Recent Advances in Metal-Organic Frameworks for Applications in Magnetic Resonance Imaging
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, přehledy
PubMed
36239348
PubMed Central
PMC10749454
DOI
10.1021/acsami.2c10272
Knihovny.cz E-zdroje
- Klíčová slova
- magnetic resonance imaging, metal−organic frameworks, multimodal imaging, nanomedicine, theranostics,
- MeSH
- ionty MeSH
- kontrastní látky chemie MeSH
- kovy chemie MeSH
- magnetická rezonanční tomografie MeSH
- porézní koordinační polymery * chemie MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- Názvy látek
- ionty MeSH
- kontrastní látky MeSH
- kovy MeSH
- porézní koordinační polymery * MeSH
Diagnostics is an important part of medical practice. The information required for diagnosis is typically collected by performing diagnostic tests, some of which include imaging. Magnetic resonance imaging (MRI) is one of the most widely used and effective imaging techniques. To improve the sensitivity and specificity of MRI, contrast agents are used. In this review, the usage of metal-organic frameworks (MOFs) and composite materials based on them as contrast agents for MRI is discussed. MOFs are crystalline porous coordination polymers. Due to their huge design variety and high density of metal ions, they have been studied as a highly promising class of materials for developing MRI contrast agents. This review highlights the most important studies and focuses on the progress of the field over the last five years. The materials are classified based on their design and structural properties into three groups: MRI-active MOFs, composite materials based on MOFs, and MRI-active compounds loaded in MOFs. Moreover, an overview of MOF-based materials for heteronuclear MRI including 129Xe and 19F MRI is given.
Zobrazit více v PubMed
Herzog H., Shah N. J.. Chapter 9: Introduction and Historical Overview. Hybrid MR-PET Imaging: Systems, Methods and Applications; The Royal Society of Chemistry, 2018; pp 203–213.
Padhani A. R.; Liu G.; Koh D. M.; Chenevert T. L.; Thoeny H. C.; Takahara T.; Dzik-Jurasz A.; Ross B. D.; Van Cauteren M.; Collins D.; Hammoud D. A.; Rustin G. J.; Taouli B.; Choyke P. L. Diffusion-weighted magnetic resonance imaging as a cancer biomarker: consensus and recommendations. Neoplasia 2009, 11, 102–125. 10.1593/neo.81328. PubMed DOI PMC
Werner E. J.; Datta A.; Jocher C. J.; Raymond K. N. High-Relaxivity MRI Contrast Agents: Where Coordination Chemistry Meets Medical Imaging. Angew. Chem., Int. Ed. 2008, 47, 8568–8580. 10.1002/anie.200800212. PubMed DOI
Ni D.; Bu W.; Ehlerding E. B.; Cai W.; Shi J. Engineering of inorganic nanoparticles as magnetic resonance imaging contrast agents. Chem. Soc. Rev. 2017, 46, 7438–7468. 10.1039/C7CS00316A. PubMed DOI PMC
Wahsner J.; Gale E. M.; Rodríguez-Rodríguez A.; Caravan P. Chemistry of MRI Contrast Agents: Current Challenges and New Frontiers. Chem. Rev. 2019, 119, 957–1057. 10.1021/acs.chemrev.8b00363. PubMed DOI PMC
Xiao Y. D.; Paudel R.; Liu J.; Ma C.; Zhang Z. S.; Zhou S. K. MRI contrast agents: Classification and application (Review). Int. J. Mol. Med. 2016, 38, 1319–1326. 10.3892/ijmm.2016.2744. PubMed DOI
Jeong Y.; Hwang H. S.; Na K. Theranostics and contrast agents for magnetic resonance imaging. Biomater. Res. 2018, 22, 20.10.1186/s40824-018-0130-1. PubMed DOI PMC
Furukawa H.; Cordova K. E.; O’Keeffe M.; Yaghi O. M. The Chemistry and Applications of Metal-Organic Frameworks. Science 2013, 341, 1230444.10.1126/science.1230444. PubMed DOI
Zhang X.; Chen Z.; Liu X.; Hanna S. L.; Wang X.; Taheri-Ledari R.; Maleki A.; Li P.; Farha O. K. A historical overview of the activation and porosity of metal–organic frameworks. Chem. Soc. Rev. 2020, 49, 7406–7427. 10.1039/D0CS00997K. PubMed DOI
Kirchon A.; Feng L.; Drake H. F.; Joseph E. A.; Zhou H.-C. From fundamentals to applications: a toolbox for robust and multifunctional MOF materials. Chem. Soc. Rev. 2018, 47, 8611–8638. 10.1039/C8CS00688A. PubMed DOI
Li H.; Wang K.; Sun Y.; Lollar C. T.; Li J.; Zhou H.-C. Recent advances in gas storage and separation using metal–organic frameworks. Mater. Today 2018, 21, 108–121. 10.1016/j.mattod.2017.07.006. DOI
Goh S. H.; Lau H. S.; Yong W. F. Metal–Organic Frameworks (MOFs)-Based Mixed Matrix Membranes (MMMs) for Gas Separation: A Review on Advanced Materials in Harsh Environmental Applications. Small 2022, 18, 2107536.10.1002/smll.202107536. PubMed DOI
Adil K.; Belmabkhout Y.; Pillai R. S.; Cadiau A.; Bhatt P. M.; Assen A. H.; Maurin G.; Eddaoudi M. Gas/vapour separation using ultra-microporous metal–organic frameworks: insights into the structure/separation relationship. Chem. Soc. Rev. 2017, 46, 3402–3430. 10.1039/C7CS00153C. PubMed DOI
Qian Q.; Asinger P. A.; Lee M. J.; Han G.; Mizrahi Rodriguez K.; Lin S.; Benedetti F. M.; Wu A. X.; Chi W. S.; Smith Z. P. MOF-Based Membranes for Gas Separations. Chem. Rev. 2020, 120, 8161–8266. 10.1021/acs.chemrev.0c00119. PubMed DOI
Guo J.; Qin Y.; Zhu Y.; Zhang X.; Long C.; Zhao M.; Tang Z. Metal–organic frameworks as catalytic selectivity regulators for organic transformations. Chem. Soc. Rev. 2021, 50, 5366–5396. 10.1039/D0CS01538E. PubMed DOI
Bavykina A.; Kolobov N.; Khan I. S.; Bau J. A.; Ramirez A.; Gascon J. Metal–Organic Frameworks in Heterogeneous Catalysis: Recent Progress, New Trends, and Future Perspectives. Chem. Rev. 2020, 120, 8468–8535. 10.1021/acs.chemrev.9b00685. PubMed DOI
Koo W.-T.; Jang J.-S.; Kim I.-D. Metal-Organic Frameworks for Chemiresistive Sensors. Chem. 2019, 5, 1938–1963. 10.1016/j.chempr.2019.04.013. DOI
Li H.-Y.; Zhao S.-N.; Zang S.-Q.; Li J. Functional metal–organic frameworks as effective sensors of gases and volatile compounds. Chem. Soc. Rev. 2020, 49, 6364–6401. 10.1039/C9CS00778D. PubMed DOI
Rojas S.; Arenas-Vivo A.; Horcajada P. Metal-organic frameworks: A novel platform for combined advanced therapies. Coord. Chem. Rev. 2019, 388, 202–226. 10.1016/j.ccr.2019.02.032. DOI
Osterrieth J. W. M.; Fairen-Jimenez D. Metal–Organic Framework Composites for Theragnostics and Drug Delivery Applications. Biotechnol. J. 2021, 16, 2000005.10.1002/biot.202000005. PubMed DOI
Yang J.; Yang Y.-W. Metal–Organic Frameworks for Biomedical Applications. Small 2020, 16, 1906846.10.1002/smll.201906846. PubMed DOI
Cai W.; Chu C.-C.; Liu G.; Wang Y.-X. J. Metal–Organic Framework-Based Nanomedicine Platforms for Drug Delivery and Molecular Imaging. Small 2015, 11, 4806–4822. 10.1002/smll.201500802. PubMed DOI
Mendes R. F.; Figueira F.; Leite J. P.; Gales L.; Almeida Paz F. A. Metal–organic frameworks: a future toolbox for biomedicine?. Chem. Soc. Rev. 2020, 49, 9121–9153. 10.1039/D0CS00883D. PubMed DOI
Liang W.; Wied P.; Carraro F.; Sumby C. J.; Nidetzky B.; Tsung C.-K.; Falcaro P.; Doonan C. J. Metal–Organic Framework-Based Enzyme Biocomposites. Chem. Rev. 2021, 121, 1077–1129. 10.1021/acs.chemrev.0c01029. PubMed DOI
Demir Duman F.; Forgan R. S. Applications of nanoscale metal–organic frameworks as imaging agents in biology and medicine. J. Mater. Chem. B 2021, 9, 3423–3449. 10.1039/D1TB00358E. PubMed DOI
Wang H.-S. Metal–organic frameworks for biosensing and bioimaging applications. Coord. Chem. Rev. 2017, 349, 139–155. 10.1016/j.ccr.2017.08.015. DOI
Peller M.; Böll K.; Zimpel A.; Wuttke S. Metal–organic framework nanoparticles for magnetic resonance imaging. Inorg. Chem. Front. 2018, 5, 1760–1779. 10.1039/C8QI00149A. DOI
Peller M.; Lanza A.; Wuttke S. MRI-Active Metal-Organic Frameworks: Concepts for the Translation from Lab to Clinic. Adv. Therap. 2021, 4, 2100067.10.1002/adtp.202100067. DOI
Worthoff W. A., Yun S. D., Shah N. J.. Chapter 1: Introduction to Magnetic Resonance Imaging. Hybrid MR-PET Imaging: Systems, Methods and Applications; The Royal Society of Chemistry, 2018; pp 1–44.
Bernstein M. A., King K. F., Zhou X. J.. Handbook of MRI Pulse Sequences; Elsevier: Oxford, 2004; pp 267–297.
Hahn E. L. Spin Echoes. Phys. Rev. 1950, 80, 580–594. 10.1103/PhysRev.80.580. DOI
Hennig J.; Friedburg H. Clinical applications and methodological developments of the RARE technique. Magn. Reson. Imaging 1988, 6, 391–395. 10.1016/0730-725X(88)90475-4. PubMed DOI
Frahm J.; Haase A.; Matthaei D. Rapid NMR imaging of dynamic processes using the FLASH technique. Magn. Reson. Med. 1986, 3, 321–327. 10.1002/mrm.1910030217. PubMed DOI
Elster A. D. Gradient-echo MR imaging: techniques and acronyms. Radiology 1993, 186, 1–8. 10.1148/radiology.186.1.8416546. PubMed DOI
Taylor A.; Wilson K. M.; Murray P.; Fernig D. G.; Lévy R. Long-term tracking of cells using inorganic nanoparticles as contrast agents: are we there yet?. Chem. Soc. Rev. 2012, 41, 2707–2717. 10.1039/c2cs35031a. PubMed DOI
Kolouchova K.; Jirak D.; Groborz O.; Sedlacek O.; Ziolkowska N.; Vit M.; Sticova E.; Galisova A.; Svec P.; Trousil J.; Hajek M.; Hruby M. Implant-forming polymeric 19F MRI-tracer with tunable dissolution. J. Controlled Release 2020, 327, 50–60. 10.1016/j.jconrel.2020.07.026. PubMed DOI
Gálisová A.; Herynek V.; Swider E.; Sticová E.; Pátiková A.; Kosinová L.; Kříž J.; Hájek M.; Srinivas M.; Jirak D. A Trimodal Imaging Platform for Tracking Viable Transplanted Pancreatic Islets In Vivo: F-19 MR, Fluorescence, and Bioluminescence Imaging. Mol. Imaging Biol. 2019, 21, 454–464. 10.1007/s11307-018-1270-3. PubMed DOI PMC
Jirak D.; Kriz J.; Strzelecki M.; Yang J.; Hasilo C.; White D. J.; Foster P. J. Monitoring the survival of islet transplants by MRI using a novel technique for their automated detection and quantification. Magn. Reson. Mater. Phys. Biol. Med. 2009, 22, 257–265. 10.1007/s10334-009-0172-4. PubMed DOI
Reeßing F.; Stuart M. C. A.; Samplonius D. F.; Diercky R. A. J. O.; Feringa B. L.; Helfrich W.; Szymanski W. A light-responsive liposomal agent for MRI contrast enhancement and monitoring of cargo delivery. Chem. Commun. 2019, 55, 10784–10787. 10.1039/C9CC05516A. PubMed DOI
Caravan P.; Ellison J. J.; McMurry T. J.; Lauffer R. B. Gadolinium(III) Chelates as MRI Contrast Agents: Structure, Dynamics, and Applications. Chem. Rev. 1999, 99, 2293–2352. 10.1021/cr980440x. PubMed DOI
Weinmann H. J.; Ebert W.; Misselwitz B.; Schmitt-Willich H. Tissue-specific MR contrast agents. Eur. J. Radiol. 2003, 46, 33–44. 10.1016/S0720-048X(02)00332-7. PubMed DOI
Bottrill M.; Kwok L.; Long N. J. Lanthanides in magnetic resonance imaging. Chem. Soc. Rev. 2006, 35, 557–571. 10.1039/b516376p. PubMed DOI
Rohrer M.; Bauer H.; Mintorovitch J.; Requardt M.; Weinmann H.-J. Comparison of magnetic properties of MRI contrast media solutions at different magnetic field strengths. Invest. Radiol. 2005, 40, 715–724. 10.1097/01.rli.0000184756.66360.d3. PubMed DOI
Antonelli A.; Sfara C.; Battistelli S.; Canonico B.; Arcangeletti M.; Manuali E.; Salamida S.; Papa S.; Magnani M. New Strategies to Prolong the In Vivo Life Span of Iron-Based Contrast Agents for MRI. PLoS One 2013, 8, e78542.10.1371/journal.pone.0078542. PubMed DOI PMC
Coroiu I. Relaxivities of different superparamagnetic particles for application in NMR tomography. J. Magn. Magn. Mater. 1999, 201, 449–452. 10.1016/S0304-8853(99)00025-6. DOI
Huh Y.-M.; Jun Y.-W.; Song H.-T.; Kim S.; Choi J.-S.; Lee J.-H.; Yoon S.; Kim K.-S.; Shin J.-S.; Suh J.-S.; Cheon J. In Vivo Magnetic Resonance Detection of Cancer by Using Multifunctional Magnetic Nanocrystals. J. Am. Chem. Soc. 2005, 127, 12387–12391. 10.1021/ja052337c. PubMed DOI
Nounou M. M.; El-Khordagui L. K.; Khalafallah N. A.; Khalil S. A. In vitro release of hydrophilic and hydrophobic drugs from liposomal dispersions and gels. Acta Pharma 2006, 56, 311–324. PubMed
Washington C. Drug release from microdisperse systems: a critical review. Int. J. Pharm. 1990, 58, 1–12. 10.1016/0378-5173(90)90280-H. DOI
Desreux J. F., Gilsoul D.. Chemical synthesis of paramagnetic complexes. Trends in contrast media; Springer Verlag: Heidelberg, 1999; pp 161–169.
Idee J.-M.; Port M.; Raynal I.; Schaefer M.; Greneur S. L.; Corot C. Clinical and biological consequences of transmetallation induced by contrast agents for magnetic resonance imaging: a review. Fundam. Clin. Pharmacol. 2006, 20, 563–576. 10.1111/j.1472-8206.2006.00447.x. PubMed DOI
Morcos S. K. Nephrogenic systemic fibrosis following the administration of extracellular gadolinium based contrast agents: is the stability of the contrast agent molecule an important factor in the pathogenesis of this condition?. Br. J. Radiol. 2007, 80, 73–76. 10.1259/bjr/17111243. PubMed DOI
Marckmann P.; Skov L.; Rossen K.; Thomsen H. S. Clinical manifestation of gadodiamide-related nephrogenic systemic fibrosis. Clin. Nephrol. 2008, 69, 161–168. 10.5414/CNP69161. PubMed DOI
Bulte J. W.; Kraitchman D. L. Iron oxide MR contrast agents for molecular and cellular imaging. NMR Biomed. 2004, 17, 484–499. 10.1002/nbm.924. PubMed DOI
Kedziorek D. A.; Muja N.; Walczak P.; Ruiz-Cabello J.; Gilad A. A.; Jie C. C.; Bulte J. W. Gene expression profiling reveals early cellular responses to intracellular magnetic labeling with superparamagnetic iron oxide nanoparticles. Magn. Reson. Med. 2010, 63, 1031–1043. 10.1002/mrm.22290. PubMed DOI PMC
Lewinski N.; Colvin V.; Drezek R. Cytotoxicity of nanoparticles. Small 2008, 4, 26–49. 10.1002/smll.200700595. PubMed DOI
Jiráková K.; Moskvin M.; Machová U. L.; Rössner P.; Elzeinová F.; Chudíčková M.; Jirák D.; Ziolkowska N.; Horák D.; Kubinová Š.; Jendelová P. The negative effect of magnetic nanoparticles with ascorbic acid on peritoneal macrophages. Neurochem. Res. 2020, 45, 159–170. 10.1007/s11064-019-02790-9. PubMed DOI
Li L.; Jiang W.; Luo K.; Song H.; Lan F.; Wu Y.; Gu Z. Superparamagnetic Iron Oxide Nanoparticles as MRI contrast agents for Non-invasive Stem Cell Labeling and Tracking. Theranostics 2013, 3, 595–615. 10.7150/thno.5366. PubMed DOI PMC
Rieter W. J.; Taylor K. M. L.; An H.; Lin W.; Lin W. Nanoscale Metal–Organic Frameworks as Potential Multimodal Contrast Enhancing Agents. J. Am. Chem. Soc. 2006, 128, 9024–9025. 10.1021/ja0627444. PubMed DOI PMC
Qin L.; Sun Z.-Y.; Cheng K.; Liu S.-W.; Pang J.-X.; Xia L.-M.; Chen W.-H.; Cheng Z.; Chen J.-X. Zwitterionic Manganese and Gadolinium Metal–Organic Frameworks as Efficient Contrast Agents for in Vivo Magnetic Resonance Imaging. ACS Appl. Mater. Interfaces 2017, 9, 41378–41386. 10.1021/acsami.7b09608. PubMed DOI
Zhang H.; Shang Y.; Li Y.-H.; Sun S.-K.; Yin X.-B. Smart Metal–Organic Framework-Based Nanoplatforms for Imaging-Guided Precise Chemotherapy. ACS Appl. Mater. Interfaces 2019, 11, 1886–1895. 10.1021/acsami.8b19048. PubMed DOI
Tian C.; Zhu L.; Lin F.; Boyes S. G. Poly(acrylic acid) Bridged Gadolinium Metal–Organic Framework–Gold Nanoparticle Composites as Contrast Agents for Computed Tomography and Magnetic Resonance Bimodal Imaging. ACS Appl. Mater. Interfaces 2015, 7, 17765–17775. 10.1021/acsami.5b03998. PubMed DOI PMC
Wang G. D.; Chen H.; Tang W.; Lee D.; Xie J. Gd and Eu Co-Doped Nanoscale Metal–Organic Framework as a T1–T2 Dual-Modal Contrast Agent for Magnetic Resonance Imaging. Tomography 2016, 2, 179–187. 10.18383/j.tom.2016.00226. PubMed DOI PMC
Liu Y.; Zhang C.; Xu C.; Lin C.; Sun K.; Wang J.; Chen X.; Li L.; Whittaker A. K.; Xu H.-B. Controlled synthesis of up-conversion luminescent Gd/Tm-MOFs for pH-responsive drug delivery and UCL/MRI dual-modal imaging. Dalton Trans. 2018, 47, 11253–11263. 10.1039/C8DT02436G. PubMed DOI
Chen Y.; Liu W.; Shang Y.; Cao P.; Cui J.; Li Z.; Yin X.; Li Y. Folic acid-nanoscale gadolinium-porphyrin metal-organic frameworks: Fluorescence and magnetic resonance dual-modality imaging and photodynamic therapy in hepatocellular carcinoma. Int. J. Nanomedicine 2019, 14, 57–74. 10.2147/IJN.S177880. PubMed DOI PMC
Xia J.; Xue Y.; Lei B.; Xu L.; Sun M.; Li N.; Zhao H.; Wang M.; Luo M.; Zhang C.; Huang B.; Du Y.; Yan C.-H. Multimodal channel cancer chemotherapy by 2D functional gadolinium metal–organic framework. Natl. Sci. Rev. 2021, 8, nwaa221.10.1093/nsr/nwaa221. PubMed DOI PMC
Zhang S.-Y.; Wang Z.-Y.; Gao J.; Wang K.; Gianolio E.; Aime S.; Shi W.; Zhou Z.; Cheng P.; Zaworotko M. J. A Gadolinium(III) Zeolite-like Metal-Organic Framework-Based Magnetic Resonance Thermometer. Chem. 2019, 5, 1609–1618. 10.1016/j.chempr.2019.04.010. DOI
Taylor K. M. L.; Rieter W. J.; Lin W. Manganese-Based Nanoscale Metal–Organic Frameworks for Magnetic Resonance Imaging. J. Am. Chem. Soc. 2008, 130, 14358–14359. 10.1021/ja803777x. PubMed DOI
Pan Y.-B.; Wang S.; He X.; Tang W.; Wang J.; Shao A.; Zhang J. A combination of glioma in vivo imaging and in vivo drug delivery by metal–organic framework based composite nanoparticles. J. Mater. Chem. B 2019, 7, 7683–7689. 10.1039/C9TB01651A. PubMed DOI
Zhang H.; Tian X.-T.; Shang Y.; Li Y.-H.; Yin X.-B. Theranostic Mn-Porphyrin Metal–Organic Frameworks for Magnetic Resonance Imaging-Guided Nitric Oxide and Photothermal Synergistic Therapy. ACS Appl. Mater. Interfaces 2018, 10, 28390–28398. 10.1021/acsami.8b09680. PubMed DOI
He M.; Chen Y.; Tao C.; Tian Q.; An L.; Lin J.; Tian Q.; Yang H.; Yang S. Mn–Porphyrin-Based Metal–Organic Framework with High Longitudinal Relaxivity for Magnetic Resonance Imaging Guidance and Oxygen Self-Supplementing Photodynamic Therapy. ACS Appl. Mater. Interfaces 2019, 11, 41946–41956. 10.1021/acsami.9b15083. PubMed DOI
Bao J.; Zu X.; Wang X.; Li J.; Fan D.; Shi Y.; Xia Q.; Cheng J. Multifunctional Hf/Mn-TCPP Metal-Organic Framework Nanoparticles for Triple-Modality Imaging-Guided PTT/RT Synergistic Cancer Therapy. Int. J. Nanomedicine 2020, 15, 7687–7702. 10.2147/IJN.S267321. PubMed DOI PMC
Wan S.-S.; Cheng Q.; Zeng X.; Zhang X.-Z. A Mn(III)-Sealed Metal–Organic Framework Nanosystem for Redox-Unlocked Tumor Theranostics. ACS Nano 2019, 13, 6561–6571. 10.1021/acsnano.9b00300. PubMed DOI
Horcajada P.; Chalati T.; Serre C.; Gillet B.; Serbie C.; Baati T.; Eubank J. F.; Heurtaux D.; Clayette P.; Kreuz C.; Chang J.-S.; Hwang Y. K.; Marsaud V.; Bories P.-N.; Cynober L.; Gil S.; Férey G.; Couvreur P.; Gref R. Porous metal–organic-framework nanoscale carriers as a potential platform for drug delivery and imaging. Nat. Mater. 2010, 9, 172–178. 10.1038/nmat2608. PubMed DOI
Hirschle P.; Hirschle C.; Böll K.; Döblinger M.; Höhn M.; Tuffnell J. M.; Ashling C. W.; Keen D. A.; Bennett T. D.; Rädler J. O.; Wagner E.; Peller M.; Lächelt U.; Wuttke S. Tuning the Morphological Appearance of Iron(III) Fumarate: Impact on Material Characteristics and Biocompatibility. Chem. Mater. 2020, 32, 2253–2263. 10.1021/acs.chemmater.9b03662. DOI
Dehghani S.; Alam N. R.; Shahriarian S.; Mortezazadeh T.; Haghgoo S.; Golmohamadpour A.; Majidi B.; Khoobi M. The effect of size and aspect ratio of Fe-MIL-88B-NH2 metal-organic frameworks on their relaxivity and contrast enhancement properties in MRI: in vitro and in vivo studies. J. Nanopart. Res. 2018, 20, 278.10.1007/s11051-018-4376-2. DOI
Meng J.; Chen X.; Tian Y.; Li Z.; Zheng Q. Nanoscale Metal–Organic Frameworks Decorated with Graphene Oxide for Magnetic Resonance Imaging Guided Photothermal Therapy. Chem. Eur. J. 2017, 23, 17521–17530. 10.1002/chem.201702573. PubMed DOI
Zhu W.; Liu Y.; Yang Z.; Zhang L.; Xiao L.; Liu P.; Wang J.; Yi C.; Xu Z.; Ren J. Albumin/sulfonamide stabilized iron porphyrin metal organic framework nanocomposites: targeting tumor hypoxia by carbonic anhydrase IX inhibition and T1–T2 dual mode MRI guided photodynamic/photothermal therapy. J. Mater. Chem. B 2018, 6, 265–276. 10.1039/C7TB02818K. PubMed DOI
Li Y.; Tang J.; He L.; Liu Y.; Liu Y.; Chen C.; Tang Z. Core–Shell Upconversion Nanoparticle@Metal–Organic Framework Nanoprobes for Luminescent/Magnetic Dual-Mode Targeted Imaging. Adv. Mater. 2015, 27, 4075–4080. 10.1002/adma.201501779. PubMed DOI
Chen X.; Zhang M.; Li S.; Li L.; Zhang L.; Wang T.; Yu M.; Mou Z.; Wang C. Facile synthesis of polypyrrole@metal–organic framework core–shell nanocomposites for dual-mode imaging and synergistic chemo-photothermal therapy of cancer cells. J. Mater. Chem. B 2017, 5, 1772–1778. 10.1039/C6TB03218D. PubMed DOI
Wang C.; Jia X.; Zhen W.; Zhang M.; Jiang X. Small-Sized MOF-Constructed Multifunctional Diagnosis and Therapy Platform for Tumor. ACS Biomater. Sci. Eng. 2019, 5, 4435–4441. 10.1021/acsbiomaterials.9b00813. PubMed DOI
Zhang Y.; Liu C.; Wang F.; Liu Z.; Ren J.; Qu X. Metal–organic-framework-supported immunostimulatory oligonucleotides for enhanced immune response and imaging. Chem. Commun. 2017, 53, 1840–1843. 10.1039/C6CC09280B. PubMed DOI
Liu X.; Zhu X.; Qi X.; Meng X.; Xu K. Co-Administration of iRGD with Sorafenib-Loaded Iron-Based Metal-Organic Framework as a Targeted Ferroptosis Agent for Liver Cancer Therapy. Int. J. Nanomedicine 2021, 16, 1037–1050. 10.2147/IJN.S292528. PubMed DOI PMC
Shang W.; Peng L.; Guo P.; Hui H.; Yang X.; Tian J. Metal–Organic Frameworks as a Theranostic Nanoplatform for Combinatorial Chemophotothermal Therapy Adapted to Different Administration. ACS Biomater. Sci. Eng. 2020, 6, 1008–1016. 10.1021/acsbiomaterials.9b01075. PubMed DOI
Shang W.; Zeng C.; Du Y.; Hui H.; Liang X.; Chi C.; Wang K.; Wang Z.; Tian J. Core–Shell Gold Nanorod@Metal–Organic Framework Nanoprobes for Multimodality Diagnosis of Glioma. Adv. Mater. 2017, 29, 1604381.10.1002/adma.201604381. PubMed DOI
Hatakeyama W.; Sanchez T. J.; Rowe M. D.; Serkova N. J.; Liberatore M. W.; Boyes S. G. Synthesis of Gadolinium Nanoscale Metal–Organic Framework with Hydrotropes: Manipulation of Particle Size and Magnetic Resonance Imaging Capability. ACS Appl. Mater. Interfaces 2011, 3, 1502–1510. 10.1021/am200075q. PubMed DOI
Icten O. Preparation of Gadolinium-Based Metal-Organic Frameworks and the Modification with Boron-10 Isotope: A Potential Dual Agent for MRI and Neutron Capture Therapy Applications. ChemistrySelect 2021, 6, 1900–1910. 10.1002/slct.202100438. DOI
Xi D.; Dong S.; Meng X.; Lu Q.; Meng L.; Ye J. Gold nanoparticles as computerized tomography (CT) contrast agents. RSC Adv. 2012, 2, 12515–12524. 10.1039/c2ra21263c. DOI
Odéen H.; Parker D. L. Magnetic resonance thermometry and its biological applications - Physical principles and practical considerations. Prog. Nucl. Magn. Reson. Spectrosc. 2019, 110, 34–61. 10.1016/j.pnmrs.2019.01.003. PubMed DOI PMC
Lin C.; Chi B.; Xu C.; Zhang C.; Tian F.; Xu Z.; Li L.; Whittaker A. K.; Wang J. Multifunctional drug carrier on the basis of 3d–4f Fe/La-MOFs for drug delivery and dual-mode imaging. J. Mater. Chem. B 2019, 7, 6612–6622. 10.1039/C9TB01509D. PubMed DOI
Tamames-Tabar C.; Cunha D.; Imbuluzqueta E.; Ragon F.; Serre C.; Blanco-Prieto M. J.; Horcajada P. Cytotoxicity of nanoscaled metal–organic frameworks. J. Mater. Chem. B 2014, 2, 262–271. 10.1039/C3TB20832J. PubMed DOI
Wyszogrodzka-Gawel G.; Dorozynski P.; Giovagnoli S.; Strzempek W.; Pesta E.; Weglarz W. P.; Gil B.; Menaszek E.; Kulinowski P. An Inhalable Theranostic System for Local Tuberculosis Treatment Containing an Isoniazid Loaded Metal Organic Framework Fe-MIL-101-NH2-From Raw MOF to Drug Delivery System. Pharmaceutics 2019, 11, 687.10.3390/pharmaceutics11120687. PubMed DOI PMC
Ebrahimpour A.; Alam N. R.; Abdolmaleki P.; Hajipour-Vrdom B.; Tirgar F.; Ebrahimi T.; Khoobi M. Magnetic Metal–Organic Framework Based on Zinc and 5-Aminolevulinic Acid: MR Imaging and Brain Tumor Therapy. J. Inorg. Organomet. Polym. 2021, 31, 1208–1216. 10.1007/s10904-020-01782-5. DOI
Sene S.; Marcos-Almaraz M. T.; Menguy N.; Scola J.; Volatron J.; Rouland R.; Greneche J.-M.; Miraux S.; Menet C.; Guillou N.; Gazeau F.; Serre C.; Horcjada P.; Steunou N. Maghemite-nanoMIL-100(Fe) Bimodal Nanovector as a Platform for Image-Guided Therapy. Chem. 2017, 3, 303–322. 10.1016/j.chempr.2017.06.007. DOI
He M.; Zhou J.; Chen J.; Zheng F.; Wang D.; Shi R.; Guo Z.; Wang H.; Chen Q. Fe3O4@carbon@zeolitic imidazolate framework-8 nanoparticles as multifunctional pH-responsive drug delivery vehicles for tumor therapy in vivo. J. Mater. Chem. B 2015, 3, 9033–9042. 10.1039/C5TB01830G. PubMed DOI
Zhao H.-X.; Zou Q.; Sun S.-K.; Yu C.; Zhang X.; Li R.-J.; Fu Y.-Y. Theranostic metal–organic framework core–shell composites for magnetic resonance imaging and drug delivery. Chem. Sci. 2016, 7, 5294–5301. 10.1039/C6SC01359G. PubMed DOI PMC
Xu C.; Zhang C.; Wang Y.; Li L.; Li L.; Whittaker A. K. Controllable synthesis of a novel magnetic core–shell nanoparticle for dual-modal imaging and pH-responsive drug delivery. Nanotechnology 2017, 28, 495101.10.1088/1361-6528/aa929b. PubMed DOI
Ettlinger R.; Moreno N.; Ziółkowska N.; Ullrich A.; Krug von Nidda H.-A.; Jirak D.; Kerl K.; Bunzen H. In Vitro Studies of Fe3O4-ZIF-8 Core–Shell Nanoparticles Designed as Potential Theragnostics. Part. Part. Syst. Charact. 2020, 37, 2000185.10.1002/ppsc.202000185. DOI
Wu M.-X.; Gao J.; Wang F.; Yang J.; Song N.; Jin X.; Mi P.; Tian J.; Luo J.; Liang F.; Yang Y.-W. Multistimuli Responsive Core–Shell Nanoplatform Constructed from Fe3O4@MOF Equipped with Pillar[6]arene Nanovalves. Small 2018, 14, 1704440.10.1002/smll.201704440. PubMed DOI
Yang J.-C.; Chen Y.; Li Y.-H.; Yin X.-B. Magnetic Resonance Imaging-Guided Multi-Drug Chemotherapy and Photothermal Synergistic Therapy with pH and NIR-Stimulation Release. ACS Appl. Mater. Interfaces 2017, 9, 22278–22288. 10.1021/acsami.7b06105. PubMed DOI
Wang D.; Zhou J.; Shi R.; Wu H.; Chen R.; Duan B.; Xia G.; Xu P.; Wang H.; Zhou S.; Wang C.; Wang H.; Guo Z.; Chen Q. Biodegradable Core-shell Dual-Metal-Organic-Frameworks Nanotheranostic Agent for Multiple Imaging Guided Combination Cancer Therapy. Theranostics 2017, 7, 4605–4617. 10.7150/thno.20363. PubMed DOI PMC
Gao X.; Ji G.; Cui R.; Liu Z. Controlled synthesis of MOFs@MOFs core-shell structure for photodynamic therapy and magnetic resonance imaging. Mater. Lett. 2019, 237, 197–199. 10.1016/j.matlet.2018.11.097. DOI
Xu M.; Chi B.; Han Z.; He Y.; Tian F.; Xu Z.; Li L.; Wang J. Controllable synthesis of rare earth (Gd3+,Tm3+) doped Prussian blue for multimode imaging guided synergistic treatment. Dalton Trans. 2020, 49, 12327–12337. 10.1039/D0DT02152K. PubMed DOI
Chen Y.; Li Z.-H.; Pan P.; Hu J.-J.; Cheng S.-X.; Zhang X.-Z. Tumor-Microenvironment-Triggered Ion Exchange of a Metal-Organic Framework Hybrid for Multimodal Imaging and Synergistic Therapy of Tumors. Adv. Mater. 2020, 32, 2001452.10.1002/adma.202001452. PubMed DOI
Liu Y.; Gong C. S.; Lin L.; Zhou Z.; Liu Y.; Yang Z.; Shen Z.; Yu G.; Wang Z.; Wang S.; Ma Y.; Fan W.; He L.; Niu G.; Dai Y.; Chen X. Core-shell metal-organic frameworks with fluorescence switch to trigger an enhanced photodynamic therapy. Theranostics 2019, 9, 2791–2799. 10.7150/thno.34740. PubMed DOI PMC
Wang Z.; Liu B.; Sun Q.; Dong S.; Kuang Y.; Dong Y.; He F.; Gai S.; Yang P. Fusiform-Like Copper(II)-Based Metal–Organic Framework through Relief Hypoxia and GSH-Depletion Co-Enhanced Starvation and Chemodynamic Synergetic Cancer Therapy. ACS Appl. Mater. Interfaces 2020, 12, 17254–17267. 10.1021/acsami.0c01539. PubMed DOI
Li S.-Y.; Zhao L.-P.; Zheng R.-R.; Fan G.-L.; Liu L.-S.; Zhou X.; Chen X.-T.; Qiu X.-Z.; Yu X.-Y.; Cheng H. Tumor Microenvironment Adaptable Nanoplatform for O2 Self-Sufficient Chemo/Photodynamic Combination Therapy. Part. Part. Syst. Charact. 2020, 37, 1900496.10.1002/ppsc.201900496. DOI
Huang S.; Zhu W.; Zhang F.; Chen G.; Kou X.; Yang X.; Ouyang G.; Shen J. Silencing of Pyruvate Kinase M2 via a Metal–Organic Framework Based Theranostic Gene Nanomedicine for Triple-Negative Breast Cancer Therapy. ACS Appl. Mater. Interfaces 2021, 13, 56972–56987. 10.1021/acsami.1c18053. PubMed DOI
Zhu Y.; Xin N.; Qiao Z.; Chen S.; Zeng L.; Zhang Y.; Wie D.; Sun J.; Fan H. Bioactive MOFs Based Theranostic Agent for Highly Effective Combination of Multimodal Imaging and Chemo-Phototherapy. Adv. Healthcare Mater. 2020, 9, 2000205.10.1002/adhm.202000205. PubMed DOI
Pu Y.; Zhu Y.; Qiao Z.; Xin N.; Chen S.; Sun J.; Jin R.; Nie Y.; Fan H. A Gd-doped polydopamine (PDA)-based theranostic nanoplatform as a strong MR/PA dual-modal imaging agent for PTT/PDT synergistic therapy. J. Mater. Chem. B 2021, 9, 1846–1857. 10.1039/D0TB02725A. PubMed DOI
Qin Y.-T.; Peng H.; He X.-W.; Li W.-Y.; Zhang Y.-K. pH-Responsive Polymer-Stabilized ZIF-8 Nanocomposites for Fluorescence and Magnetic Resonance Dual-Modal Imaging-Guided Chemo-/Photodynamic Combinational Cancer Therapy. ACS Appl. Mater. Interfaces 2019, 11, 34268–34281. 10.1021/acsami.9b12641. PubMed DOI
Jia M.; Yang X.; Chen Y.; He M.; Zhou W.; Lin J.; An L.; Yang S. Grafting of Gd-DTPA onto MOF-808 to enhance MRI performance for guiding photothermal therapy. J. Mater. Chem. B 2021, 9, 8631–8638. 10.1039/D1TB01596F. PubMed DOI
McLeod S. M.; Robison L.; Parigi G.; Olszewski A.; Drout R. J.; Gong X.; Islamoglu T.; Luchinat C.; Farha O. K.; Meade T. J. Maximizing Magnetic Resonance Contrast in Gd(III) Nanoconjugates: Investigation of Proton Relaxation in Zirconium Metal–Organic Frameworks. ACS Appl. Mater. Interfaces 2020, 12, 41157–41166. 10.1021/acsami.0c13571. PubMed DOI
Aghayi-Anaraki M.; Safarifard V. Fe3O4@MOF Magnetic Nanocomposites: Synthesis and Applications. Eur. J. Inorg. Chem. 2020, 20, 1916–1937. 10.1002/ejic.202000012. DOI
Maeda H. The enhanced permeability and retention (EPR) effect in tumor vasculature: the key role of tumor-selective macromolecular drug targeting. Adv. Enzyme Regul. 2001, 41, 189–207. 10.1016/S0065-2571(00)00013-3. PubMed DOI
Sönksen M.; Kerl K.; Bunzen H. Current status and future prospects of nanomedicine for arsenic trioxide delivery to solid tumors. Med. Res. Rev. 2022, 42, 374–398. 10.1002/med.21844. PubMed DOI
Shokouhimehr M.; Soehnlen E. S.; Hao J.; Griswold M.; Flask C.; Fan X.; Basilion J. P.; Basu S.; Huang S. D. Dual purpose Prussian blue nanoparticles for cellular imaging and drug delivery: a new generation of T1-weighted MRI contrast and small molecule delivery agents. J. Mater. Chem. 2010, 20, 5251–5259. 10.1039/b923184f. DOI
Zhou T.; Liang X.; Wang P.; Hu Y.; Qi Y.; Jin Y.; Du Y.; Fang C.; Tian J. A Hepatocellular Carcinoma Targeting Nanostrategy with Hypoxia-Ameliorating and Photothermal Abilities that, Combined with Immunotherapy, Inhibits Metastasis and Recurrence. ACS Nano 2020, 14, 12679–12696. 10.1021/acsnano.0c01453. PubMed DOI
Samiei Foroushani M.; Zahmatkeshan A.; Arkaban H.; Karimi Shervedani R.; Kefayat A. A drug delivery system based on nanocomposites constructed from metal-organic frameworks and Mn3O4 nanoparticles: Preparation and physicochemical characterization for BT-474 and MCF-7 cancer cells. Colloids Surf. B: Biointerfaces 2021, 202, 111712.10.1016/j.colsurfb.2021.111712. PubMed DOI
Yin S.-Y.; Song G.; Yang Y.; Zhao Y.; Wang P.; Zhu L.-M.; Yin X.; Zhang X.-B. Persistent Regulation of Tumor Microenvironment via Circulating Catalysis of MnFe2O4@Metal–Organic Frameworks for Enhanced Photodynamic Therapy. Adv. Funct. Mater. 2019, 29, 1901417.10.1002/adfm.201901417. DOI
Cai X.; Zhu Q.; Zeng Y.; Zeng Q.; Chen X.; Zhan Y. Manganese Oxide Nanoparticles As MRI Contrast Agents In Tumor Multimodal Imaging And Therapy. Int. J. Nanomedicine 2019, 14, 8321–8344. 10.2147/IJN.S218085. PubMed DOI PMC
Tian X.-T.; Cao P.-P.; Zhang H.; Li Y.-H.; Yin X.-B. GSH-activated MRI-guided enhanced photodynamic- and chemo-combination therapy with a MnO2-coated porphyrin metal organic framework. Chem. Commun. 2019, 55, 6241–6244. 10.1039/C9CC01957J. PubMed DOI
Zhang D.; Ye Z.; Wei L.; Luo H.; Xiao L. Cell Membrane-Coated Porphyrin Metal–Organic Frameworks for Cancer Cell Targeting and O2-Evolving Photodynamic Therapy. ACS Appl. Mater. Interfaces 2019, 11, 39594–39602. 10.1021/acsami.9b14084. PubMed DOI
Fan B.; Xu S.; Wei Y.; Liu Z. Progresses of hyperpolarized 129Xe NMR application in porous materials and catalysis. Magn. Reson. Lett. 2021, 1, 11–27. 10.1016/j.mrl.2021.100005. DOI
Roos J. E.; McAdams H. P.; Kaushik S. S.; Driehuys B. Hyperpolarized Gas MR Imaging: Technique and Applications. Magn. Reson. Imaging Clin. N. Am. 2015, 23, 217–229. 10.1016/j.mric.2015.01.003. PubMed DOI PMC
Zeng Q.; Bie B.; Guo Q.; Zhou X.; et al. Hyperpolarized Xe NMR signal advancement by metal-organic framework entrapment in aqueous solution. Proc. Natl. Acad. Sci. U.S.A. 2020, 117, 17558–17563. 10.1073/pnas.2004121117. PubMed DOI PMC
Yang Y.; Zhang Y.; Wang B.; Guo Q.; Yuan Y.; Jiang W.; Shi L.; Yang M.; Chen S.; Lou X.; Zhou X. Coloring ultrasensitive MRI with tunable metal–organic frameworks. Chem. Sci. 2021, 12, 4300–4308. 10.1039/D0SC06969H. PubMed DOI PMC
Jirak D.; Galisova A.; Kolouchova K.; Babuka D.; Hruby M. Fluorine polymer probes for magnetic resonance imaging: quo vadis?. J. Magn. Magn. Mater. 2019, 32, 173–185. PubMed PMC
Guo C.; Xu S.; Arshad A.; Wang L. A pH-responsive nanoprobe for turn-on 19F-magnetic resonance imaging. Chem. Commun. 2018, 54, 9853–9856. 10.1039/C8CC06129G. PubMed DOI
Zhou H.; Qi M.; Shao J.; Li X.; Zhou Z.; Yang S.; Yang H. Tumor micro-environment sensitive 19F-magnetic resonance imaging in vivo. J. Magn. Magn. Mater. 2021, 518, 167436.10.1016/j.jmmm.2020.167436. DOI
Zhou H.; Qi M.; Shao J.; Wang F.; Li X.; Zhou Z.; Yang S.; Yang H. Manganese oxide/Metal-Organic Frameworks-Based Nanocomposites for Tumr Micro-environment Sensitive 1H/19F Dual-mode Magnetic Resonance Imaging in Vivo. J. Organomet. Chem. 2021, 933, 121652.10.1016/j.jorganchem.2020.121652. DOI
Velásquez-Hernández M. de J.; Ricco R.; Carraro F.; Limpoco F. T.; Linares-Moreau M.; Leitner E.; Wiltsche H.; Rattenberger J.; Schröttner H.; Frühwirt P.; Stadler E. M.; Gescheidt G.; Amenitsch H.; Doonan C. J.; Falcaro P. Degradation of ZIF-8 in phosphate buffered saline media. CrystEngComm 2019, 21, 4538–4544. 10.1039/C9CE00757A. DOI
Bunzen H. Chemical Stability of Metal-organic Frameworks for Applications in Drug Delivery. ChemNanoMat 2021, 7, 998–1007. 10.1002/cnma.202100226. DOI