A Trimodal Imaging Platform for Tracking Viable Transplanted Pancreatic Islets In Vivo: F-19 MR, Fluorescence, and Bioluminescence Imaging
Jazyk angličtina Země Spojené státy americké Médium print
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
30167995
PubMed Central
PMC6525139
DOI
10.1007/s11307-018-1270-3
PII: 10.1007/s11307-018-1270-3
Knihovny.cz E-zdroje
- Klíčová slova
- F-19 magnetic resonance imaging, Nanoparticles, Optical imaging, Pancreatic islets, Transplantation,
- MeSH
- endocytóza MeSH
- fluor chemie MeSH
- fluorescence MeSH
- Langerhansovy ostrůvky diagnostické zobrazování MeSH
- luminiscenční měření * MeSH
- magnetická rezonanční tomografie * MeSH
- modely u zvířat MeSH
- molekulární zobrazování * MeSH
- potkani inbrední LEW MeSH
- potkani transgenní MeSH
- přežití tkáně MeSH
- tkáňové podpůrné struktury chemie MeSH
- transplantace Langerhansových ostrůvků * MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- fluor MeSH
PURPOSE: Combining specific and quantitative F-19 magnetic resonance imaging (MRI) with sensitive and convenient optical imaging provides complementary information about the distribution and viability of transplanted pancreatic islet grafts. In this study, pancreatic islets (PIs) were labeled with positively charged multimodal nanoparticles based on poly(lactic-co-glycolic acid) (PLGA-NPs) with encapsulated perfluoro-15-crown-5-ether and the near-infrared fluorescent dye indocyanine green. PROCEDURES: One thousand and three thousand bioluminescent PIs were transplanted into subcutaneous artificial scaffolds, which served as an alternative transplant site. The grafts were monitored using in vivo F-19 MR, fluorescence, and bioluminescence imaging in healthy rats for 2 weeks. RESULTS: Transplanted PIs were unambiguously localized in the scaffolds by F-19 MRI throughout the whole experiment. Fluorescence was detected in the first 4 days after transplantation only. Importantly, in vivo bioluminescence correlated with the F-19 MRI signal. CONCLUSIONS: We developed a trimodal imaging platform for in vivo examination of transplanted PIs. Fluorescence imaging revealed instability of the fluorescent dye and its limited applicability for longitudinal in vivo studies. A correlation between the bioluminescence signal and the F-19 MRI signal indicated the fast clearance of PLGA-NPs from the transplantation site after cell death, which addresses a major issue with intracellular imaging labels. Therefore, the proposed PLGA-NP platform is reliable for reflecting the status of transplanted PIs in vivo.
Department of Pathology 3rd Faculty of Medicine Charles University Prague Czech Republic
Department of Tumor Immunology Radboud University Medical Center Nijmegen Netherlands
Diabetes Centre Institute for Clinical and Experimental Medicine Prague Czech Republic
Zobrazit více v PubMed
Emamaullee J, Shapiro A. Factors influencing the loss of beta-cell mass in islet transplantation. Cell Transplant. 2007;16:1–8. doi: 10.3727/000000007783464461. PubMed DOI
Cantarelli E, Piemonti L. Alternative transplantation sites for pancreatic islet grafts. Curr Diab Rep. 2011;11:364–374. doi: 10.1007/s11892-011-0216-9. PubMed DOI
Kříž J, Greg V, Mazzuca DM, et al. A novel technique for the transplantation of pancreatic islets within a vascularized device into the greater omentum to achieve insulin independence. Am J Surg. 2012;203:793–797. doi: 10.1016/j.amjsurg.2011.02.009. PubMed DOI
Gálisová A, Fábryová E, Sticová E, Kosinová L, Jirátová M, Herynek V, Berková Z, Kříž J, Hájek M, Jirák D. The optimal timing for pancreatic islet transplantation into subcutaneous scaffolds assessed by multimodal imaging. Contrast Media Mol Imaging. 2017;5418495:1–13. doi: 10.1155/2017/5418495. PubMed DOI PMC
Pileggi A, Molano RD, Ricordi C, Zahr E, Collins J, Valdes R, Inverardi L. Reversal of diabetes by pancreatic islet transplantation into a subcutaneous, neovascularized device. Transplantation. 2006;81:1318–1324. doi: 10.1097/01.tp.0000203858.41105.88. PubMed DOI
Pepper AR, Pawlick R, Gala-lopez B, et al. Diabetes is reversed in a murine model by marginal mass syngeneic islet transplantation using a subcutaneous cell pouch device. Transplantation. 2015;99:2294–2300. doi: 10.1097/TP.0000000000000864. PubMed DOI PMC
Eriksson O, Selvaraju R, Eich T, Willny M, Brismar TB, Carlbom L, Ahlström H, Tufvesson G, Lundgren T, Korsgren O. Positron emission tomography to assess the outcome of intraportal islet transplantation. Diabetes. 2016;65:2482–2489. doi: 10.2337/db16-0222. PubMed DOI PMC
Eter W, Bos D, Frielink C, et al. Graft revascularization is essential for non-invasive monitoring of transplanted islets with radiolabeled exendin. Sci Rep. 2015;5:15521. doi: 10.1038/srep15521. PubMed DOI PMC
Jirák D, Kříž J, Herynek V, et al. MRI of transplanted pancreatic islets. Magn Reson Med. 2004;52:1228–1233. doi: 10.1002/mrm.20282. PubMed DOI
Lu Y, Dang H, Middleton B, Zhang Z, Washburn L, Campbell-Thompson M, Atkinson MA, Gambhir SS, Tian J, Kaufman DL. Bioluminescent monitoring of islet graft survival after transplantation. Mol Ther. 2004;9:428–435. doi: 10.1016/j.ymthe.2004.01.008. PubMed DOI
Fowler M, Virostko J, Chen Z, Poffenberger G, Radhika A, Brissova M, Shiota M, Nicholson WE, Shi Y, Hirshberg B, Harlan DM, Jansen ED, Powers AC. Assessment of pancreatic islet mass after islet transplantation using in vivo bioluminescence imaging. Transplantation. 2005;79:768–776. doi: 10.1097/01.TP.0000152798.03204.5C. PubMed DOI
Sakata N, Goto M, Gumpei Y, Mizuma M, Motoi F, Satomi S, Unno M. Intraoperative ultrasound examination is useful for monitoring transplanted islets. Islets. 2012;4:339–342. doi: 10.4161/isl.22384. PubMed DOI PMC
Toso C, Vallee J-P, Morel P, Ris F, Demuylder-Mischler S, Lepetit-Coiffe M, Marangon N, Saudek F, James Shapiro AM, Bosco D, Berney T. Clinical magnetic resonance imaging of pancreatic islet grafts after iron nanoparticle labeling. Am J Transplant. 2008;8:701–706. doi: 10.1111/j.1600-6143.2007.02120.x. PubMed DOI
Saudek F, Jirák D, Girman P, Herynek V, Dezortová M, Kříž J, Peregrin J, Berková Z, Zacharovová K, Hájek M. Magnetic resonance imaging of pancreatic islets transplanted into the liver in humans. Transplantation. 2010;90:1602–1606. doi: 10.1097/TP.0b013e3181ffba5e. PubMed DOI
Srinivas M, Heerschap A, Ahrens E, et al. 19F MRI for quantitative in vivo cell tracking. Trends Biotechnol. 2010;28:363–370. doi: 10.1016/j.tibtech.2010.04.002. PubMed DOI PMC
Srinivas M, Boehm-Sturm P, Figdor C, et al. Labeling cells for in vivo tracking using 19F MRI. Biomaterials. 2012;33:8830–8840. doi: 10.1016/j.biomaterials.2012.08.048. PubMed DOI
Swider E, Staal AHJ, van Riessen N, et al. Design of triphasic poly(lactic-co-glycolic acid) nanoparticles containing a perfluorocarbon phase for biomedical applications. RSC Adv. 2018;8:6460–6470. doi: 10.1039/C7RA13062G. PubMed DOI PMC
Srinivas M, Cruz L, Bonetto F, et al. Customizable, multi-functional fluorocarbon nanoparticles for quantitative in vivo imaging using 19F MRI and optical imaging. Biomaterials. 2010;31:7070–7077. doi: 10.1016/j.biomaterials.2010.05.069. PubMed DOI
Ahrens E, Helfer B, O’Hanl, Schirda C. Clinical cell therapy imaging using a perfluorocarbon tracer and fluorine-19 MRI. Magn Reson Med. 2014;72:1696–1701. doi: 10.1002/mrm.25454. PubMed DOI PMC
Srinivas M, Morel PA, Ernst LA, Laidlaw DH, Ahrens ET. Fluorine-19 MRI for visualization and quantification of cell migration in a diabetes model. Magn Reson Med. 2007;58:725–734. doi: 10.1002/mrm.21352. PubMed DOI
Gaudet J, Ribot E, Chen, et al. Tracking the fate of stem cell implants with fluorine-19 MRI. PLoS One. 2015;10:e0118544. doi: 10.1371/journal.pone.0118544. PubMed DOI PMC
Constantinides C, Maguire M, McNeill E, et al. Fast, quantitative, murine cardiac 19F MRI/MRS of PFCE-labeled progenitor stem cells and macrophages at 9.4T. PLoS One. 2018;13:e0190558. doi: 10.1371/journal.pone.0190558. PubMed DOI PMC
Temme S, Bönner F, Schrader J, Flögel U. 19F magnetic resonance imaging of endogenous macrophages in inflammation. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2012;4:329–343. doi: 10.1002/wnan.1163. PubMed DOI
Barnett BP, Ruiz-Cabello J, Hota P, Ouwerkerk R, Shamblott MJ, Lauzon C, Walczak P, Gilson WD, Chacko VP, Kraitchman DL, Arepally A, Bulte JWM. Use of perfluorocarbon nanoparticles for non-invasive multimodal cell tracking of human pancreatic islets. Contrast Media Mol Imaging. 2011;6:251–259. doi: 10.1002/cmmi.424. PubMed DOI PMC
Liang S, Louchami K, Holvoet B, Verbeke R, Deroose CM, Manshian B, Soenen SJ, Lentacker I, Himmelreich U (2018) Tri-modal in vivo imaging of pancreatic islets transplanted subcutaneously in mice. Mol Imaging Biol 1–12. 10.1007/s11307-018-1192-0 PubMed
Srinivas M, Böhm-Sturm P, Aswendt M, et al. In vivo 19F MRI for cell tracking. J Vis Exp. 2013;e50802:25. PubMed PMC
Böhm-Sturm P, Aswendt M, Minassian A, et al. A multi-modality platform to image stem cell graft survival in the naïve and stroke-damaged mouse brain. Biomaterials. 2014;35:2218–2226. doi: 10.1016/j.biomaterials.2013.11.085. PubMed DOI
Kim J, Kalimuthu S, Ahn B. In vivo cell tracking with bioluminescence imaging. Nucl Med Mol Imaging. 2015;49:3–10. doi: 10.1007/s13139-014-0309-x. PubMed DOI PMC
Herynek V, Gálisová A, Srinivas M, van Dinther EAW, Kosinová L, Ruzicka J, Jirátová M, Kriz J, Jirák D. Pre-microporation improves outcome of pancreatic islet labelling for optical and 19F MR imaging. Biol Proced Online. 2017;19:6. doi: 10.1186/s12575-017-0055-4. PubMed DOI PMC
Gotoh M, Maki T, Kiyoizumi T, et al. An improved method for isolation of mouse pancreatic islets. Transplantation. 1985;40:437–438. doi: 10.1097/00007890-198510000-00018. PubMed DOI
Schneider C, Rasband W, Eliceiri K. NIH image to ImageJ: 25 years of image analysis. Nat Methods. 2012;9:671–675. doi: 10.1038/nmeth.2089. PubMed DOI PMC
Fabryova E, Jirak D, Girman P, Zacharovova K, Galisova A, Saudek F, Kriz J. Effect of mesenchymal stem cells on the vascularization of the artificial site for islet transplantation in rats. Transplant Proc. 2014;46:1963–1966. doi: 10.1016/j.transproceed.2014.05.074. PubMed DOI
Böhm-Sturm P, Mengler L, Wecker S, Hoehn M. In vivo tracking of human neural stem cells with magnetic resonance imaging. PLoS One. 2011;6:e29040. doi: 10.1371/journal.pone.0029040. PubMed DOI PMC
Srinivas M, Tel J, Schreibelt G, Bonetto F, Cruz LJ, Amiri H, Heerschap A, Figdor CG, de Vries IJM. PLGA-encapsulated perfluorocarbon nanoparticles for simultaneous visualization of distinct cell populations by 19F MRI. Nanomedicine. 2015;10:2339–2348. doi: 10.2217/nnm.15.76. PubMed DOI
Fink C, Gaudet JM, Fox MS, et al. 19F-perfluorocarbon-labeled human peripheral blood mononuclear cells can be detected in vivo using clinical MRI parameters in a therapeutic cell setting. Sci Rep. 2018;8:590. doi: 10.1038/s41598-017-19031-0. PubMed DOI PMC
Bonetto F, Srinivas M, Heerschap A, et al. A novel 19F agent for detection and quantification of human dendritic cells using magnetic resonance imaging. Int J Cancer. 2012;129:365–373. doi: 10.1002/ijc.25672. PubMed DOI PMC
Helfer B, Balducci A, Nelson A, et al. Functional assessment of human dendritic cells labeled for in vivo 19F magnetic resonance imaging cell tracking. Cytotherapy. 2010;12:238–250. doi: 10.3109/14653240903446902. PubMed DOI PMC
Jirák D, Kříž J, Strzelecki M, et al. Monitoring the survival of islet transplants by MRI using a novel technique for their automated detection and quantification. Magn Reson Mater Physics, Biol Med. 2009;22:257–265. doi: 10.1007/s10334-009-0172-4. PubMed DOI
Liang S, Dresselaers T, Louchami K, Zhu C, Liu Y, Himmelreich U. Comparison of different compressed sensing algorithms for low SNR 19F MRI applications — imaging of transplanted pancreatic islets and cells labeled with perfluorocarbons. NMR Biomed. 2017;30:e3776. doi: 10.1002/nbm.3776. PubMed DOI
Liang S, Louchami K, Kolster H, Jacobsen A, Zhang Y, Thimm J, Sener A, Thiem J, Malaisse W, Dresselaers T, Himmelreich U. In vivo and ex vivo 19-fluorine magnetic resonance imaging and spectroscopy of beta-cells and pancreatic islets using GLUT-2 specific contrast agents. Contrast Media Mol Imaging. 2016;11:506–513. doi: 10.1002/cmmi.1712. PubMed DOI
Amiri H, Srinivas M, Veltien A, van Uden MJ, de Vries IJM, Heerschap A. Cell tracking using 19F magnetic resonance imaging: technical aspects and challenges towards clinical applications. Eur Radiol. 2015;25:726–735. doi: 10.1007/s00330-014-3474-5. PubMed DOI
Blahut J, Bernášek K, Gálisová A, Herynek V, Císařová I, Kotek J, Lang J, Matějková S, Hermann P. Paramagnetic 19F relaxation enhancement in nickel(II) complexes of N-trifluoroethyl cyclam derivatives and cell labeling for 19F MRI. Inorg Chem. 2017;56:13337–13348. doi: 10.1021/acs.inorgchem.7b02119. PubMed DOI
Bae PK, Jung J, Chung BH (2014) Highly enhanced optical properties of indocyanine green/perfluorocarbon nanoemulsions for efficient lymph node mapping using near-infrared and magnetic resonance imaging. Nano Converg. 10.1186/s40580-014-0006-6 PubMed PMC
Jacoby C, Temme S, Mayenfels F, Benoit N, Krafft MP, Schubert R, Schrader J, Flögel U. Probing different perfluorocarbons for in vivo inflammation imaging by 19F MRI: image reconstruction, biological half-lives and sensitivity. NMR Biomed. 2014;27:261–271. doi: 10.1002/nbm.3059. PubMed DOI
Cationic fluorinated micelles for cell labeling and 19F-MR imaging
Recent Advances in Metal-Organic Frameworks for Applications in Magnetic Resonance Imaging
Glycogen as an advantageous polymer carrier in cancer theranostics: Straightforward in vivo evidence
Low-molecular-weight paramagnetic 19F contrast agents for fluorine magnetic resonance imaging
Fluorine polymer probes for magnetic resonance imaging: quo vadis?