N. J. (1972). Cytokinins: synthesis and biological activity of geometric and position isomers of zeatin. Plant Physiol. 50, 702–705. 10.1104/pp.50.6.702 PubMed DOI PMC

Schwartzenberg K., von Núñez M. F., Blaschke H., Dobrev P. I., Novák O., Motyka V., et al. . (2007). Cytokinins in the bryophyte Physcomitrella patens: analyses of activity, distribution, and cytokinin oxidase/dehydrogenase overexpression reveal the role of extracellular cytokinins. Plant Physiol. 145, 786–800. 10.1104/pp.107.103176 PubMed DOI PMC

Spíchal L., Rakova N. Y., Riefler M., Mizuno T., Romanov G., Strnad M., et al. . (2004). Two cytokinin receptors of Arabidopsis thaliana, CRE1/AHK4 and AHK3, differ in their ligand specificity in a bacterial assay. Plant Cell Physiol. 45, 1299–1305. 10.1093/pcp/pch132 PubMed DOI

Staswick P. E., Serban B., Rowe M., Tiryaki I., Maldonado M. T., Maldonado M. C., et al. . (2005). Characterization of an arabidopsis enzyme family that conjugates amino acids to indole-3-acetic acid. Plant Cell. 17, 616–627. 10.1105/tpc.104.026690 PubMed DOI PMC

Stenlid G. (1982). Cytokinins as inhibitors of root growth. Physiol. Plant. 56, 500–506. 10.1111/j.1399-3054.1982.tb04546.x DOI

Stolz A., Riefler M., Lomin S. N., Achazi K., Romanov G. A., Schmülling T., et al. . (2011). The specificity of cytokinin signalling in Arabidopsis thaliana is mediated by differing ligand affinities and expression profiles of the receptors. Plant J. 67, 157–168. 10.1111/j.1365-313X.2011.04584.x PubMed DOI

Su Y-H., Liu Y-B., Zhang X-S. (2011). Auxin-cytokinin interaction regulates meristem development. Mol. Plant. 4, 616–625. 10.1093/mp/ssr007 PubMed DOI PMC

Svačinová J., Novák O., Plačková L., Lenobel R. R., Holík J., Strnad M., et al. . (2012). A new approach for cytokinin isolation from Arabidopsis tissues using miniaturized purification: pipette tip solid-phase extraction. Plant Methods. 8, 17. 10.1186/1746-4811-8-17 PubMed DOI PMC

Takei K., Yamaya T., Sakakibara H. (2004). Arabidopsis CYP735A1 and CYP735A2 encode cytokinin hydroxylases that catalyze the biosynthesis of trans-Zeatin. J. Biol. Chem. 279, 41866–41872. 10.1074/jbc.M406337200 PubMed DOI

Tanaka Y., Suzuki T., Yamashino T., Mizuno T. (2004). Comparative studies of the AHP histidine-containing phosphotransmitters implicated in his-to-asp phosphorelay in arabidopsis thaliana. Biosci. Biotechnol. Biochem. 68, 462–465. 10.1271/bbb.68.462 PubMed DOI

Tian Q., Uhlir N. J. (2002). Reed JW. Arabidopsis SHY2/IAA3 inhibits auxin-regulated gene. Expression. 14, 301–319. 10.1105/tpc.010283 PubMed DOI PMC

To J. P. C., Deruère J., Maxwell B. B., Morris V. F., Hutchison C. E., Ferreira F. J., et al. . (2007). Cytokinin regulates type-A Arabidopsis Response Regulator activity and protein stability via two-component phosphorelay. Plant Cell. 19, 3901–3914. 10.1105/tpc.107.052662 PubMed DOI PMC

To J. P. C., Haberer G., Ferreira F. J., Derue J., Schaller G. E., Alonso J. M., et al. . (2004). Type-A arabidopsis response regulators are partially redundant negative regulators of cytokinin signaling. Plant Cell. 16, 658–671. 10.1105/tpc.018978 PubMed DOI PMC

Turnbull C. G. N., Booker J. P., Leyser H. M. O. (2002). Micrografting techniques for testing long-distance signalling in Arabidopsis. Plant J. 32, 255–262. 10.1046/j.1365-313X.2002.01419.x PubMed DOI

Veach Y. K., Martin R. C., Mok D. W. S., Malbeck J., Vankova R., Mok M. C., et al. . (2003). O-Glucosylation of cis-Zeatin in Maize. Characterization of Genes, Enzymes, and Endogenous Cytokinins 1. Plant P. 131, 1374–1380. 10.1104/pp.017210 PubMed DOI PMC

Vyroubalová S., Václavíková K., Turečková V., Novák O., Šmehilová M., Hluska T., et al. . (2009). Characterization of new maize genes putatively involved in cytokinin metabolism and their expression during osmotic stress in relation to cytokinin levels. Plant Physiol. 151, 433–447. 10.1104/pp.109.142489 PubMed DOI PMC

Werner T., Motyka V., Laucou V., Smets R., Onckelen H., Van Thomas S., et al. . (2003). Cytokinin-deficient transgenic arabidopsis plants show functions of cytokinins in the regulation of shoot and root meristem activity. Plant Cell. 15, 2532–2550. 10.1105/tpc.014928 PubMed DOI PMC

Wilson-Sánchez D., Rubio-Díaz S., Muñoz-Viana R., Pérez-Pérez J. M., Jover-Gil S., Ponce M. R., et al. . (2014). Leaf phenomics: A systematic reverse genetic screen for Arabidopsis leaf mutants. Plant J. 79, 878–891. 10.1111/tpj.12595 PubMed DOI

Yang B. J., Minne M., Brunoni F., Plačkov,á L., Petrík I., Sun Y., et al. . (2021). Non-cell autonomous and spatiotemporal signalling from a tissue organizer orchestrates root vascular development. Nat. Plants. 7, 1485–1494. 10.1038/s41477-021-01017-6 PubMed DOI PMC

Yonekura-sakakibara K., Kojima M., Yamaya T., Sakakibara H. (2004). Molecular Characterization of Cytokinin-Responsive Histidine Kinases in Maize. Differential Ligand Preferences and Response to cis-Zeatin 1. Plant Physiol. 134, 1654–1661. 10.1104/pp.103.037176 PubMed DOI PMC

Zhang K., Novak O., Wei Z., Gou M., Zhang X., Yu Y., et al. . (2014). Arabidopsis ABCG14 protein controls the acropetal translocation of root-synthesized cytokinins. Nat. Commun. 5, 3274. 10.1038/ncomms4274 PubMed DOI

Zhang W., Swarup R., Bennett M., Schaller G. E., Kieber J. J. (2013). Cytokinin induces cell division in the quiescent center of the Arabidopsis root apical meristem. Curr. Biol. 23, 1979–1989. 10.1016/j.cub.2013.08.008 PubMed DOI

Zürcher E., Tavor-Deslex D., Lituiev D., Enkeli K., Tarr P. T., Müller B., et al. . (2013). robust and sensitive synthetic sensor to monitor the transcriptional output of the cytokinin signaling network in planta. Plant Physiol. 161, 1066–1075. 10.1104/pp.112.211763 PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...