Multimodal Imaging Reveals Improvement of Blood Supply to an Artificial Cell Transplant Site Induced by Bioluminescent Mesenchymal Stem Cells

. 2017 Feb ; 19 (1) : 15-23.

Jazyk angličtina Země Spojené státy americké Médium print

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid27464498
Odkazy

PubMed 27464498
PubMed Central PMC5209399
DOI 10.1007/s11307-016-0986-1
PII: 10.1007/s11307-016-0986-1
Knihovny.cz E-zdroje

PURPOSE: An artificial site for cell or pancreatic islet transplantation can be created using a polymeric scaffold, even though it suffers subcutaneously from improper vascularisation. A sufficient blood supply is crucial for graft survival and function and can be enhanced by transplantation of mesenchymal stem cells (MSCs). The purpose of this study was to assess the effect of syngeneic MSCs on neoangiogenesis and cell engraftment in an artificial site by multimodal imaging. PROCEDURES: MSCs expressing a gene for luciferase were injected into the artificial subcutaneous site 7 days after scaffold implantation. MRI experiments (anatomical and dynamic contrast-enhanced images) were performed on a 4.7-T scanner using gradient echo sequences. Bioluminescent images were acquired on an IVIS Lumina optical imager. Longitudinal examination was performed for 2 months, and one animal was monitored for 16 months. RESULTS: We confirmed the long-term presence (lasting more than 16 months) of viable donor cells inside the scaffolds using bioluminescence imaging with an optical signal peak appearing on day 3 after MSC implantation. When compared to controls, the tissue perfusion and vessel permeability in the scaffolds were significantly improved at the site with MSCs with a maximal peak on day 9 after MSC transplantation. CONCLUSIONS: Our data suggest that the maximal signal obtained by bioluminescence and magnetic resonance imaging from an artificially created site between 3 and 9 days after MSC transplantation can predict the optimal time range for subsequent cellular or tissue transplantation, including pancreatic islets.

Zobrazit více v PubMed

Shapiro JA, Auchincloss H, Lindblad R, et al. (2006) International Trial of the Edmonton Protocol for Islet Transplantation 355:1318–1330. PubMed

Jirák D, Kříž J, Herynek V, et al. MRI of transplanted pancreatic islets. Magn Reson Med. 2004;52:1228–1233. doi: 10.1002/mrm.20282. PubMed DOI

Naziruddin B, Iwahashi S, Kanak M, et al. Evidence for instant blood-mediated inflammatory reaction in clinical autologous islet transplantation. Am J Transplant. 2014;14:428–437. doi: 10.1111/ajt.12558. PubMed DOI

Rafael E, Ryan E, Party B, et al. Changes in liver enzymes after clinical islet transplantation. Transplantation. 2003;76:1280–1284. doi: 10.1097/01.TP.0000098822.85924.4C. PubMed DOI

Kawahara T, Tatsuya K, Kashkoush S, et al. Portal vein thrombosis is a potentially preventable complication in clinical islet transplantation. Am J Transplant. 2011;11:2700–2707. doi: 10.1111/j.1600-6143.2011.03717.x. PubMed DOI PMC

Cantarelli E, Piemonti L. Alternative transplantation sites for pancreatic islet grafts. Curr Diab Rep. 2011;11:364–374. doi: 10.1007/s11892-011-0216-9. PubMed DOI

Kriz J, Jirak D, Vilk GJ, et al. Vascularization of artificial beds for pancreatic islet transplantation in a rat model. Transplant Proc. 2010;42:2097–2101. doi: 10.1016/j.transproceed.2010.05.088. PubMed DOI

Fabryova E, Jirak D, Girman P, et al. Effect of mesenchymal stem cells on the vascularization of the artificial site for islet transplantation in rats. Transplant Proc. 2014;46:1963–1966. doi: 10.1016/j.transproceed.2014.05.074. PubMed DOI

Kriz J, Jirak D, Koblas T, et al. Dynamic contrast-enhanced magnetic resonance imaging as a tool to monitor the blood supply to an artificial cavity used as a site for islet transplantation in rats. Transplant Proc. 2011;43:3226–3230. doi: 10.1016/j.transproceed.2011.09.012. PubMed DOI

Sakata N, Aoki T, Yoshimatsu G, et al. Strategy for clinical setting in intramuscular and subcutaneous islet transplantation. Diabetes Metab Res Rev. 2014;30:1–10. doi: 10.1002/dmrr.2463. PubMed DOI

Chiu L, Radisic M. Scaffolds with covalently immobilized VEGF and angiopoietin-1 for vascularization of engineered tissues. Biomaterials. 2010;31:226–241. doi: 10.1016/j.biomaterials.2009.09.039. PubMed DOI

Boomsma R, Geenen D. Mesenchymal stem cells secrete multiple cytokines that promote angiogenesis and have contrasting effects on chemotaxis and apoptosis. PLoS One. 2012;7:e35685. doi: 10.1371/journal.pone.0035685. PubMed DOI PMC

Xu Y-X, Chen L, Wang R, et al. Mesenchymal stem cell therapy for diabetes through paracrine mechanisms. Med Hypotheses. 2008;71:390–393. doi: 10.1016/j.mehy.2008.03.046. PubMed DOI

Burlacu A, Grigorescu G, Rosca A-M, et al. Factors secreted by mesenchymal stem cells and endothelial progenitor cells have complementary effects on angiogenesis in vitro. Stem Cells Dev. 2013;22:643–653. doi: 10.1089/scd.2012.0273. PubMed DOI PMC

Martens T, See F, Schuster M, et al. Mesenchymal lineage precursor cells induce vascular network formation in ischemic myocardium. Nat Clin Pr Cadriovasc Med. 2006;3:S18–S22. doi: 10.1038/ncpcardio0404. PubMed DOI

Tang YL, Zhao Q, Zhang YC, et al. Autologous mesenchymal stem cell transplantation induce VEGF and neovascularization in ischemic myocardium. Regul Pept. 2004;117:3–10. doi: 10.1016/j.regpep.2003.09.005. PubMed DOI

Figliuzzi M, Cornolti R, Perico N, et al. Bone marrow-derived mesenchymal stem cells improve islet graft function in diabetic rats. Transplant Proc. 2009;41:1797–1800. doi: 10.1016/j.transproceed.2008.11.015. PubMed DOI

Ito T, Itakura S, Todorov I, et al. Mesenchymal stem cell and islet co-transplantation promotes graft revascularization and function. Transplantation. 2010;89:1438–1445. doi: 10.1097/TP.0b013e3181db09c4. PubMed DOI

Kerby A, Jones ES, Jones PM, King AJ. Co-transplantation of islets with mesenchymal stem cells in microcapsules demonstrates graft outcome can be improved in an isolated-graft model of islet transplantation in mice. Cytotherapy. 2013;15:192–200. doi: 10.1016/j.jcyt.2012.10.018. PubMed DOI

Berman D, Willman M, Han D, et al. Mesenchymal stem cells enhance allogeneic islet engraftment in nonhuman primates. Diabetes. 2010;59:2558–2568. doi: 10.2337/db10-0136. PubMed DOI PMC

Minteer D, Marra K, Rubin J. Adipose-derived mesenchymal stem cells: biology and potential applications. Adv Biochem Eng Biotechnol. 2013;129:59–71. PubMed

Zuk PA, Zhu M, Ashjian P, et al. Human adipose tissue is a source of multipotent stem cells. Mol Biol Cell. 2002;13:4279–4295. doi: 10.1091/mbc.E02-02-0105. PubMed DOI PMC

Cao Y, Sun Z, Liao L, et al. Human adipose tissue-derived stem cells differentiate into endothelial cells in vitro and improve postnatal neovascularization in vivo. Biochem Biophys Res Commun. 2005;332:370–379. doi: 10.1016/j.bbrc.2005.04.135. PubMed DOI

Miranville A, Heeschen C, Sengenès C, et al. Improvement of postnatal neovascularization by human adipose tissue-derived stem cells. Circulation. 2004;110:349–355. doi: 10.1161/01.CIR.0000135466.16823.D0. PubMed DOI

Hakamata Y, Murakami T, Kobayashi E. “Firefly rats” as an organ/cellular source for long-term in vivo bioluminescent imaging. Transplantation. 2006;81:1179–1184. doi: 10.1097/01.tp.0000203137.06587.4a. PubMed DOI

Wang H, Cao F, De A, et al. Trafficking mesenchymal stem cell engraftment and differentiation in tumor-bearing mice by bioluminescence imaging. Stem Cells. 2009;27:1548–1558. doi: 10.1002/stem.81. PubMed DOI PMC

Fowler M, Virostko J, Chen Z, et al. Assessment of pancreatic islet mass after islet transplantation using in vivo bioluminescence imaging. Transplantation. 2005;79:768–776. doi: 10.1097/01.TP.0000152798.03204.5C. PubMed DOI

Min J, Ahn Y, Moon S, et al. In vivo bioluminescence imaging of cord blood derived mesenchymal stem cell transplantation into rat myocardium. Ann Nucl Med. 2006;20:165–170. doi: 10.1007/BF03027425. PubMed DOI

Bagó JR, Soler-Botija C, Casaní L, et al. Bioluminescence imaging of cardiomyogenic and vascular differentiation of cardiac and subcutaneous adipose tissue-derived progenitor cells in fibrin patches in a myocardium infarct model. Int J Cardiol. 2013;169:288–295. doi: 10.1016/j.ijcard.2013.09.013. PubMed DOI

Lembert N, Idahl L. Regulatory effects of ATP and luciferin on firefly luciferase activity. Biochem J. 1995;305(Pt. 3):929–933. doi: 10.1042/bj3050929. PubMed DOI PMC

Virostko J, Chen Z, Fowler M, et al. (2005) Factors influencing quantification of in vivo bioluminescence imaging: application to assessment of pancreatic islet transplants 3:333–342. PubMed

Ozdemir M, Attar A, Kuzu I, et al. Stem cell therapy in spinal cord injury: in vivo and postmortem tracking of bone marrow mononuclear or mesenchymal stem cells. Stem Cell Rev. 2012;8:953–962. doi: 10.1007/s12015-012-9376-5. PubMed DOI

Chen X, Zhang X, Larson CS, et al. In vivo bioluminescence imaging of transplanted islets and early detection of graft rejection. Transplantation. 2006;81:1421–1427. doi: 10.1097/01.tp.0000206109.71181.bf. PubMed DOI

Kříž J, Jirák D, Berková Z, et al. Detection of pancreatic islet allograft impairment in advance of functional failure using magnetic resonance imaging. Transpl Int. 2012;25:250–260. doi: 10.1111/j.1432-2277.2011.01403.x. PubMed DOI

Jirák D, Kříž J, Strzelecki M, et al. Monitoring the survival of islet transplants by MRI using a novel technique for their automated detection and quantification. MAGMA. 2009;22:257–265. doi: 10.1007/s10334-009-0172-4. PubMed DOI

Saudek F, Jirák D, Girman P, et al. Magnetic resonance imaging of pancreatic islets transplanted into the liver in humans. Transplantation. 2010;90:1602–1606. doi: 10.1097/TP.0b013e3181ffba5e. PubMed DOI

Anderson J, Rodriguez A, Chang D. Foreign body reaction to biomaterials. Semin Immunol. 2008;20:86–100. doi: 10.1016/j.smim.2007.11.004. PubMed DOI PMC

Krock B, Skuli N, Simon C. Hypoxia-induced angiogenesis. Genes Cancer. 2011;2:1117–1133. doi: 10.1177/1947601911423654. PubMed DOI PMC

Sunderkötter C, Steinbrink K, Goebeler M, et al. Macrophages and angiogenesis. J Leukoc Biol. 1994;55:410–422. PubMed

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...