The negative effect of magnetic nanoparticles with ascorbic acid on peritoneal macrophages

. 2020 Jan ; 45 (1) : 159-170. [epub] 20190403

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid30945145

Grantová podpora
17-04918S Grantová Agentura České Republiky
16-14631S Grantová Agentura České Republiky
LTAUSA17120 Ministerstvo Školství, Mládeže a Tělovýchovy
CZ.02.1.01/0.0. /0.0/15_003/0000419 Ministerstvo Školství, Mládeže a Tělovýchovy

Odkazy

PubMed 30945145
DOI 10.1007/s11064-019-02790-9
PII: 10.1007/s11064-019-02790-9
Knihovny.cz E-zdroje

Superparamagnetic iron oxide nanoparticles (SPIOn) are widely used as a contrast agent for cell labeling. Macrophages are the first line of defense of organisms in contact with nanoparticles after their administration. In this study we investigated the effect of silica-coated nanoparticles (γ-Fe2O3-SiO2) with or without modification by an ascorbic acid (γ-Fe2O3-SiO2-ASA), which is meant to act as an antioxidative agent on rat peritoneal macrophages. Both types of nanoparticles were phagocytosed by macrophages in large amounts as confirmed by transmission electron microscopy and Prusian blue staining, however they did not substantially affect the viability of exposed cells in monitored intervals. We further explored cytotoxic effects related to oxidative stress, which is frequently documented in cells exposed to nanoparticles. Our analysis of double strand breaks (DSBs) marker γH2AX showed an increased number of DSBs in cells treated with nanoparticles. Nanoparticle exposure further revealed only slight changes in the expression of genes involved in oxidative stress response. Lipid peroxidation, another marker of oxidative stress, was not significantly affirmed after nanoparticle exposure. Our data indicate that the effect of both types of nanoparticles on cell viability, or biomolecules such as DNA or lipids, was similar; however the presence of ascorbic acid, either bound to the nanoparticles or added to the cultivation medium, worsened the negative effect of nanoparticles in various tests performed. The attachment of ascorbic acid on the surface of nanoparticles did not have a protective effect against induced cytotoxicity, as expected.

Zobrazit více v PubMed

Toxicol Lett. 2012 Apr 5;210(1):53-63 PubMed

Atherosclerosis. 1994 Nov;111(1):65-78 PubMed

Phys Med Biol. 2017 May 7;62(9):3440-3453 PubMed

Toxicol In Vitro. 2010 Feb;24(1):45-55 PubMed

Int J Nanomedicine. 2008;3(2):169-80 PubMed

Comp Med. 2018 Apr 2;68(2):139-147 PubMed

J Zhejiang Univ Sci B. 2009 Dec;10(12):928-32 PubMed

Radiat Oncol. 2013 Oct 31;8:253 PubMed

Biol Trace Elem Res. 2017 Feb;175(2):428-439 PubMed

J Photochem Photobiol B. 2016 Sep;162:213-222 PubMed

Int J Nanomedicine. 2014 Mar 31;9:1641-53 PubMed

Int J Mol Sci. 2017 Feb 06;18(2): PubMed

Proc Natl Acad Sci U S A. 2002 Dec 10;99(25):16267-72 PubMed

Nat Rev Drug Discov. 2013 Dec;12(12):931-47 PubMed

Biomaterials. 2012 Jun;33(18):4690-9 PubMed

Redox Biol. 2013 Oct 08;1:483-91 PubMed

Magn Reson Med. 2003 Oct;50(4):767-76 PubMed

Chemosphere. 2018 Apr;196:482-493 PubMed

Biotherapy. 1998;11(2-3):147-54 PubMed

Science. 2006 Feb 3;311(5761):622-7 PubMed

Int J Mol Sci. 2018 Jan 10;19(1):null PubMed

Eur Cytokine Netw. 2004 Oct-Dec;15(4):339-46 PubMed

Toxicol Appl Pharmacol. 2016 May 15;299:78-89 PubMed

Exp Neurol. 2004 Jun;187(2):509-16 PubMed

Biol Reprod. 2016 Sep;95(3):60 PubMed

Nanomedicine (Lond). 2013 Oct;8(10):1689-707 PubMed

Nano Today. 2015 Aug;10(4):487-510 PubMed

Toxicol In Vitro. 2010 Jun;24(4):1139-47 PubMed

Biomaterials. 2010 Jul;31(19):5063-71 PubMed

Int J Nanomedicine. 2014 Dec 24;10:183-206 PubMed

Int J Nanomedicine. 2016 Jun 08;11:2711-9 PubMed

3 Biotech. 2018 Jun;8(6):279 PubMed

Regen Med. 2015;10(6):757-72 PubMed

J Biomed Mater Res A. 2011 Jan;96(1):186-95 PubMed

Nano Rev. 2010;1:null PubMed

Physiol Res. 2016 Oct 20;65(Supplementum 2):S243-S251 PubMed

Int J Nanomedicine. 2018 Apr 12;13:2279-2294 PubMed

J Am Coll Nutr. 2003 Feb;22(1):18-35 PubMed

Biofactors. 2008;34(2):171-80 PubMed

Stem Cell Res Ther. 2013 Jun 07;4(3):68 PubMed

Int J Nanomedicine. 2015 Feb 20;10:1463-77 PubMed

J Appl Toxicol. 2014 Apr;34(4):413-23 PubMed

Environ Mol Mutagen. 2015 Mar;56(2):125-48 PubMed

J Cereb Blood Flow Metab. 2002 Aug;22(8):899-907 PubMed

Adv Mater. 2018 May;30(19):e1704307 PubMed

Gen Physiol Biophys. 2013 Jun;32(2):173-7 PubMed

PLoS One. 2014 Mar 28;9(3):e92634 PubMed

Arterioscler Thromb Vasc Biol. 2013 Feb;33(2):e66-74 PubMed

Int Immunopharmacol. 2012 Feb;12(2):342-9 PubMed

PLoS One. 2015 May 21;10(5):e0127174 PubMed

J Neurotrauma. 2006 Sep;23(9):1379-91 PubMed

J Neurosci Res. 2004 Apr 15;76(2):232-43 PubMed

Biomaterials. 2007 Jun;28(16):2572-81 PubMed

Nanomedicine. 2010 Dec;6(6):730-7 PubMed

J Biol Chem. 1998 Mar 6;273(10):5858-68 PubMed

Toxicol In Vitro. 2011 Dec;25(8):1619-29 PubMed

Trends Cell Biol. 1999 May;9(5):199-201 PubMed

Immune Netw. 2012 Dec;12(6):296-300 PubMed

Brain Res. 2015 Sep 4;1619:1-11 PubMed

Nanotoxicology. 2016 Aug;10(6):662-70 PubMed

Nanotechnology. 2008 Oct 8;19(40):405102 PubMed

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Recent Advances in Metal-Organic Frameworks for Applications in Magnetic Resonance Imaging

. 2022 Nov 16 ; 14 (45) : 50445-50462. [epub] 20221014

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...