Low-molecular-weight paramagnetic 19F contrast agents for fluorine magnetic resonance imaging
Jazyk angličtina Země Německo Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
P205-16-03156S
Grantová Agentura České Republiky
Inter-COST, no. LTC17067, in the frame of CA15209 COST Action
Ministerstvo Školství, Mládeže a Tělovýchovy
Czech-BioImaging RI project LM2015062
Ministerstvo Školství, Mládeže a Tělovýchovy
CZ-DRO, IN 00023001
Ministerstvo Zdravotnictví Ceské Republiky
PubMed
30498883
PubMed Central
PMC6514088
DOI
10.1007/s10334-018-0721-9
PII: 10.1007/s10334-018-0721-9
Knihovny.cz E-zdroje
- Klíčová slova
- Fluorine-19 magnetic resonance imaging, Lanthanide series elements, Macrocyclic ligand complexes, Molecular probes, Phosphinic acid complexes, Relaxation times,
- MeSH
- chelátory chemie MeSH
- fluor chemie MeSH
- ionty MeSH
- kontrastní látky chemie MeSH
- krysa rodu Rattus MeSH
- lanthanoidy chemie MeSH
- ligandy MeSH
- magnetismus MeSH
- molekulová hmotnost MeSH
- oxazoly chemie MeSH
- pyrimidinony chemie MeSH
- zobrazování fluorovou magnetickou rezonancí * MeSH
- zvířata MeSH
- Check Tag
- krysa rodu Rattus MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- 2,3-dihydro-5H-oxazolo(3,2-a)thieno(3,2-d)pyrimidin-5-one MeSH Prohlížeč
- chelátory MeSH
- fluor MeSH
- ionty MeSH
- kontrastní látky MeSH
- lanthanoidy MeSH
- ligandy MeSH
- oxazoly MeSH
- pyrimidinony MeSH
OBJECTIVE: 19F MRI requires biocompatible and non-toxic soluble contrast agents with high fluorine content and with suitable 19F relaxation times. Probes based on a DOTP chelate with 12 magnetically equivalent fluorine atoms (DOTP-tfe) and a lanthanide(III) ion shortening the relaxation times were prepared and tested. METHODS: Complexes of DOTP-tfe with trivalent paramagnetic Ce, Dy, Ho, Tm, and Yb ions were synthetized and characterized. 19F relaxation times were determined and compared to those of the La complex and of the empty ligand. In vitro and in vivo 19F MRI was performed at 4.7 T. RESULTS: 19F relaxation times strongly depended on the chelated lanthanide(III) ion. T1 ranged from 6.5 to 287 ms, T2 from 3.9 to 124.4 ms, and T2* from 1.1 to 3.1 ms. All complexes in combination with optimized sequences provided sufficient signal in vitro under conditions mimicking experiments in vivo (concentrations 1.25 mM, 15-min scanning time). As a proof of concept, two contrast agents were injected into the rat muscle; 19F MRI in vivo confirmed the in vivo applicability of the probe. CONCLUSION: DOTP-based 19F probes showed suitable properties for in vitro and in vivo visualization and biological applications. The lanthanide(III) ions enabled us to shorten the relaxation times and to trim the probes according to the actual needs. Similar to the clinically approved Gd3+ chelates, this customized probe design ensures consistent biochemical properties and similar safety profiles.
Zobrazit více v PubMed
Konstandin S, Schad LR. 30 years of sodium/X-nuclei magnetic resonance imaging. Magn Reson Mater Phy. 2014;27(1):1–4. doi: 10.1007/s10334-013-0426-z. PubMed DOI
Ruiz-Cabello J, Barnett BP, Bottomley PA, Bulte JWM. Fluorine (F-19) MRS and MRI in biomedicine. NMR Biomed. 2011;24(2):114–129. doi: 10.1002/nbm.1570. PubMed DOI PMC
Flogel U, Ahrens ET. Fluorine magnetic resonance imaging. Boca Raton: CRC Press; 2016.
Srinivas M, Boehm-Sturm P, Figdor CG, de Vries IJ, Hoehn M. Labeling cells for in vivo tracking using F-19 MRI. Biomaterials. 2012;33(34):8830–8840. doi: 10.1016/j.biomaterials.2012.08.048. PubMed DOI
Amiri H, Srinivas M, Veltien A, van Uden MJ, de Vries IJ, Heerschap A. Cell tracking using (19)F magnetic resonance imaging: technical aspects and challenges towards clinical applications. Eur Radiol. 2015;25(3):726–735. doi: 10.1007/s00330-014-3474-5. PubMed DOI
Tirotta I, Dichiarante V, Pigliacelli C, Cavallo G, Terraneo G, Bombelli FB, Metrangolo P, Resnati G. F-19 magnetic resonance imaging (MRI): from design of materials to clinical applications. Chem Rev. 2015;115(2):1106–1129. doi: 10.1021/cr500286d. PubMed DOI
Ahrens ET, Bulte JW. Tracking immune cells in vivo using magnetic resonance imaging. Nat Rev Immunol. 2013;13(10):755–763. doi: 10.1038/nri3531. PubMed DOI PMC
Mignion L, Magat J, Schakman O, Marbaix E, Gallez B, Jordan BF. Hexafluorobenzene in comparison with perfluoro-15-crown-5-ether for repeated monitoring of oxygenation using 19F MRI in a mouse model. Magn Reson Med. 2013;69(1):248–254. doi: 10.1002/mrm.24245. PubMed DOI
Tirotta I, Mastropietro A, Cordiglieri C, Gazzera L, Baggi F, Baselli G, Bruzzone MG, Zucca I, Cavallo G, Terraneo G, Bombelli FB, Metrangolo P, Resnati G. A superfluorinated molecular probe for highly sensitive in vivo 19F-MRI. J Am Chem Soc. 2014;136(24):8524–8527. doi: 10.1021/ja503270n. PubMed DOI
Dewitte H, Geers B, Liang SY, Himmelreich U, Demeester J, De Smedt SC, Lentacker I. Design and evaluation of theranostic perfluorocarbon particles for simultaneous antigen loading and F-19-MRI tracking of dendritic cells. J Control Release. 2013;169(1–2):141–149. doi: 10.1016/j.jconrel.2013.03.022. PubMed DOI
Srinivas M, Tel J, Schreibelt G, Bonetto F, Cruz LJ, Amiri H, Heerschap A, Figdor CG, de Vries IJ. PLGA-encapsulated perfluorocarbon nanoparticles for simultaneous visualization of distinct cell populations by 19F MRI. Nanomedicine (Lond) 2015;10(15):2339–2348. doi: 10.2217/nnm.15.76. PubMed DOI
Ahrens ET, Helfer BM, O'Hanlon CF, Schirda C. Clinical cell therapy imaging using a perfluorocarbon tracer and fluorine-19 MRI. Magn Reson Med. 2014;72(6):1696–1701. doi: 10.1002/mrm.25454. PubMed DOI PMC
Peng Q, Li Y, Bo S, Yuan Y, Yang Z, Chen S, Zhou X, Jiang ZX. Paramagnetic nanoemulsions with unified signals for sensitive 19F MRI cell tracking. Chem Commun. 2018;54(47):6000–6003. doi: 10.1039/C8CC02938E. PubMed DOI
Sjoblom J (1996) Clinical development of perfluorocarbon-based emulsions as red cell substitutes. In: Sjoblom J (ed) Emulsions and emulsion stability. Marcel Dekker, Inc, New York
Caravan P, Ellison JJ, McMurry TJ, Lauffer RB. Gadolinium(III) chelates as MRI contrast agents: structure, dynamics, and applications. Chem Rev. 1999;99(9):2293–2352. doi: 10.1021/cr980440x. PubMed DOI
Kislukhin AA, Xu HY, Adams SR, Narsinh KH, Tsien RY, Ahrens ET. Paramagnetic fluorinated nanoemulsions for sensitive cellular fluorine-19 magnetic resonance imaging. Nat Mater. 2016;15(6):662–668. doi: 10.1038/nmat4585. PubMed DOI PMC
Peterson KL, Srivastava K, Pierre VC. Fluorinated paramagnetic complexes: sensitive and responsive probes for magnetic resonance spectroscopy and imaging. Front Chem. 2018;6:160. doi: 10.3389/fchem.2018.00160. PubMed DOI PMC
Schmid F, Holtke C, Parker D, Faber C. Boosting F-19 MRI-SNR efficient detection of paramagnetic contrast agents using ultrafast sequences. Magn Reson Med. 2013;69(4):1056–1062. doi: 10.1002/mrm.24341. PubMed DOI
Yu M, Xie D, Phan KP, Enriquez JS, Luci JJ, Que EL. A Co-II complex for F-19 MRI-based detection of reactive oxygen species. Chem Commun. 2016;52(96):13885–13888. doi: 10.1039/C6CC08207F. PubMed DOI
Thorarinsdottir AE, Gaudette AI, Harris TD. Spin-crossover and high-spin iron(II) complexes as chemical shift F-19 magnetic resonance thermometers. Chem Sci. 2017;8(3):2448–2456. doi: 10.1039/C6SC04287B. PubMed DOI PMC
Blahut J, Hermann P, Galisova A, Herynek V, Cisarova I, Tosner Z, Kotek J. Nickel(II) complexes of N-CH2CF3 cyclam derivatives as contrast agents for F-19 magnetic resonance imaging. Dalton Trans. 2016;45(2):474–478. doi: 10.1039/C5DT04138D. PubMed DOI
Blahut J, Bernasek K, Galisova A, Herynek V, Cisarova I, Kotek J, Lang J, Matejkova S, Hermann P. Paramagnetic F-19 relaxation enhancement in nickel(II) complexes of N-trifluoroethyl cyclam derivatives and cell labeling for F-19 MRI. Inorg Chem. 2017;56(21):13337–13348. doi: 10.1021/acs.inorgchem.7b02119. PubMed DOI
Srivastava K, Weitz EA, Peterson KL, Marjanska M, Pierre VC. Fe- and Ln-DOTAm-F12 are effective paramagnetic fluorine contrast agents for MRI in water and blood. Inorg Chem. 2017;56(3):1546–1557. doi: 10.1021/acs.inorgchem.6b02631. PubMed DOI
Senanayake PK, Kenwright AM, Parker D, van der Hoorn SK. Responsive fluorinated lanthanide probes for F-19 magnetic resonance spectroscopy. Chem Commun. 2007;28:2923–2925. doi: 10.1039/b705844f. PubMed DOI
Martinisková M (2015) Contrast agents for 19F magnetic resonance imaging. Diploma Thesis, Faculty of Science, Charles University, Prague, Czech Republic
Kotkova Z, Pereira GA, Djanashvili K, Kotek J, Rudovsky J, Hermann P, Elst LV, Muller RN, Geraldes CFGC, Lukes I, Peters JA (2009) Lanthanide(III) complexes of phosphorus acid analogues of H4DOTA as model compounds for the evaluation of the second-sphere hydration. Eur J Inorg Chem (1):119–136
Rogosnitzky M, Branch S. Gadolinium-based contrast agent toxicity: a review of known and proposed mechanisms. Biometals. 2016;29(3):365–376. doi: 10.1007/s10534-016-9931-7. PubMed DOI PMC
Runge VM. Safety of the gadolinium-based contrast agents for magnetic resonance imaging, focusing in part on their accumulation in the brain and especially the dentate nucleus. Invest Radiol. 2016;51(5):273–279. PubMed
Forsterova M, Jandurova Z, Marques F, Gano L, Lubal P, Vanek J, Hermann P, Santos I. Chemical and biological evaluation of 153Sm and 166Ho complexes of 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetrakis(methylphosphonic acid monoethylester) (H4dotpOEt) J Inorg Biochem. 2008;102(7):1531–1540. doi: 10.1016/j.jinorgbio.2008.02.002. PubMed DOI
Jiang ZX, Feng Y, Yu YB. Fluorinated paramagnetic chelates as potential multi-chromic F-19 tracer agents. Chem Commun. 2011;47(25):7233–7235. doi: 10.1039/c1cc11150g. PubMed DOI PMC
Chalmers KH, Botta M, Parker D. Strategies to enhance signal intensity with paramagnetic fluorine-labelled lanthanide complexes as probes for F-19 magnetic resonance. Dalton Trans. 2011;40(4):904–913. doi: 10.1039/C0DT01232G. PubMed DOI
Chalmers KH, De Luca E, Hogg NHM, Kenwright AM, Kuprov I, Parker D, Botta M, Wilson JI, Blamire AM. Design principles and theory of paramagnetic fluorine-labeled lanthanide complexes as probes for F-19 magnetic resonance: a proof-of-concept study. Chem Eur J. 2010;16(1):134–148. doi: 10.1002/chem.200902300. PubMed DOI
Galisova A, Herynek V, Swider E, Sticova E, Patikova A, Kosinova L, Kriz J, Hajek M, Srinivas M, Jirak D. A Trimodal imaging platform for tracking viable transplanted pancreatic islets in vivo: F-19 MR, fluorescence, and bioluminescence imaging. Mol Imaging Biol. 2018 PubMed PMC
Gonzales C, Yoshihara HA, Dilek N, Leignadier J, Irving M, Mieville P, Helm L, Michielin O, Schwitter J. In-vivo detection and tracking of T cells in various organs in a melanoma tumor model by 19F-fluorine MRS/MRI. PLoS One. 2016;11(10):e0164557. doi: 10.1371/journal.pone.0164557. PubMed DOI PMC
Makela AV, Gaudet JM, Foster PJ. Quantifying tumor associated macrophages in breast cancer: a comparison of iron and fluorine-based MRI cell tracking. Sci Rep. 2017;7:42109. doi: 10.1038/srep42109. PubMed DOI PMC