Manipulation of isolated brain nerve terminals by an external magnetic field using D-mannose-coated γ-Fe2O3 nano-sized particles and assessment of their effects on glutamate transport
Status PubMed-not-MEDLINE Jazyk angličtina Země Německo Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
24991515
PubMed Central
PMC4077395
DOI
10.3762/bjnano.5.90
Knihovny.cz E-zdroje
- Klíčová slova
- D-mannose, extracellular level, glutamate uptake and release, manipulation by an external magnetic field, membrane potential, nanoparticles, rat brain nerve terminals, synaptic vesicle acidification, γ-Fe2O3,
- Publikační typ
- časopisecké články MeSH
The manipulation of brain nerve terminals by an external magnetic field promises breakthroughs in nano-neurotechnology. D-Mannose-coated superparamagnetic nanoparticles were synthesized by coprecipitation of Fe(II) and Fe(III) salts followed by oxidation with sodium hypochlorite and addition of D-mannose. Effects of D-mannose-coated superparamagnetic maghemite (γ-Fe2O3) nanoparticles on key characteristics of the glutamatergic neurotransmission were analysed. Using radiolabeled L-[(14)C]glutamate, it was shown that D-mannose-coated γ-Fe2O3 nanoparticles did not affect high-affinity Na(+)-dependent uptake, tonic release and the extracellular level of L-[(14)C]glutamate in isolated rat brain nerve terminals (synaptosomes). Also, the membrane potential of synaptosomes and acidification of synaptic vesicles was not changed as a result of the application of D-mannose-coated γ-Fe2O3 nanoparticles. This was demonstrated with the potential-sensitive fluorescent dye rhodamine 6G and the pH-sensitive dye acridine orange. The study also focused on the analysis of the potential use of these nanoparticles for manipulation of nerve terminals by an external magnetic field. It was shown that more than 84.3 ± 5.0% of L-[(14)C]glutamate-loaded synaptosomes (1 mg of protein/mL) incubated for 5 min with D-mannose-coated γ-Fe2O3 nanoparticles (250 µg/mL) moved to an area, in which the magnet (250 mT, gradient 5.5 Т/m) was applied compared to 33.5 ± 3.0% of the control and 48.6 ± 3.0% of samples that were treated with uncoated nanoparticles. Therefore, isolated brain nerve terminals can be easily manipulated by an external magnetic field using D-mannose-coated γ-Fe2O3 nanoparticles, while the key characteristics of glutamatergic neurotransmission are not affected. In other words, functionally active synaptosomes labeled with D-mannose-coated γ-Fe2O3 nanoparticles were obtained.
The Biological Faculty Taras Shevchenko National University of Kyiv 64 Volodymyrska Str Kiev Ukraine
Zobrazit více v PubMed
Yang Z, Liu Z W, Allaker R P, Reip P, Oxford J, Ahmad Z, Ren G. J R Soc Interface. 2010;7:S411–S422. doi: 10.1098/rsif.2010.0158.focus. PubMed DOI PMC
Brooking J, Davis S S, Illum L. J Drug Targeting. 2001;9:267–279. doi: 10.3109/10611860108997935. PubMed DOI
Laurent S, Mahmoudi M. Int J Mol Epidemiol Genet. 2011;2:367–390. PubMed PMC
Zhang Y, Zhang J. J Colloid Interface Sci. 2005;283:352–357. doi: 10.1016/j.jcis.2004.09.042. PubMed DOI
Yeh T-C, Zhang W, Ildstad S T, Ho C. Magn Reson Med. 1993;30:617–625. doi: 10.1002/mrm.1910300513. PubMed DOI
Yeh T-C, Zhang W, Ildstad S T, Ho C. Magn Reson Med. 1995;33:200–208. doi: 10.1002/mrm.1910330209. PubMed DOI
Modo M, Cash D, Mellodew K, Williams S C R, Fraser S E, Meade T J, Price J, Hodges H. NeuroImage. 2002;17:803–811. doi: 10.1006/nimg.2002.1194. PubMed DOI
Jendelová P, Herynek V, De Croos J, Glogarova K, Andersson B, Hajek M, Sykova E. Magn Reson Med. 2003;50:767–776. doi: 10.1002/mrm.10585. PubMed DOI
Jendelová P, Herynek V, Urdzíková L, Glogarová K, Kroupová J, Andersson B, Bryja V, Burian M, Hájek M, Syková E. J Neurosci Res. 2004;76:232–243. doi: 10.1002/jnr.20041. PubMed DOI
Irache J M, Salman H H, Gamazo C, Espuelas S. Expert Opin Drug Delivery. 2008;5:703–724. doi: 10.1517/17425247.5.6.703. PubMed DOI
Labský J. Biomaterials. 2003;24:4031–4036. doi: 10.1016/S0142-9612(03)00313-2. PubMed DOI
Horák D, Babič M, Jendelová P, Herynek V, Trchová M, Pientka Z, Pollert E, Hájek M, Syková E. Bioconjugate Chem. 2007;18:635–644. doi: 10.1021/bc060186c. PubMed DOI
Borisova T, Sivko R, Borysov A, Krisanova N. Cell Mol Neurobiol. 2010;30:1013–1023. doi: 10.1007/s10571-010-9532-x. PubMed DOI PMC
Zoccarato F, Cavallini L, Alexandre A. J Neurochem. 1999;72:625–633. doi: 10.1046/j.1471-4159.1999.0720625.x. PubMed DOI
Pollert E, Knížek K, Maryško M, Závěta K, Lančok A, Boháček J, Horák D, Babič M. J Magn Magn Mater. 2006;306:241–247. doi: 10.1016/j.jmmm.2006.03.069. DOI
Tocchio A, Horák D, Babic M, Trchová M, Veverka M, Beneš M J, Šlouf M, Fojtík A. J Polym Sci, Part A: Polym Chem. 2009;47:4982–4994. doi: 10.1002/pola.23551. DOI
Koppel D E. J Chem Phys. 1972;57:4814–4820. doi: 10.1063/1.1678153. DOI
Südhof T C. Annu Rev Neurosci. 2004;27:509–547. doi: 10.1146/annurev.neuro.26.041002.131412. PubMed DOI
Cavelier P, Attwell D. J Physiol. 2005;564:397–410. doi: 10.1113/jphysiol.2004.082131. PubMed DOI PMC
Jabaudon D, Shimamoto K, Yasuda-Kamatani Y, Gähwiler B H, Gerber U. Proc Natl Acad Sci U S A. 1999;96:8733–8738. doi: 10.1073/pnas.96.15.8733. PubMed DOI PMC
Rutledge E M, Aschner M, Kimelberg H K. Am J Physiol. 1998;274:C1511–C1520. PubMed
De Jong W H, Borm P J A. Int J Nanomed. 2008;3:133–149. doi: 10.2147/IJN.S596. PubMed DOI PMC
Kim J S, Yoon T J, Yu K N, Kim B G, Park S J, Kim H W, Lee K H, Park S B, Lee J K, Cho M H. Toxicol Sci. 2006;89:338–347. doi: 10.1093/toxsci/kfj027. PubMed DOI
Takeda K, Suzuki K, Ishihara A, Kubo-Irie M, Fujimoto R, Tabata M, Oshio S, Nihei Y, Ihara T, Sugamata M. J Health Sci. 2009;55:95–102. doi: 10.1248/jhs.55.95. DOI
Oberdörster G, Sharp Z, Atudorei V, Elder A, Gelein R, Kreyling W, Cox C. Inhalation Toxicol. 2004;16:437–445. doi: 10.1080/08958370490439597. PubMed DOI
Thomsen L B, Linemann T, Pondman K M, Lichota J, Kim K S, Pieters R J, Visser G M, Moos T. ACS Chem Neurosci. 2013;4:1352–1360. doi: 10.1021/cn400093z. PubMed DOI PMC
Xia T, Kovochich M, Liong M, Zink J I, Nel A E. ACS Nano. 2008;2:85–96. doi: 10.1021/nn700256c. PubMed DOI
Geiser M, Rothen-Rutishauser B, Kapp N, Schürch S, Kreyling W, Schulz H, Semmler M, Im Hof V, Heyder J, Gehr P. Environ Health Perspect. 2005;113:1555–1560. doi: 10.1289/ehp.8006. PubMed DOI PMC
Wang J, Chen C, Liu Y, Jiao F, Li W, Lao F, Li Y, Li B, Ge C, Zhou G, et al. Toxicol Lett. 2008;183:72–80. doi: 10.1016/j.toxlet.2008.10.001. PubMed DOI
Borisova T A, Krisanova N V. Adv Space Res. 2008;42:1971–1979. doi: 10.1016/j.asr.2008.04.012. PubMed DOI
Cotman C W. Methods Enzymol. 1974;31:445–452. doi: 10.1016/0076-6879(74)31050-6. PubMed DOI
Larson E, Howlett B, Jagendorf A. Anal Biochem. 1986;155:243–248. doi: 10.1016/0003-2697(86)90432-X. PubMed DOI
Borisova T. Cholesterol and presynaptic glutamate transport in the brain. New York: Springer; 2013. DOI
Krisanova N V, Trikash I O, Borisova T A. Neurochem Int. 2009;55:724–731. doi: 10.1016/j.neuint.2009.07.003. PubMed DOI
Krisanova N, Sivko R, Kasatkina L, Borisova T. Biochim Biophys Acta, Mol Basis Dis. 2012;1822:1553–1561. doi: 10.1016/j.bbadis.2012.06.005. PubMed DOI
Kasatkina L, Borisova T. Neurochem Int. 2010;56:711–719. doi: 10.1016/j.neuint.2010.02.008. PubMed DOI
Kasatkina L, Borisova T A. Int J Biochem Cell Biol. 2013;45:2585–2595. doi: 10.1016/j.biocel.2013.08.004. PubMed DOI
Borisova T, Kasatkina L, Ostapchenko L. Neurochem Int. 2011;59:965–975. doi: 10.1016/j.neuint.2011.07.007. PubMed DOI
Borisova T, Krisanova N, Sivko R, Kasatkina L, Borysov A, Griffin S, Wireman M. Neurochem Int. 2011;59:272–279. doi: 10.1016/j.neuint.2011.05.014. PubMed DOI