The Optimal Timing for Pancreatic Islet Transplantation into Subcutaneous Scaffolds Assessed by Multimodal Imaging
Jazyk angličtina Země Velká Británie, Anglie Médium electronic-ecollection
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
29440984
PubMed Central
PMC5758856
DOI
10.1155/2017/5418495
Knihovny.cz E-zdroje
- MeSH
- alografty MeSH
- experimentální diabetes mellitus * diagnostické zobrazování chirurgie MeSH
- krysa rodu Rattus MeSH
- Langerhansovy ostrůvky * krevní zásobení diagnostické zobrazování metabolismus patologie MeSH
- luminiscenční měření * MeSH
- mezenchymální kmenové buňky metabolismus patologie MeSH
- potkani transgenní MeSH
- přežívání štěpu * MeSH
- tkáňové podpůrné struktury * MeSH
- transplantace Langerhansových ostrůvků metody MeSH
- transplantace mezenchymálních kmenových buněk MeSH
- zvířata MeSH
- Check Tag
- krysa rodu Rattus MeSH
- mužské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Subcutaneously implanted polymeric scaffolds represent an alternative transplantation site for pancreatic islets (PIs) with the option of vascularisation enhancement by mesenchymal stem cells (MSC). Nevertheless, a proper timing of the transplantation steps is crucial. In this study, scaffolds supplemented with plastic rods were implanted into diabetic rats and two timing schemes for subsequent transplantation of bioluminescent PIs (4 or 7 days after rod removal) were examined by multimodal imaging. The cavities were left to heal spontaneously or with 10 million injected MSCs. Morphological and vascularisation changes were examined by MRI, while the localisation and viability of transplanted islets were monitored by bioluminescence imaging. The results show that PIs transplanted 4 days after rod removal showed the higher optical signal and vascularisation compared to transplantation after 7 days. MSCs slightly improved vascularisation of the graft but hindered therapeutic efficiency of PIs. Long-term glycaemia normalisation (4 months) was attained in 80% of animals. In summary, multimodal imaging confirmed the long-term survival and function of transplanted PIs in the devices. The best outcome was reached with PIs transplanted on day 4 after rod removal and therefore the suggested protocol holds a potential for further applications.
Department of Pathology 3rd Faculty of Medicine Charles University Prague Czech Republic
Diabetes Centre Institute for Clinical and Experimental Medicine Prague Czech Republic
Zobrazit více v PubMed
Shapiro J. A., Auchincloss H., Lindblad R., et al. International trial of the edmonton protocol for islet transplantation. The New England Journal of Medicine. 355:1318–1330. PubMed
Rafael E., Ryan E. A., Paty B. W., et al. Changes in liver enzymes after clinical islet transplantation. Transplantation. 2003;76(9):1280–1284. doi: 10.1097/01.TP.0000098822.85924.4C. PubMed DOI
Kawahara T., Kin T., Kashkoush S., et al. Portal vein thrombosis is a potentially preventable complication in clinical islet transplantation. American Journal of Transplantation. 2011;11(12):2700–2707. doi: 10.1111/j.1600-6143.2011.03717.x. PubMed DOI PMC
Naziruddin B., Iwahashi S., Kanak M. A., Takita M., Itoh T., Levy M. F. Evidence for instant blood-mediated inflammatory reaction in clinical autologous islet transplantation. American Journal of Transplantation. 2014;14(2):428–437. doi: 10.1111/ajt.12558. PubMed DOI
Cantarelli E., Piemonti L. Alternative transplantation sites for pancreatic islet grafts. Current Diabetes Reports. 2011;11(5):364–374. doi: 10.1007/s11892-011-0216-9. PubMed DOI
Rajab A. Islet Transplantation: Alternative Sites. Current Diabetes Reports. 2010;10(5):332–337. doi: 10.1007/s11892-010-0130-6. PubMed DOI
Calafiore R., Basta G., Luca G., et al. Standard technical procedures for microencapsulation of human islets for graft into nonimmunosuppressed patients with type 1 diabetes mellitus. Transplantation Proceedings. 2006;38(4):1156–1157. doi: 10.1016/j.transproceed.2006.03.014. PubMed DOI
Chaikof E. Engineering and material consideration in islet cell transplantation. Annual Review of Biomedical Engineering. 1999;1:103–127. doi: 10.1146/annurev.bioeng.1.1.103. PubMed DOI
Sakata N. Encapsulated islets transplantation: Past, present and future. World Journal of Gastrointestinal Pathophysiology. 2012;3(1):p. 19. doi: 10.4291/wjgp.v3.i1.19. PubMed DOI PMC
Borg D. J., Welzel P. B., Grimmer M., et al. Macroporous biohybrid cryogels for co-housing pancreatic islets with mesenchymal stromal cells. Acta Biomaterialia. 2016;44:178–187. doi: 10.1016/j.actbio.2016.08.007. PubMed DOI
Pileggi A., Molano R. D., Ricordi C., et al. Reversal of diabetes by pancreatic islet transplantation into a subcutaneous, neovascularized device. Transplantation. 2006;81(9):1318–1324. doi: 10.1097/01.tp.0000203858.41105.88. PubMed DOI
Pepper A. R., Pawlick R., Gala-Lopez B., et al. Diabetes is reversed in a murine model by marginal mass syngeneic islet transplantation using a subcutaneous cell pouch device. Transplantation. 2015;99(11):2294–2300. doi: 10.1097/tp.0000000000000864. PubMed DOI PMC
Kriz J., Vilk G., Mazzuca D. M., Toleikis P. M., Foster P. J., White D. J. G. A novel technique for the transplantation of pancreatic islets within a vascularized device into the greater omentum to achieve insulin independence. The American Journal of Surgery. 2012;203(6):793–797. doi: 10.1016/j.amjsurg.2011.02.009. PubMed DOI
Pedraza E., Brady A., Fraker C. A., et al. Macroporous Three-Dimensional PDMS Scaffolds for Extrahepatic Islet Transplantation. Cell Transplantation. 2013;22(7):1123–1135. doi: 10.3727/096368912X657440. PubMed DOI PMC
Fabryova E., Jirak D., Girman P., et al. Effect of mesenchymal stem cells on the vascularization of the artificial site for islet transplantation in rats. Transplantation Proceedings. 2014;46(6):1963–1966. doi: 10.1016/j.transproceed.2014.05.074. PubMed DOI
Kriz J., Jirak D., Koblas T., et al. Dynamic contrast-enhanced magnetic resonance imaging as a tool to monitor the blood supply to an artificial cavity used as a site for islet transplantation in rats. Transplantation Proceedings. 2011;43(9):3226–3230. doi: 10.1016/j.transproceed.2011.09.012. PubMed DOI
Linn T., Erb D., Schneider D., et al. Polymers for Induction of Revascularization in the Rat Fascial Flap: Application of Vascular Endothelial Growth Factor and Pancreatic Islet Cells. Cell Transplantation. 2003;12(7):769–778. doi: 10.3727/000000003108747244. PubMed DOI
Borg D. J., Weigelt M., Wilhelm C., et al. Erratum: Mesenchymal stromal cells improve transplanted islet survival and islet function in a syngeneic mouse model. Diabetologia. 2014;57(5):522–531. doi: 10.1007/s00125-013-3109-4. PubMed DOI
Gálisová A., Fábryová E., Jirák D., et al. Multimodal Imaging Reveals Improvement of Blood Supply to an Artificial Cell Transplant Site Induced by Bioluminescent Mesenchymal Stem Cells. Molecular Imaging and Biology. 2017;19(1):15–23. doi: 10.1007/s11307-016-0986-1. PubMed DOI PMC
Figliuzzi M., Cornolti R., Perico N., et al. Bone Marrow-Derived Mesenchymal Stem Cells Improve Islet Graft Function in Diabetic Rats. Transplantation Proceedings. 2009;41(5):1797–1800. doi: 10.1016/j.transproceed.2008.11.015. PubMed DOI
Ito T., Itakura S., Todorov I., et al. Mesenchymal stem cell and islet co-transplantation promotes graft revascularization and function. Transplantation. 2010;89(12):1438–1445. doi: 10.1097/TP.0b013e3181db09c4. PubMed DOI
Solari M. G., Srinivasan S., Boumaza I., et al. Marginal mass islet transplantation with autologous mesenchymal stem cells promotes long-term islet allograft survival and sustained normoglycemia. Journal of Autoimmunity. 2009;32(2):116–124. doi: 10.1016/j.jaut.2009.01.003. PubMed DOI
Hematti P., Kim J., Stein A. P., Kaufman D. Potential role of mesenchymal stromal cells in pancreatic islet transplantation. Transplantation Reviews. 2013;27(1):21–29. doi: 10.1016/j.trre.2012.11.003. PubMed DOI
Gotoh M., Maki T., Kiyoizumi T., Satomi S., Monaco A. P. An improved method for isolation of mouse pancreatic islets. Transplantation. 1985;40(4):437–438. doi: 10.1097/00007890-198510000-00018. PubMed DOI
Saudek F., Číhalová E., Karasová L., Kobylka P., Lomský R. Increased glucagon-stimulated insulin secretion of cryopreserved rat islets transplanted into nude mice. Journal of Molecular Medicine. 1999;77(1):107–110. doi: 10.1007/s001090050313. PubMed DOI
Bank H. L. Rapid assessment of islet viability with acridine orange and propidium iodide. In Vitro Cellular & Developmental Biology - Animal. 1988;24(4):266–273. doi: 10.1007/bf02628826. PubMed DOI
Gala-Lopez B. L., Pepper A. R., Dinyari P. Subcutaneous clinical islet transplantation in a prevascularized subcutaneous pouch. preliminary experience. 2016 CellR4 4:e2132.
Smink A. M., Li S., Hertsig D. T., et al. The Efficacy of a Prevascularized, Retrievable Poly(D,L,-lactide-co-ε-caprolactone) Subcutaneous Scaffold as Transplantation Site for Pancreatic Islets. Transplantation. 2017;101(4):e112–e119. doi: 10.1097/TP.0000000000001663. PubMed DOI PMC
Kagiwada H., Yashiki T., Ohshima A., Tadokoro M., Nagaya N., Ohgushi H. Human mesenchymal stem cells as a stable source of VEGF-producing cells. Journal of Tissue Engineering and Regenerative Medicine. 2008;2(4):184–189. doi: 10.1002/term.79. PubMed DOI
Krock B. L., Skuli N., Simon M. C. Hypoxia-induced angiogenesis: good and evil. Genes & Cancer. 2011;2(12):1117–1133. doi: 10.1177/1947601911423654. PubMed DOI PMC
Miranville A., Heeschen C., Sengenès C., Curat C. A., Busse R., Bouloumié A. Improvement of postnatal neovascularization by human adipose tissue-derived stem cells. Circulation. 2004;110(3):349–355. doi: 10.1161/01.CIR.0000135466.16823.D0. PubMed DOI
Cao Y., Sun Z., Liao L., Meng Y., Han Q., Zhao R. C. Human adipose tissue-derived stem cells differentiate into endothelial cells in vitro and improve postnatal neovascularization in vivo. Biochemical and Biophysical Research Communications. 2005;332(2):370–379. doi: 10.1016/j.bbrc.2005.04.135. PubMed DOI
Minteer D., Marra K. G., Peter Rubin J. Adipose-derived mesenchymal stem cells: biology and potential applications. Advances in Biochemical Engineering/Biotechnology. 2013;129:59–71. doi: 10.1007/10_2012_146. PubMed DOI
Tang Y. L., Zhao Q., Zhang Y., et al. Autologous mesenchymal stem cell transplantation induce VEGF and neovascularization in ischemic myocardium. Regulatory Peptides. 2004;117(1):3–10. doi: 10.1016/j.regpep.2003.09.005. PubMed DOI
Martens T. P., See F., Schuster M. D., et al. Mesenchymal lineage precursor cells induce vascular network formation in ischemic myocardium. Nature Clinical Practice Cardiovascular Medicine. 2006;3(1):S18–S22. doi: 10.1038/ncpcardio0404. PubMed DOI
Johansson U., Rasmusson I., Niclou S. P., et al. Formation of composite endothelial cell-mesenchymal stem cell islets: a novel approach to promote islet revascularization. Diabetes. 2008;57(9):2393–2401. doi: 10.2337/db07-0981. PubMed DOI PMC
Sakata N., Goto M., Yoshimatsu G., Egawa S., Unno M. Utility of co-transplanting mesenchymal stem cells in islet transplantation. World Journal of Gastroenterology. 2011;17(47):5150–5155. doi: 10.3748/wjg.v17.i47.5150. PubMed DOI PMC
Kerby A., Jones E. S., Jones P. M., King A. J. Co-transplantation of islets with mesenchymal stem cells in microcapsules demonstrates graft outcome can be improved in an isolated-graft model of islet transplantation in mice. Cytotherapy. 2013;15(2):192–200. doi: 10.1016/j.jcyt.2012.10.018. PubMed DOI
Ding D.-C., Shyu W.-C., Lin S.-Z. Mesenchymal stem cells. Cell Transplantation. 2011;20(1):5–14. doi: 10.3727/096368910X. PubMed DOI
Longoni B., Szilagyi E., Quaranta P., et al. Mesenchymal Stem Cells Prevent Acute Rejection and Prolong Graft Function in Pancreatic Islet Transplantation. Diabetes Technology & Therapeutics. 2010;12(6):435–446. doi: 10.1089/dia.2009.0154. PubMed DOI
Rezende L. F., Stoppiglia L. F., Souza K. L. A., Negro A., Langone F., Boschero A. C. Ciliary neurotrophic factor promotes survival of neonatal rat islets via the BCL-2 anti-apoptotic pathway. Journal of Endocrinology. 2007;195(1):157–165. doi: 10.1677/JOE-07-0016. PubMed DOI
Park K., Kim Y., Kim J., et al. Trophic molecules derived from human mesenchymal stem cells enhance survival , function, and angiogenesis of isolated islets after transplantation. Transplantation. 2010;89:509–571. PubMed
Ding Y., Xu D., Feng G., Bushell A., Muschel R. J., Wood K. J. Mesenchymal stem cells prevent the rejection of fully allogenic islet grafts by the immunosuppressive activity of matrix metalloproteinase-2 and -9. Diabetes. 2009;58(8):1797–1806. doi: 10.2337/db09-0317. PubMed DOI PMC
Casiraghi F., Azzollini N., Cassis P., et al. Pretransplant infusion of mesenchymal stem cells prolongs the survival of a semiallogeneic heart transplant through the generation of regulatory T cells. The Journal of Immunology. 2008;181(6):3933–3946. doi: 10.4049/jimmunol.181.6.3933. PubMed DOI
Berman D. M., Willman M. A., Han D., et al. Mesenchymal stem cells enhance allogeneic islet engraftment in nonhuman primates. Diabetes. 2010;59(10):2558–2568. doi: 10.2337/db10-0136. PubMed DOI PMC
Pepper A. R., Gala-Lopez B., Pawlick R., Merani S., Kin T., Shapiro A. M. J. A prevascularized subcutaneous device-less site for islet and cellular transplantation. Nature Biotechnology. 2015;33(5):518–523. doi: 10.1038/nbt.3211. PubMed DOI