Multimodal Imaging Reveals Improvement of Blood Supply to an Artificial Cell Transplant Site Induced by Bioluminescent Mesenchymal Stem Cells
Jazyk angličtina Země Spojené státy americké Médium print
Typ dokumentu časopisecké články
PubMed
27464498
PubMed Central
PMC5209399
DOI
10.1007/s11307-016-0986-1
PII: 10.1007/s11307-016-0986-1
Knihovny.cz E-zdroje
- Klíčová slova
- Bioluminescence, DCE, Dynamic contrast-enhanced MRI, Magnetic resonance imaging, Mesenchymal stem cells, Vascularisation,
- MeSH
- kontrastní látky MeSH
- luminiscenční měření MeSH
- magnetická rezonanční tomografie MeSH
- mezenchymální kmenové buňky cytologie MeSH
- multimodální zobrazování * MeSH
- potkani inbrední LEW MeSH
- regionální krevní průtok fyziologie MeSH
- reprodukovatelnost výsledků MeSH
- tkáňové podpůrné struktury MeSH
- transplantace mezenchymálních kmenových buněk * MeSH
- umělé buňky * MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- kontrastní látky MeSH
PURPOSE: An artificial site for cell or pancreatic islet transplantation can be created using a polymeric scaffold, even though it suffers subcutaneously from improper vascularisation. A sufficient blood supply is crucial for graft survival and function and can be enhanced by transplantation of mesenchymal stem cells (MSCs). The purpose of this study was to assess the effect of syngeneic MSCs on neoangiogenesis and cell engraftment in an artificial site by multimodal imaging. PROCEDURES: MSCs expressing a gene for luciferase were injected into the artificial subcutaneous site 7 days after scaffold implantation. MRI experiments (anatomical and dynamic contrast-enhanced images) were performed on a 4.7-T scanner using gradient echo sequences. Bioluminescent images were acquired on an IVIS Lumina optical imager. Longitudinal examination was performed for 2 months, and one animal was monitored for 16 months. RESULTS: We confirmed the long-term presence (lasting more than 16 months) of viable donor cells inside the scaffolds using bioluminescence imaging with an optical signal peak appearing on day 3 after MSC implantation. When compared to controls, the tissue perfusion and vessel permeability in the scaffolds were significantly improved at the site with MSCs with a maximal peak on day 9 after MSC transplantation. CONCLUSIONS: Our data suggest that the maximal signal obtained by bioluminescence and magnetic resonance imaging from an artificially created site between 3 and 9 days after MSC transplantation can predict the optimal time range for subsequent cellular or tissue transplantation, including pancreatic islets.
Department of Pathology 3rd Faculty of Medicine Charles University Prague Czech Republic
Diabetes Center Institute for Clinical and Experimental Medicine Prague Czech Republic
Zobrazit více v PubMed
Shapiro JA, Auchincloss H, Lindblad R, et al. (2006) International Trial of the Edmonton Protocol for Islet Transplantation 355:1318–1330. PubMed
Jirák D, Kříž J, Herynek V, et al. MRI of transplanted pancreatic islets. Magn Reson Med. 2004;52:1228–1233. doi: 10.1002/mrm.20282. PubMed DOI
Naziruddin B, Iwahashi S, Kanak M, et al. Evidence for instant blood-mediated inflammatory reaction in clinical autologous islet transplantation. Am J Transplant. 2014;14:428–437. doi: 10.1111/ajt.12558. PubMed DOI
Rafael E, Ryan E, Party B, et al. Changes in liver enzymes after clinical islet transplantation. Transplantation. 2003;76:1280–1284. doi: 10.1097/01.TP.0000098822.85924.4C. PubMed DOI
Kawahara T, Tatsuya K, Kashkoush S, et al. Portal vein thrombosis is a potentially preventable complication in clinical islet transplantation. Am J Transplant. 2011;11:2700–2707. doi: 10.1111/j.1600-6143.2011.03717.x. PubMed DOI PMC
Cantarelli E, Piemonti L. Alternative transplantation sites for pancreatic islet grafts. Curr Diab Rep. 2011;11:364–374. doi: 10.1007/s11892-011-0216-9. PubMed DOI
Kriz J, Jirak D, Vilk GJ, et al. Vascularization of artificial beds for pancreatic islet transplantation in a rat model. Transplant Proc. 2010;42:2097–2101. doi: 10.1016/j.transproceed.2010.05.088. PubMed DOI
Fabryova E, Jirak D, Girman P, et al. Effect of mesenchymal stem cells on the vascularization of the artificial site for islet transplantation in rats. Transplant Proc. 2014;46:1963–1966. doi: 10.1016/j.transproceed.2014.05.074. PubMed DOI
Kriz J, Jirak D, Koblas T, et al. Dynamic contrast-enhanced magnetic resonance imaging as a tool to monitor the blood supply to an artificial cavity used as a site for islet transplantation in rats. Transplant Proc. 2011;43:3226–3230. doi: 10.1016/j.transproceed.2011.09.012. PubMed DOI
Sakata N, Aoki T, Yoshimatsu G, et al. Strategy for clinical setting in intramuscular and subcutaneous islet transplantation. Diabetes Metab Res Rev. 2014;30:1–10. doi: 10.1002/dmrr.2463. PubMed DOI
Chiu L, Radisic M. Scaffolds with covalently immobilized VEGF and angiopoietin-1 for vascularization of engineered tissues. Biomaterials. 2010;31:226–241. doi: 10.1016/j.biomaterials.2009.09.039. PubMed DOI
Boomsma R, Geenen D. Mesenchymal stem cells secrete multiple cytokines that promote angiogenesis and have contrasting effects on chemotaxis and apoptosis. PLoS One. 2012;7:e35685. doi: 10.1371/journal.pone.0035685. PubMed DOI PMC
Xu Y-X, Chen L, Wang R, et al. Mesenchymal stem cell therapy for diabetes through paracrine mechanisms. Med Hypotheses. 2008;71:390–393. doi: 10.1016/j.mehy.2008.03.046. PubMed DOI
Burlacu A, Grigorescu G, Rosca A-M, et al. Factors secreted by mesenchymal stem cells and endothelial progenitor cells have complementary effects on angiogenesis in vitro. Stem Cells Dev. 2013;22:643–653. doi: 10.1089/scd.2012.0273. PubMed DOI PMC
Martens T, See F, Schuster M, et al. Mesenchymal lineage precursor cells induce vascular network formation in ischemic myocardium. Nat Clin Pr Cadriovasc Med. 2006;3:S18–S22. doi: 10.1038/ncpcardio0404. PubMed DOI
Tang YL, Zhao Q, Zhang YC, et al. Autologous mesenchymal stem cell transplantation induce VEGF and neovascularization in ischemic myocardium. Regul Pept. 2004;117:3–10. doi: 10.1016/j.regpep.2003.09.005. PubMed DOI
Figliuzzi M, Cornolti R, Perico N, et al. Bone marrow-derived mesenchymal stem cells improve islet graft function in diabetic rats. Transplant Proc. 2009;41:1797–1800. doi: 10.1016/j.transproceed.2008.11.015. PubMed DOI
Ito T, Itakura S, Todorov I, et al. Mesenchymal stem cell and islet co-transplantation promotes graft revascularization and function. Transplantation. 2010;89:1438–1445. doi: 10.1097/TP.0b013e3181db09c4. PubMed DOI
Kerby A, Jones ES, Jones PM, King AJ. Co-transplantation of islets with mesenchymal stem cells in microcapsules demonstrates graft outcome can be improved in an isolated-graft model of islet transplantation in mice. Cytotherapy. 2013;15:192–200. doi: 10.1016/j.jcyt.2012.10.018. PubMed DOI
Berman D, Willman M, Han D, et al. Mesenchymal stem cells enhance allogeneic islet engraftment in nonhuman primates. Diabetes. 2010;59:2558–2568. doi: 10.2337/db10-0136. PubMed DOI PMC
Minteer D, Marra K, Rubin J. Adipose-derived mesenchymal stem cells: biology and potential applications. Adv Biochem Eng Biotechnol. 2013;129:59–71. PubMed
Zuk PA, Zhu M, Ashjian P, et al. Human adipose tissue is a source of multipotent stem cells. Mol Biol Cell. 2002;13:4279–4295. doi: 10.1091/mbc.E02-02-0105. PubMed DOI PMC
Cao Y, Sun Z, Liao L, et al. Human adipose tissue-derived stem cells differentiate into endothelial cells in vitro and improve postnatal neovascularization in vivo. Biochem Biophys Res Commun. 2005;332:370–379. doi: 10.1016/j.bbrc.2005.04.135. PubMed DOI
Miranville A, Heeschen C, Sengenès C, et al. Improvement of postnatal neovascularization by human adipose tissue-derived stem cells. Circulation. 2004;110:349–355. doi: 10.1161/01.CIR.0000135466.16823.D0. PubMed DOI
Hakamata Y, Murakami T, Kobayashi E. “Firefly rats” as an organ/cellular source for long-term in vivo bioluminescent imaging. Transplantation. 2006;81:1179–1184. doi: 10.1097/01.tp.0000203137.06587.4a. PubMed DOI
Wang H, Cao F, De A, et al. Trafficking mesenchymal stem cell engraftment and differentiation in tumor-bearing mice by bioluminescence imaging. Stem Cells. 2009;27:1548–1558. doi: 10.1002/stem.81. PubMed DOI PMC
Fowler M, Virostko J, Chen Z, et al. Assessment of pancreatic islet mass after islet transplantation using in vivo bioluminescence imaging. Transplantation. 2005;79:768–776. doi: 10.1097/01.TP.0000152798.03204.5C. PubMed DOI
Min J, Ahn Y, Moon S, et al. In vivo bioluminescence imaging of cord blood derived mesenchymal stem cell transplantation into rat myocardium. Ann Nucl Med. 2006;20:165–170. doi: 10.1007/BF03027425. PubMed DOI
Bagó JR, Soler-Botija C, Casaní L, et al. Bioluminescence imaging of cardiomyogenic and vascular differentiation of cardiac and subcutaneous adipose tissue-derived progenitor cells in fibrin patches in a myocardium infarct model. Int J Cardiol. 2013;169:288–295. doi: 10.1016/j.ijcard.2013.09.013. PubMed DOI
Lembert N, Idahl L. Regulatory effects of ATP and luciferin on firefly luciferase activity. Biochem J. 1995;305(Pt. 3):929–933. doi: 10.1042/bj3050929. PubMed DOI PMC
Virostko J, Chen Z, Fowler M, et al. (2005) Factors influencing quantification of in vivo bioluminescence imaging: application to assessment of pancreatic islet transplants 3:333–342. PubMed
Ozdemir M, Attar A, Kuzu I, et al. Stem cell therapy in spinal cord injury: in vivo and postmortem tracking of bone marrow mononuclear or mesenchymal stem cells. Stem Cell Rev. 2012;8:953–962. doi: 10.1007/s12015-012-9376-5. PubMed DOI
Chen X, Zhang X, Larson CS, et al. In vivo bioluminescence imaging of transplanted islets and early detection of graft rejection. Transplantation. 2006;81:1421–1427. doi: 10.1097/01.tp.0000206109.71181.bf. PubMed DOI
Kříž J, Jirák D, Berková Z, et al. Detection of pancreatic islet allograft impairment in advance of functional failure using magnetic resonance imaging. Transpl Int. 2012;25:250–260. doi: 10.1111/j.1432-2277.2011.01403.x. PubMed DOI
Jirák D, Kříž J, Strzelecki M, et al. Monitoring the survival of islet transplants by MRI using a novel technique for their automated detection and quantification. MAGMA. 2009;22:257–265. doi: 10.1007/s10334-009-0172-4. PubMed DOI
Saudek F, Jirák D, Girman P, et al. Magnetic resonance imaging of pancreatic islets transplanted into the liver in humans. Transplantation. 2010;90:1602–1606. doi: 10.1097/TP.0b013e3181ffba5e. PubMed DOI
Anderson J, Rodriguez A, Chang D. Foreign body reaction to biomaterials. Semin Immunol. 2008;20:86–100. doi: 10.1016/j.smim.2007.11.004. PubMed DOI PMC
Krock B, Skuli N, Simon C. Hypoxia-induced angiogenesis. Genes Cancer. 2011;2:1117–1133. doi: 10.1177/1947601911423654. PubMed DOI PMC
Sunderkötter C, Steinbrink K, Goebeler M, et al. Macrophages and angiogenesis. J Leukoc Biol. 1994;55:410–422. PubMed