Inactivation of the entire Arabidopsis group II GH3s confers tolerance to salinity and water deficit

. 2022 Jul ; 235 (1) : 263-275. [epub] 20220416

Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid35322877

Indole-3-acetic acid (IAA) controls a plethora of developmental processes. Thus, regulation of its concentration is of great relevance for plant performance. Cellular IAA concentration depends on its transport, biosynthesis and the various pathways for IAA inactivation, including oxidation and conjugation. Group II members of the GRETCHEN HAGEN 3 (GH3) gene family code for acyl acid amido synthetases catalysing the conjugation of IAA to amino acids. However, the high degree of functional redundancy among them has hampered thorough analysis of their roles in plant development. In this work, we generated an Arabidopsis gh3.1,2,3,4,5,6,9,17 (gh3oct) mutant to knock out the group II GH3 pathway. The gh3oct plants had an elaborated root architecture, showed an increased tolerance to different osmotic stresses, including an IAA-dependent tolerance to salinity, and were more tolerant to water deficit. Indole-3-acetic acid metabolite quantification in gh3oct plants suggested the existence of additional GH3-like enzymes in IAA metabolism. Moreover, our data suggested that 2-oxindole-3-acetic acid production depends, at least in part, on the GH3 pathway. Targeted stress-hormone analysis further suggested involvement of abscisic acid in the differential response to salinity of gh3oct plants. Taken together, our data provide new insights into the roles of group II GH3s in IAA metabolism and hormone-regulated plant development.

Zobrazit více v PubMed

Band LR. 2021. Auxin fluxes through plasmodesmata. New Phytologist 231: 1686–1692. PubMed

Bottcher C, Boss PK, Davies C. 2011. Acyl substrate preferences of an IAA‐amido synthetase account for variations in grape (Vitis vinifera L.) berry ripening caused by different auxinic compounds indicating the importance of auxin conjugation in plant development. Journal of Experimental Botany 62: 4267–4280. PubMed PMC

Brunoni F, Collani S, Simura J, Schmid M, Bellini C, Ljung K. 2019. A bacterial assay for rapid screening of IAA catabolic enzymes. Plant Methods 15: 126. PubMed PMC

Brunoni F, Collani S, Casanova‐Sáez R, Šimura J, Karady M, Schmid M, Ljung K, Bellini C. 2020. Conifers exhibit a characteristic inactivation of auxin to maintain tissue homeostasis. New Phytologist 226: 1753–1765. PubMed

Casanova‐Saez R, Mateo‐Bonmati E, Ljung K. 2021. Auxin metabolism in plants. Cold Spring Harbor Perspectives in Biology 13: a039867. PubMed PMC

Casanova‐Saez R, Voss U. 2019. Auxin metabolism controls developmental decisions in land plants. Trends in Plant Science 24: 741–754. PubMed

Chen Q, Westfall CS, Hicks LM, Wang S, Jez JM. 2010. Kinetic basis for the conjugation of auxin by a GH3 family indole‐acetic acid‐amido synthetase. Journal of Biological Chemistry 285: 29780–29786. PubMed PMC

Du H, Wu N, Fu J, Wang S, Li X, Xiao J, Xiong L. 2012. A GH3 family member, OsGH3‐2, modulates auxin and abscisic acid levels and differentially affects drought and cold tolerance in rice. Journal of Experimental Botany 63: 6467–6480. PubMed PMC

Du Y, Scheres B. 2018. Lateral root formation and the multiple roles of auxin. Journal of Experimental Botany 69: 155–167. PubMed

Fu Y, Yang Y, Chen S, Ning N, Hu H. 2019. Arabidopsis IAR4 modulates primary root growth under salt stress through ROS‐mediated modulation of auxin distribution. Frontiers in Plant Science 10: 522. PubMed PMC

Gallei M, Luschnig C, Friml J. 2020. Auxin signalling in growth: Schrodinger's cat out of the bag. Current Opinion in Plant Biology 53: 43–49. PubMed

Gao Y, Dai X, Aoi Y, Takebayashi Y, Yang L, Guo X, Zeng Q, Yu H, Kasahara H, Zhao Y. 2020. Two homologous INDOLE‐3‐ACETAMIDE (IAM) HYDROLASE genes are required for the auxin effects of IAM in Arabidopsis. Journal of Genetics and Genomics 47: 157–165. PubMed PMC

Gutierrez L, Mongelard G, Flokova K, Pacurar DI, Novak O, Staswick P, Kowalczyk M, Pacurar M, Demailly H, Geiss G et al. 2012. Auxin controls Arabidopsis adventitious root initiation by regulating jasmonic acid homeostasis. Plant Cell 24: 2515–2527. PubMed PMC

Hammes UZ, Murphy AS, Schwechheimer C. 2022. Auxin transporters‐A biochemical view. Cold Spring Harbor Perspectives in Biology 14: a039875. PubMed PMC

Hanania U, Velcheva M, Sahar N, Perl A. 2004. An improved method for isolating high‐quality DNA from Vitis vinifera nuclei. Plant Molecular Biology Reporter 22: 173–177.

Hayashi K‐I, Arai K, Aoi Y, Tanaka Y, Hira H, Guo R, Hu Y, Ge C, Zhao Y, Kasahara H et al. 2021. The main oxidative inactivation pathway of the plant hormone auxin. Nature Communications 12: 6752. PubMed PMC

Hedrich R, Shabala S. 2018. Stomata in a saline world. Current Opinion in Plant Biology 46: 87–95. PubMed

Jung H, Lee DK, Choi YD, Kim JK. 2015. OsIAA6, a member of the rice Aux/IAA gene family, is involved in drought tolerance and tiller outgrowth. Plant Science 236: 304–312. PubMed

Kai K, Horita J, Wakasa K, Miyagawa H. 2007. Three oxidative metabolites of indole‐3‐acetic acid from Arabidopsis thaliana . Phytochemistry 68: 1651–1663. PubMed

Kakei Y, Yamazaki C, Suzuki M, Nakamura A, Sato A, Ishida Y, Kikuchi R, Higashi S, Kokudo Y, Ishii T et al. 2015. Small‐molecule auxin inhibitors that target YUCCA are powerful tools for studying auxin function. The Plant Journal 84: 827–837. PubMed

Khan S, Stone JM. 2007. Arabidopsis thaliana GH3.9 influences primary root growth. Planta 226: 21–34. PubMed

Kirungu JN, Magwanga RO, Lu P, Cai X, Zhou Z, Wang X, Peng R, Wang K, Liu F. 2019. Functional characterization of Gh_A08G1120 (GH3.5) gene reveal their significant role in enhancing drought and salt stress tolerance in cotton. BMC Genetics 20: 62. PubMed PMC

Kojima M, Kamada‐Nobusada T, Komatsu H, Takei K, Kuroha T, Mizutani M, Ashikari M, Ueguchi‐Tanaka M, Matsuoka M, Suzuki K et al. 2009. Highly sensitive and high‐throughput analysis of plant hormones using MS‐probe modification and liquid chromatography‐tandem mass spectrometry: an application for hormone profiling in Oryza sativa . Plant and Cell Physiology 50: 1201–1214. PubMed PMC

Korver RA, Koevoets IT, Testerink C. 2018. Out of shape during stress: a key role for auxin. Trends in Plant Science 23: 783–793. PubMed PMC

Kowalczyk M, Sandberg G. 2001. Quantitative analysis of indole‐3‐acetic acid metabolites in Arabidopsis. Plant Physiology 127: 1845–1853. PubMed PMC

Kubeš M, Yang H, Richter GL, Cheng Y, Młodzińska E, Wang X, Blakeslee JJ, Carraro N, Petrášek J, Zažímalová E et al. 2012. The Arabidopsis concentration‐dependent influx/efflux transporter ABCB4 regulates cellular auxin levels in the root epidermis. The Plant Journal 69: 640–654. PubMed

Lamers J, van der Meer T, Testerink C. 2020. How plants sense and respond to stressful environments. Plant Physiology 182: 1624–1635. PubMed PMC

LeClere S, Tellez R, Rampey RA, Matsuda SP, Bartel B. 2002. Characterization of a family of IAA‐amino acid conjugate hydrolases from Arabidopsis. Journal of Biological Chemistry 277: 20446–20452. PubMed

Leftley N, Banda J, Pandey B, Bennett M, Voss U. 2021. Uncovering how auxin optimizes root systems architecture in response to environmental stresses. Cold Spring Harbor Perspectives in Biology 13: a040014. PubMed PMC

Liu W, Li RJ, Han TT, Cai W, Fu ZW, Lu YT. 2015. Salt stress reduces root meristem size by nitric oxide‐mediated modulation of auxin accumulation and signaling in Arabidopsis. Plant Physiology 168: 343–356. PubMed PMC

Ludwig‐Muller J, Julke S, Bierfreund NM, Decker EL, Reski R. 2009. Moss (Physcomitrella patens) GH3 proteins act in auxin homeostasis. New Phytologist 181: 323–338. PubMed

Lup SD, Wilson‐Sánchez D, Andreu‐Sánchez S, Micol JL. 2021. Easymap: a user‐friendly software package for rapid mapping‐by‐sequencing of point mutations and large insertions. Frontiers in Plant Science 12. doi: 10.3389/fpls.2021.655286. PubMed DOI PMC

Di Mambro R, De Ruvo M, Pacifici E, Salvi E, Sozzani R, Benfey PN, Busch W, Novák O, Ljung K, Di Paola L et al. 2017. Auxin minimum triggers the developmental switch from cell division to cell differentiation in the Arabidopsis root. Proceedings of the National Academy of Sciences, USA 114: E7641–E7649. PubMed PMC

Mateo‐Bonmatí E, Casanova‐Sáez R, Šimura J, Ljung K. 2021. Broadening the roles of UDP‐glycosyltransferases in auxin homeostasis and plant development. New Phytologist 232: 642–654. PubMed

Müller K, Dobrev PI, Pěnčík A, Hošek P, Vondráková Z, Filepová R, Malínská K, Brunoni F, Helusová L, Moravec T et al. 2021. DIOXYGENASE FOR AUXIN OXIDATION 1 catalyzes the oxidation of IAA amino acid conjugates. Plant Physiology 187: 103–115. PubMed PMC

Nishimura T, Hayashi K‐I, Suzuki H, Gyohda A, Takaoka C, Sakaguchi Y, Matsumoto S, Kasahara H, Sakai T, Kato J‐I et al. 2014. Yucasin is a potent inhibitor of YUCCA, a key enzyme in auxin biosynthesis. The Plant Journal 77: 352–366. PubMed

Novak O, Henykova E, Sairanen I, Kowalczyk M, Pospisil T, Ljung K. 2012. Tissue‐specific profiling of the Arabidopsis thaliana auxin metabolome. The Plant Journal 72: 523–536. PubMed

Ostin A, Kowalyczk M, Bhalerao RP, Sandberg G. 1998. Metabolism of indole‐3‐acetic acid in Arabidopsis. Plant Physiology 118: 285–296. PubMed PMC

Park JE, Park JY, Kim YS, Staswick PE, Jeon J, Yun J, Kim SY, Kim J, Lee YH, Park CM. 2007. GH3‐mediated auxin homeostasis links growth regulation with stress adaptation response in Arabidopsis. Journal of Biological Chemistry 282: 10036–10046. PubMed

Pěnčík A, Casanova‐Sáez R, Pilarová V, Žukauskaite A, Pinto R, Micol JL, Ljung K, Novák O. 2018. Ultra‐rapid auxin metabolite profiling for high‐throughput mutant screening in Arabidopsis. Journal of Experimental Botany 69: 2569–2579. PubMed PMC

Pencik A, Rolcik J, Novak O, Magnus V, Bartak P, Buchtik R, Salopek‐Sondi B, Strnad M. 2009. Isolation of novel indole‐3‐acetic acid conjugates by immunoaffinity extraction. Talanta 80: 651–655. PubMed

Pencik A, Simonovik B, Petersson SV, Henykova E, Simon S, Greenham K, Zhang Y, Kowalczyk M, Estelle M, Zazimalova E et al. 2013. Regulation of auxin homeostasis and gradients in Arabidopsis roots through the formation of the indole‐3‐acetic acid catabolite 2‐oxindole‐3‐acetic acid. Plant Cell 25: 3858–3870. PubMed PMC

Porco S, Pěnčík A, Rashed A, Voß U, Casanova‐Sáez R, Bishopp A, Golebiowska A, Bhosale R, Swarup R, Swarup K et al. 2016. Dioxygenase‐encoding AtDAO1 gene controls IAA oxidation and homeostasis in Arabidopsis. Proceedings of the National Academy of Sciences, USA 113: 11016–11021. PubMed PMC

Rampey RA, LeClere S, Kowalczyk M, Ljung K, Sandberg G, Bartel B. 2004. A family of auxin‐conjugate hydrolases that contributes to free indole‐3‐acetic acid levels during Arabidopsis germination. Plant Physiology 135: 978–988. PubMed PMC

Salehin M, Li B, Tang M, Katz E, Song L, Ecker JR, Kliebenstein DJ, Estelle M. 2019. Auxin‐sensitive Aux/IAA proteins mediate drought tolerance in Arabidopsis by regulating glucosinolate levels. Nature Communications 10: 4021. PubMed PMC

Salvi P, Manna M, Kaur H, Thakur T, Gandass N, Bhatt D, Muthamilarasan M. 2021. Phytohormone signaling and crosstalk in regulating drought stress response in plants. Plant Cell Reports 40: 1305–1329. PubMed

Schindelin J, Arganda‐Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, Preibisch S, Rueden C, Saalfeld S, Schmid B et al. 2012. Fiji: an open‐source platform for biological‐image analysis. Nature Methods 9: 676–682. PubMed PMC

Schmittgen TD, Livak KJ. 2008. Analyzing real‐time PCR data by the comparative CT method. Nature Protocols 3: 1101–1108. PubMed

Shani E, Salehin M, Zhang Y, Sanchez SE, Doherty C, Wang R, Mangado CC, Song L, Tal I, Pisanty O et al. 2017. Plant stress tolerance requires auxin‐sensitive Aux/IAA transcriptional repressors. Current Biology 27: 437–444. PubMed PMC

Shi H, Chen L, Ye T, Liu X, Ding K, Chan Z. 2014. Modulation of auxin content in Arabidopsis confers improved drought stress resistance. Plant Physiology and Biochemistry 82: 209–217. PubMed

Simura J, Antoniadi I, Siroka J, Tarkowska D, Strnad M, Ljung K, Novak O. 2018. Plant hormonomics: multiple phytohormone profiling by targeted metabolomics. Plant Physiology 177: 476–489. PubMed PMC

Smolko A, Bauer N, Pavlovic I, Pencik A, Novak O, Salopek‐Sondi B. 2021. Altered root growth, auxin metabolism and distribution in Arabidopsis thaliana exposed to salt and osmotic stress. International Journal of Molecular Sciences 22: 7993. PubMed PMC

Staswick PE, Serban B, Rowe M, Tiryaki I, Maldonado MT, Maldonado MC, Suza W. 2005. Characterization of an Arabidopsis enzyme family that conjugates amino acids to indole‐3‐acetic acid. Plant Cell 17: 616–627. PubMed PMC

Staswick PE, Tiryaki I, Rowe ML. 2002. Jasmonate response locus JAR1 and several related Arabidopsis genes encode enzymes of the firefly luciferase superfamily that show activity on jasmonic, salicylic, and indole‐3‐acetic acids in an assay for adenylation. Plant Cell 14: 1405–1415. PubMed PMC

Sugawara S, Hishiyama S, Jikumaru Y, Hanada A, Nishimura T, Koshiba T, Zhao Y, Kamiya Y, Kasahara H. 2009. Biochemical analyses of indole‐3‐acetaldoxime‐dependent auxin biosynthesis in Arabidopsis. Proceedings of the National Academy of Sciences, USA 106: 5430–5435. PubMed PMC

Sun J, Li C. 2014. Cross talk of signaling pathways between ABA and other phytohormones. In: Zhang D‐P, ed. Abscisic acid: metabolism, transport and signaling. Dordrecht, the Netherlands: Springer, 243–253.

Takehara S, Sakuraba S, Mikami B, Yoshida H, Yoshimura H, Itoh A, Endo M, Watanabe N, Nagae T, Matsuoka M et al. 2020. A common allosteric mechanism regulates homeostatic inactivation of auxin and gibberellin. Nature Communications 11: 2143. PubMed PMC

Terol J, Domingo C, Talon M. 2006. The GH3 family in plants: genome wide analysis in rice and evolutionary history based on EST analysis. Gene 371: 279–290. PubMed

Thalmann M, Pazmino D, Seung D, Horrer D, Nigro A, Meier T, Kolling K, Pfeifhofer HW, Zeeman SC, Santelia D. 2016. Regulation of leaf starch degradation by abscisic acid is important for osmotic stress tolerance in plants. Plant Cell 28: 1860–1878. PubMed PMC

Uddin MN, Hossain MA, Burritt DJ. 2016. Salinity and drought stress: similarities and differences in oxidative responses and cellular redox regulation. In: Ahmad P, ed. Water stress and crop plants: a sustainable approach. Singapore, Singapore: John Wiley & Sons, 86–101.

Verslues PE, Agarwal M, Katiyar‐Agarwal S, Zhu J, Zhu JK. 2006. Methods and concepts in quantifying resistance to drought, salt and freezing, abiotic stresses that affect plant water status. The Plant Journal 45: 523–539. PubMed

Wang Y, Li K, Li X. 2009. Auxin redistribution modulates plastic development of root system architecture under salt stress in Arabidopsis thaliana . Journal of Plant Physiology 166: 1637–1645. PubMed

Ware A, Walker CH, Simura J, Gonzalez‐Suarez P, Ljung K, Bishopp A, Wilson ZA, Bennett T. 2020. Auxin export from proximal fruits drives arrest in temporally competent inflorescences. Nature Plants 6: 699–707. PubMed

Westfall CS, Sherp AM, Zubieta C, Alvarez S, Schraft E, Marcellin R, Ramirez L, Jez JM. 2016. Arabidopsis thaliana GH3.5 acyl acid amido synthetase mediates metabolic crosstalk in auxin and salicylic acid homeostasis. Proceedings of the National Academy of Sciences, USA 113: 13917–13922. PubMed PMC

Wilson‐Sánchez D, Rubio‐Díaz S, Munóz‐Viana R, Pérez‐Pérez JM, Jover‐Gil S, Ponce MR, Micol JL. 2014. Leaf phenomics: a systematic reverse genetic screen for Arabidopsis leaf mutants. The Plant Journal 79: 878–891. PubMed

Yu Z, Duan X, Luo L, Dai S, Ding Z, Xia G. 2020. How plant hormones mediate salt stress responses. Trends in Plant Science 25: 1117–1130. PubMed

Zhang J, Lin JE, Harris C, Campos Mastrotti Pereira F, Wu F, Blakeslee JJ, Peer WA. 2016. DAO1 catalyzes temporal and tissue‐specific oxidative inactivation of auxin in Arabidopsis thaliana . Proceedings of the National Academy of Sciences, USA 113: 11010–11015. PubMed PMC

Zhang Q, Li J, Zhang W, Yan S, Wang R, Zhao J, Li Y, Qi Z, Sun Z, Zhu Z. 2012. The putative auxin efflux carrier OsPIN3t is involved in the drought stress response and drought tolerance. The Plant Journal 72: 805–816. PubMed

Zhang SW, Li CH, Cao J, Zhang YC, Zhang SQ, Xia YF, Sun DY, Sun Y. 2009. Altered architecture and enhanced drought tolerance in rice via the down‐regulation of indole‐3‐acetic acid by TLD1/OsGH3.13 activation. Plant Physiology 151: 1889–1901. PubMed PMC

Zhang Y, Li Y, Hassan MJ, Li Z, Peng Y. 2020. Indole‐3‐acetic acid improves drought tolerance of white clover via activating auxin, abscisic acid and jasmonic acid related genes and inhibiting senescence genes. BMC Plant Biology 20: 150. PubMed PMC

Zhao C, Zhang H, Song C, Zhu J‐K, Shabala S. 2020. Mechanisms of plant responses and adaptation to soil salinity. Innovation 1. doi: 10.1016/j.xinn.2020.100017. PubMed DOI PMC

Zhao Y. 2018. Essential roles of local auxin biosynthesis in plant development and in adaptation to environmental changes. Annual Review of Plant Biology 69: 417–435. PubMed

Zhao Z, Zhang Y, Liu XI, Zhang X, Liu S, Yu X, Ren Y, Zheng X, Zhou K, Jiang L et al. 2013. A role for a dioxygenase in auxin metabolism and reproductive development in rice. Developmental Cell 27: 113–122. PubMed

Zheng Z, Guo Y, Novak O, Chen W, Ljung K, Noel JP, Chory J. 2016. Local auxin metabolism regulates environment‐induced hypocotyl elongation. Nature Plants 2: 16025. PubMed PMC

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

IPT9, a cis-zeatin cytokinin biosynthesis gene, promotes root growth

. 2022 ; 13 () : 932008. [epub] 20221014

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...