Manipulation of isolated brain nerve terminals by an external magnetic field using D-mannose-coated γ-Fe2O3 nano-sized particles and assessment of their effects on glutamate transport

. 2014 ; 5 () : 778-88. [epub] 20140604

Status PubMed-not-MEDLINE Jazyk angličtina Země Německo Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid24991515

The manipulation of brain nerve terminals by an external magnetic field promises breakthroughs in nano-neurotechnology. D-Mannose-coated superparamagnetic nanoparticles were synthesized by coprecipitation of Fe(II) and Fe(III) salts followed by oxidation with sodium hypochlorite and addition of D-mannose. Effects of D-mannose-coated superparamagnetic maghemite (γ-Fe2O3) nanoparticles on key characteristics of the glutamatergic neurotransmission were analysed. Using radiolabeled L-[(14)C]glutamate, it was shown that D-mannose-coated γ-Fe2O3 nanoparticles did not affect high-affinity Na(+)-dependent uptake, tonic release and the extracellular level of L-[(14)C]glutamate in isolated rat brain nerve terminals (synaptosomes). Also, the membrane potential of synaptosomes and acidification of synaptic vesicles was not changed as a result of the application of D-mannose-coated γ-Fe2O3 nanoparticles. This was demonstrated with the potential-sensitive fluorescent dye rhodamine 6G and the pH-sensitive dye acridine orange. The study also focused on the analysis of the potential use of these nanoparticles for manipulation of nerve terminals by an external magnetic field. It was shown that more than 84.3 ± 5.0% of L-[(14)C]glutamate-loaded synaptosomes (1 mg of protein/mL) incubated for 5 min with D-mannose-coated γ-Fe2O3 nanoparticles (250 µg/mL) moved to an area, in which the magnet (250 mT, gradient 5.5 Т/m) was applied compared to 33.5 ± 3.0% of the control and 48.6 ± 3.0% of samples that were treated with uncoated nanoparticles. Therefore, isolated brain nerve terminals can be easily manipulated by an external magnetic field using D-mannose-coated γ-Fe2O3 nanoparticles, while the key characteristics of glutamatergic neurotransmission are not affected. In other words, functionally active synaptosomes labeled with D-mannose-coated γ-Fe2O3 nanoparticles were obtained.

Zobrazit více v PubMed

Yang Z, Liu Z W, Allaker R P, Reip P, Oxford J, Ahmad Z, Ren G. J R Soc Interface. 2010;7:S411–S422. doi: 10.1098/rsif.2010.0158.focus. PubMed DOI PMC

Brooking J, Davis S S, Illum L. J Drug Targeting. 2001;9:267–279. doi: 10.3109/10611860108997935. PubMed DOI

Laurent S, Mahmoudi M. Int J Mol Epidemiol Genet. 2011;2:367–390. PubMed PMC

Zhang Y, Zhang J. J Colloid Interface Sci. 2005;283:352–357. doi: 10.1016/j.jcis.2004.09.042. PubMed DOI

Yeh T-C, Zhang W, Ildstad S T, Ho C. Magn Reson Med. 1993;30:617–625. doi: 10.1002/mrm.1910300513. PubMed DOI

Yeh T-C, Zhang W, Ildstad S T, Ho C. Magn Reson Med. 1995;33:200–208. doi: 10.1002/mrm.1910330209. PubMed DOI

Modo M, Cash D, Mellodew K, Williams S C R, Fraser S E, Meade T J, Price J, Hodges H. NeuroImage. 2002;17:803–811. doi: 10.1006/nimg.2002.1194. PubMed DOI

Jendelová P, Herynek V, De Croos J, Glogarova K, Andersson B, Hajek M, Sykova E. Magn Reson Med. 2003;50:767–776. doi: 10.1002/mrm.10585. PubMed DOI

Jendelová P, Herynek V, Urdzíková L, Glogarová K, Kroupová J, Andersson B, Bryja V, Burian M, Hájek M, Syková E. J Neurosci Res. 2004;76:232–243. doi: 10.1002/jnr.20041. PubMed DOI

Irache J M, Salman H H, Gamazo C, Espuelas S. Expert Opin Drug Delivery. 2008;5:703–724. doi: 10.1517/17425247.5.6.703. PubMed DOI

Labský J. Biomaterials. 2003;24:4031–4036. doi: 10.1016/S0142-9612(03)00313-2. PubMed DOI

Horák D, Babič M, Jendelová P, Herynek V, Trchová M, Pientka Z, Pollert E, Hájek M, Syková E. Bioconjugate Chem. 2007;18:635–644. doi: 10.1021/bc060186c. PubMed DOI

Borisova T, Sivko R, Borysov A, Krisanova N. Cell Mol Neurobiol. 2010;30:1013–1023. doi: 10.1007/s10571-010-9532-x. PubMed DOI PMC

Zoccarato F, Cavallini L, Alexandre A. J Neurochem. 1999;72:625–633. doi: 10.1046/j.1471-4159.1999.0720625.x. PubMed DOI

Pollert E, Knížek K, Maryško M, Závěta K, Lančok A, Boháček J, Horák D, Babič M. J Magn Magn Mater. 2006;306:241–247. doi: 10.1016/j.jmmm.2006.03.069. DOI

Tocchio A, Horák D, Babic M, Trchová M, Veverka M, Beneš M J, Šlouf M, Fojtík A. J Polym Sci, Part A: Polym Chem. 2009;47:4982–4994. doi: 10.1002/pola.23551. DOI

Koppel D E. J Chem Phys. 1972;57:4814–4820. doi: 10.1063/1.1678153. DOI

Südhof T C. Annu Rev Neurosci. 2004;27:509–547. doi: 10.1146/annurev.neuro.26.041002.131412. PubMed DOI

Cavelier P, Attwell D. J Physiol. 2005;564:397–410. doi: 10.1113/jphysiol.2004.082131. PubMed DOI PMC

Jabaudon D, Shimamoto K, Yasuda-Kamatani Y, Gähwiler B H, Gerber U. Proc Natl Acad Sci U S A. 1999;96:8733–8738. doi: 10.1073/pnas.96.15.8733. PubMed DOI PMC

Rutledge E M, Aschner M, Kimelberg H K. Am J Physiol. 1998;274:C1511–C1520. PubMed

De Jong W H, Borm P J A. Int J Nanomed. 2008;3:133–149. doi: 10.2147/IJN.S596. PubMed DOI PMC

Kim J S, Yoon T J, Yu K N, Kim B G, Park S J, Kim H W, Lee K H, Park S B, Lee J K, Cho M H. Toxicol Sci. 2006;89:338–347. doi: 10.1093/toxsci/kfj027. PubMed DOI

Takeda K, Suzuki K, Ishihara A, Kubo-Irie M, Fujimoto R, Tabata M, Oshio S, Nihei Y, Ihara T, Sugamata M. J Health Sci. 2009;55:95–102. doi: 10.1248/jhs.55.95. DOI

Oberdörster G, Sharp Z, Atudorei V, Elder A, Gelein R, Kreyling W, Cox C. Inhalation Toxicol. 2004;16:437–445. doi: 10.1080/08958370490439597. PubMed DOI

Thomsen L B, Linemann T, Pondman K M, Lichota J, Kim K S, Pieters R J, Visser G M, Moos T. ACS Chem Neurosci. 2013;4:1352–1360. doi: 10.1021/cn400093z. PubMed DOI PMC

Xia T, Kovochich M, Liong M, Zink J I, Nel A E. ACS Nano. 2008;2:85–96. doi: 10.1021/nn700256c. PubMed DOI

Geiser M, Rothen-Rutishauser B, Kapp N, Schürch S, Kreyling W, Schulz H, Semmler M, Im Hof V, Heyder J, Gehr P. Environ Health Perspect. 2005;113:1555–1560. doi: 10.1289/ehp.8006. PubMed DOI PMC

Wang J, Chen C, Liu Y, Jiao F, Li W, Lao F, Li Y, Li B, Ge C, Zhou G, et al. Toxicol Lett. 2008;183:72–80. doi: 10.1016/j.toxlet.2008.10.001. PubMed DOI

Borisova T A, Krisanova N V. Adv Space Res. 2008;42:1971–1979. doi: 10.1016/j.asr.2008.04.012. PubMed DOI

Cotman C W. Methods Enzymol. 1974;31:445–452. doi: 10.1016/0076-6879(74)31050-6. PubMed DOI

Larson E, Howlett B, Jagendorf A. Anal Biochem. 1986;155:243–248. doi: 10.1016/0003-2697(86)90432-X. PubMed DOI

Borisova T. Cholesterol and presynaptic glutamate transport in the brain. New York: Springer; 2013. DOI

Krisanova N V, Trikash I O, Borisova T A. Neurochem Int. 2009;55:724–731. doi: 10.1016/j.neuint.2009.07.003. PubMed DOI

Krisanova N, Sivko R, Kasatkina L, Borisova T. Biochim Biophys Acta, Mol Basis Dis. 2012;1822:1553–1561. doi: 10.1016/j.bbadis.2012.06.005. PubMed DOI

Kasatkina L, Borisova T. Neurochem Int. 2010;56:711–719. doi: 10.1016/j.neuint.2010.02.008. PubMed DOI

Kasatkina L, Borisova T A. Int J Biochem Cell Biol. 2013;45:2585–2595. doi: 10.1016/j.biocel.2013.08.004. PubMed DOI

Borisova T, Kasatkina L, Ostapchenko L. Neurochem Int. 2011;59:965–975. doi: 10.1016/j.neuint.2011.07.007. PubMed DOI

Borisova T, Krisanova N, Sivko R, Kasatkina L, Borysov A, Griffin S, Wireman M. Neurochem Int. 2011;59:272–279. doi: 10.1016/j.neuint.2011.05.014. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...