Magnetic resonance tracking of transplanted bone marrow and embryonic stem cells labeled by iron oxide nanoparticles in rat brain and spinal cord
Jazyk angličtina Země Spojené státy americké Médium print
Typ dokumentu srovnávací studie, časopisecké články, práce podpořená grantem
PubMed
15048921
DOI
10.1002/jnr.20041
Knihovny.cz E-zdroje
- MeSH
- buňky kostní dřeně metabolismus ultrastruktura MeSH
- elektronová mikroskopie metody MeSH
- embryo savčí MeSH
- fosfopyruváthydratasa metabolismus MeSH
- gliový fibrilární kyselý protein metabolismus MeSH
- imunohistochemie metody MeSH
- kmenové buňky metabolismus ultrastruktura MeSH
- komprese míchy metabolismus patologie terapie MeSH
- krysa rodu Rattus MeSH
- kultivované buňky MeSH
- luminescentní proteiny metabolismus MeSH
- magnetická rezonanční tomografie metody MeSH
- mícha cytologie metabolismus transplantace ultrastruktura MeSH
- mozek cytologie metabolismus ultrastruktura MeSH
- myši MeSH
- neuroglie metabolismus patologie ultrastruktura MeSH
- neurony metabolismus patologie ultrastruktura MeSH
- poranění mozku metabolismus patologie terapie MeSH
- potkani Wistar MeSH
- transplantace kmenových buněk metody MeSH
- transplantace kostní dřeně metody MeSH
- zelené fluorescenční proteiny MeSH
- železité sloučeniny metabolismus MeSH
- zvířata MeSH
- Check Tag
- krysa rodu Rattus MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- srovnávací studie MeSH
- Názvy látek
- ferric oxide MeSH Prohlížeč
- fosfopyruváthydratasa MeSH
- gliový fibrilární kyselý protein MeSH
- luminescentní proteiny MeSH
- zelené fluorescenční proteiny MeSH
- železité sloučeniny MeSH
Nuclear magnetic resonance (MR) imaging provides a noninvasive method for studying the fate of transplanted cells in vivo. We studied, in animals with a cortical photochemical lesion or with a balloon-induced spinal cord compression lesion, the fate of implanted rat bone marrow stromal cells (MSCs) and mouse embryonic stem cells (ESCs) labeled with superparamagnetic iron oxide nanoparticles (Endorem). MSCs were colabeled with bromodeoxyuridine (BrdU), and ESCs were transfected with pEGFP-C1 (eGFP ESCs). Cells were either grafted intracerebrally into the contralateral hemisphere of the adult rat brain or injected intravenously. In vivo MR imaging was used to track their fate; Prussian blue staining and electron microscopy confirmed the presence of iron oxide nanoparticles inside the cells. During the first week postimplantation, grafted cells migrated to the lesion site and populated the border zone of the lesion. Less than 3% of MSCs differentiated into neurons and none into astrocytes; 5% of eGFP ESCs differentiated into neurons, whereas 70% of eGFP ESCs became astrocytes. The implanted cells were visible on MR images as a hypointense area at the injection site, in the corpus callosum and in the lesion. The hypointense signal persisted for more than 50 days. The presence of GFP-positive or BrdU-positive and nanoparticle-labeled cells was confirmed by histological staining. Our study demonstrates that both grafted MSCs and eGFP ESCs labeled with a contrast agent based on iron oxide nanoparticles migrate into the injured CNS. Iron oxide nanoparticles can therefore be used as a marker for the long-term noninvasive MR tracking of implanted stem cells.
Citace poskytuje Crossref.org
Mesenchymal Stem Cells in Treatment of Spinal Cord Injury and Amyotrophic Lateral Sclerosis
The negative effect of magnetic nanoparticles with ascorbic acid on peritoneal macrophages
Highly efficient magnetic targeting of mesenchymal stem cells in spinal cord injury