The negative effect of magnetic nanoparticles with ascorbic acid on peritoneal macrophages
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
17-04918S
Grantová Agentura České Republiky
16-14631S
Grantová Agentura České Republiky
LTAUSA17120
Ministerstvo Školství, Mládeže a Tělovýchovy
CZ.02.1.01/0.0. /0.0/15_003/0000419
Ministerstvo Školství, Mládeže a Tělovýchovy
PubMed
30945145
DOI
10.1007/s11064-019-02790-9
PII: 10.1007/s11064-019-02790-9
Knihovny.cz E-zdroje
- Klíčová slova
- Cytotoxicity, Macrophages, Nanoparticles, Oxidative stress,
- MeSH
- antioxidancia metabolismus toxicita MeSH
- krysa rodu Rattus MeSH
- kultivované buňky MeSH
- kyselina askorbová metabolismus toxicita MeSH
- magnetické nanočástice toxicita MeSH
- peritoneální makrofágy účinky léků metabolismus MeSH
- potkani Wistar MeSH
- synergismus léků MeSH
- viabilita buněk účinky léků fyziologie MeSH
- vztah mezi dávkou a účinkem léčiva MeSH
- zvířata MeSH
- Check Tag
- krysa rodu Rattus MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- antioxidancia MeSH
- kyselina askorbová MeSH
- magnetické nanočástice MeSH
Superparamagnetic iron oxide nanoparticles (SPIOn) are widely used as a contrast agent for cell labeling. Macrophages are the first line of defense of organisms in contact with nanoparticles after their administration. In this study we investigated the effect of silica-coated nanoparticles (γ-Fe2O3-SiO2) with or without modification by an ascorbic acid (γ-Fe2O3-SiO2-ASA), which is meant to act as an antioxidative agent on rat peritoneal macrophages. Both types of nanoparticles were phagocytosed by macrophages in large amounts as confirmed by transmission electron microscopy and Prusian blue staining, however they did not substantially affect the viability of exposed cells in monitored intervals. We further explored cytotoxic effects related to oxidative stress, which is frequently documented in cells exposed to nanoparticles. Our analysis of double strand breaks (DSBs) marker γH2AX showed an increased number of DSBs in cells treated with nanoparticles. Nanoparticle exposure further revealed only slight changes in the expression of genes involved in oxidative stress response. Lipid peroxidation, another marker of oxidative stress, was not significantly affirmed after nanoparticle exposure. Our data indicate that the effect of both types of nanoparticles on cell viability, or biomolecules such as DNA or lipids, was similar; however the presence of ascorbic acid, either bound to the nanoparticles or added to the cultivation medium, worsened the negative effect of nanoparticles in various tests performed. The attachment of ascorbic acid on the surface of nanoparticles did not have a protective effect against induced cytotoxicity, as expected.
Zobrazit více v PubMed
Toxicol Lett. 2012 Apr 5;210(1):53-63 PubMed
Atherosclerosis. 1994 Nov;111(1):65-78 PubMed
Phys Med Biol. 2017 May 7;62(9):3440-3453 PubMed
Toxicol In Vitro. 2010 Feb;24(1):45-55 PubMed
Int J Nanomedicine. 2008;3(2):169-80 PubMed
Comp Med. 2018 Apr 2;68(2):139-147 PubMed
J Zhejiang Univ Sci B. 2009 Dec;10(12):928-32 PubMed
Radiat Oncol. 2013 Oct 31;8:253 PubMed
Biol Trace Elem Res. 2017 Feb;175(2):428-439 PubMed
J Photochem Photobiol B. 2016 Sep;162:213-222 PubMed
Int J Nanomedicine. 2014 Mar 31;9:1641-53 PubMed
Int J Mol Sci. 2017 Feb 06;18(2): PubMed
Proc Natl Acad Sci U S A. 2002 Dec 10;99(25):16267-72 PubMed
Nat Rev Drug Discov. 2013 Dec;12(12):931-47 PubMed
Biomaterials. 2012 Jun;33(18):4690-9 PubMed
Redox Biol. 2013 Oct 08;1:483-91 PubMed
Magn Reson Med. 2003 Oct;50(4):767-76 PubMed
Chemosphere. 2018 Apr;196:482-493 PubMed
Biotherapy. 1998;11(2-3):147-54 PubMed
Science. 2006 Feb 3;311(5761):622-7 PubMed
Int J Mol Sci. 2018 Jan 10;19(1):null PubMed
Eur Cytokine Netw. 2004 Oct-Dec;15(4):339-46 PubMed
Toxicol Appl Pharmacol. 2016 May 15;299:78-89 PubMed
Exp Neurol. 2004 Jun;187(2):509-16 PubMed
Biol Reprod. 2016 Sep;95(3):60 PubMed
Nanomedicine (Lond). 2013 Oct;8(10):1689-707 PubMed
Nano Today. 2015 Aug;10(4):487-510 PubMed
Toxicol In Vitro. 2010 Jun;24(4):1139-47 PubMed
Biomaterials. 2010 Jul;31(19):5063-71 PubMed
Int J Nanomedicine. 2014 Dec 24;10:183-206 PubMed
Int J Nanomedicine. 2016 Jun 08;11:2711-9 PubMed
3 Biotech. 2018 Jun;8(6):279 PubMed
Regen Med. 2015;10(6):757-72 PubMed
J Biomed Mater Res A. 2011 Jan;96(1):186-95 PubMed
Nano Rev. 2010;1:null PubMed
Physiol Res. 2016 Oct 20;65(Supplementum 2):S243-S251 PubMed
Int J Nanomedicine. 2018 Apr 12;13:2279-2294 PubMed
J Am Coll Nutr. 2003 Feb;22(1):18-35 PubMed
Biofactors. 2008;34(2):171-80 PubMed
Stem Cell Res Ther. 2013 Jun 07;4(3):68 PubMed
Int J Nanomedicine. 2015 Feb 20;10:1463-77 PubMed
J Appl Toxicol. 2014 Apr;34(4):413-23 PubMed
Environ Mol Mutagen. 2015 Mar;56(2):125-48 PubMed
J Cereb Blood Flow Metab. 2002 Aug;22(8):899-907 PubMed
Adv Mater. 2018 May;30(19):e1704307 PubMed
Gen Physiol Biophys. 2013 Jun;32(2):173-7 PubMed
PLoS One. 2014 Mar 28;9(3):e92634 PubMed
Arterioscler Thromb Vasc Biol. 2013 Feb;33(2):e66-74 PubMed
Int Immunopharmacol. 2012 Feb;12(2):342-9 PubMed
PLoS One. 2015 May 21;10(5):e0127174 PubMed
J Neurotrauma. 2006 Sep;23(9):1379-91 PubMed
J Neurosci Res. 2004 Apr 15;76(2):232-43 PubMed
Biomaterials. 2007 Jun;28(16):2572-81 PubMed
Nanomedicine. 2010 Dec;6(6):730-7 PubMed
J Biol Chem. 1998 Mar 6;273(10):5858-68 PubMed
Toxicol In Vitro. 2011 Dec;25(8):1619-29 PubMed
Trends Cell Biol. 1999 May;9(5):199-201 PubMed
Immune Netw. 2012 Dec;12(6):296-300 PubMed
Brain Res. 2015 Sep 4;1619:1-11 PubMed
Nanotoxicology. 2016 Aug;10(6):662-70 PubMed
Nanotechnology. 2008 Oct 8;19(40):405102 PubMed
Recent Advances in Metal-Organic Frameworks for Applications in Magnetic Resonance Imaging