2‑Cl‑IB‑MECA regulates the proliferative and drug resistance pathways, and facilitates chemosensitivity in pancreatic and liver cancer cell lines

. 2022 Mar ; 49 (3) : . [epub] 20220118

Jazyk angličtina Země Řecko Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid35039871

Specific A3 adenosine receptor (A3AR) agonist, 2‑chloro‑N6‑(3‑iodobenzyl)‑5'‑N‑methylcarboxamidoadenosine (2‑Cl‑IB‑MECA), demonstrates anti‑proliferative effects on various types of tumor. In the present study, the cytotoxicity of 2‑Cl‑IB‑MECA was analyzed in a panel of tumor and non‑tumor cell lines and its anticancer mechanisms in JoPaca‑1 pancreatic and Hep‑3B hepatocellular carcinoma cell lines were also investigated. Initially, decreased tumor cell proliferation, cell accumulation in the G1 phase and inhibition of DNA and RNA synthesis was found. Furthermore, western blot analysis showed decreased protein expression level of β‑catenin, patched1 (Ptch1) and glioma‑associated oncogene homolog zinc finger protein 1 (Gli1), which are components of the Wnt/β‑catenin and Sonic hedgehog/Ptch/Gli transduction pathways. In concordance with these findings, the protein expression levels of cyclin D1 and c‑Myc were reduced. Using a luciferase assay, it was revealed for the first time a decrease in β‑catenin transcriptional activity, as an early event following 2‑Cl‑IB‑MECA treatment. In addition, the protein expression levels of multidrug resistance‑associated protein 1 and P‑glycoprotein (P‑gp) were reduced and the P‑gp xenobiotic efflux function was also reduced. Next, the enhancing effects of 2‑Cl‑IB‑MECA on the cytotoxicity of conventional chemotherapy was investigated. It was found that 2‑Cl‑IB‑MECA enhanced carboplatin and doxorubicin cytotoxic effects in the JoPaca‑1 and Hep‑3B cell lines, and a greater synergy was found in the highly tumorigenic JoPaca‑1 cell line. This provides a novel in vitro rationale for the utilization of 2‑Cl‑IB‑MECA in combination with chemotherapeutic agents, not only for hepatocellular carcinoma, but also for pancreatic cancer. Other currently used conventional chemotherapeutics, fluorouracil and gemcitabine, showed synergy only when combined with high doses of 2‑Cl‑IB‑MECA. Notably, experiments with A3AR‑specific antagonist, N‑[9‑Chloro‑2‑(2‑furanyl)(1,2,4)‑triazolo(1,5‑c)quinazolin‑5‑yl]benzene acetamide, revealed that 2‑Cl‑IB‑MECA had antitumor effects via both A3AR‑dependent and ‑independent pathways. In conclusion, the present study identified novel antitumor mechanisms of 2‑Cl‑IB‑MECA in pancreatic and hepatocellular carcinoma in vitro that further underscores the importance of A3AR agonists in cancer therapy.

Zobrazit více v PubMed

Ferlay J, Ervik M, Lam F, Colombet M, Mery L, Piñeros M, Znaor A, Soerjomataram I, Bray F. Global cancer observatory: Cancer today. Lyon, France: International Agency for Research on Cancer; 2020. Available from: https://gco.iarc.fr/today. Accessed November 24, 2021.

Rawla P, Sunkara T, Gaduputi V. Epidemiology of pancreatic cancer: Global trends, etiology and risk factors. World J Oncol. 2019;10:10–27. doi: 10.14740/wjon1166. PubMed DOI PMC

Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2018;68:394–424. doi: 10.3322/caac.21492. PubMed DOI

Marquardt JU, Gomez-Quiroz L, Arreguin Camacho LO, Pinna F, Lee YH, Kitade M, Domínguez MP, Castven D, Breuhahn K, Conner EA, et al. Curcumin effectively inhibits oncogenic NF-κB signaling and restrains stemness features in liver cancer. J Hepatol. 2015;63:661–669. doi: 10.1016/j.jhep.2015.04.018. PubMed DOI PMC

Zeng SY, Pottler M, Lan B, Grutzmann R, Pilarsky C, Yang H. Chemoresistance in pancreatic cancer. Int J Mol Sci. 2019;20:4504. doi: 10.3390/ijms20184504. PubMed DOI PMC

Adamska A, Falasca M. ATP-binding cassette transporters in progression and clinical outcome of pancreatic cancer: What is the way forward? World J Gastroenterol. 2018;24:3222–3238. doi: 10.3748/wjg.v24.i29.3222. PubMed DOI PMC

Lohitesh K, Chowdhury R, Mukherjee S. Resistance a major hindrance to chemotherapy in hepatocellular carcinoma: An insight. Cancer Cell Int. 2018;18:44. doi: 10.1186/s12935-018-0538-7. PubMed DOI PMC

Liu A, Wu Q, Peng D, Ares I, Anadón A, Lopez-Torres B, Martínez-Larrañaga MR, Wang X, Martínez MA. A novel strategy for the diagnosis, prognosis, treatment, and chemoresistance of hepatocellular carcinoma: DNA methylation. Med Res Rev. 2020;40:1973–2018. doi: 10.1002/med.21696. PubMed DOI

Man S, Lu Y, Yin L, Cheng X, Ma L. Potential and promising anticancer drugs from adenosine and its analogs. Drug Discov Today. 2021;26:1490–1500. doi: 10.1016/j.drudis.2021.02.020. PubMed DOI

Fredholm BB, IJzerman AP, Jacobson KA, Linden J, Müller CE. International union of basic and clinical pharmacology. LXXXI. Nomenclature and classification of adenosine receptors-an update. Pharmacol Rev. 2011;63:1–34. doi: 10.1124/pr.110.003285. PubMed DOI PMC

Madi L, Ochaion A, Rath-Wolfson L, Bar-Yehuda S, Erlanger A, Ohana G, Harish A, Merimski O, Barer F, Fishman P. The A3 adenosine receptor is highly expressed in tumor versus normal cells: Potential target for tumor growth inhibition. Clin Cancer Res. 2004;10:4472–4479. doi: 10.1158/1078-0432.CCR-03-0651. PubMed DOI

Morello S, Petrella A, Festa M, Popolo A, Monaco M, Vuttariello E, Chiappetta G, Parente L, Pinto A. Cl-IB-MECA inhibits human thyroid cancer cell proliferation independently of A3 adenosine receptor activation. Cancer Biol Ther. 2008;7:278–284. doi: 10.4161/cbt.7.2.5301. PubMed DOI

Bar-Yehuda S, Stemmer SM, Madi L, Castel D, Ochaion A, Cohen S, Barer F, Zabutti A, Perez-Liz G, Del Valle L, Fishman P. The A3 adenosine receptor agonist CF102 induces apoptosis of hepatocellular carcinoma via de-regulation of the Wnt and NF-kappaB signal transduction pathways. Int J Oncol. 2008;33:287–295. PubMed

Gessi S, Cattabriga E, Avitabile A, Gafa' R, Lanza G, Cavazzini L, Bianchi N, Gambari R, Feo C, Liboni A, et al. Elevated expression of A3 adenosine receptors in human colorectal cancer is reflected in peripheral blood cells. Clin Cancer Res. 2004;10:5895–5901. doi: 10.1158/1078-0432.CCR-1134-03. PubMed DOI

Kim HO, Ji XD, Siddiqi SM, Olah ME, Stiles GL, Jacobson KA. 2-Substitution of N6-benzyladenosine-5′-uronamides enhances selectivity for A3 adenosine receptors. J Med Chem. 1994;37:3614–3621. doi: 10.1021/jm00047a018. PubMed DOI PMC

Van Schaick EA, Jacobson KA, Kim HO, Ijzerman AP, Danhof M. Hemodynamic effects and histamine release elicited by the selective adenosine A3 receptor agonist 2-Cl-IB-MECA in conscious rats. Eur J Pharmacol. 1996;308:311–314. doi: 10.1016/0014-2999(96)00373-1. PubMed DOI PMC

Wittendorp MC, Biber K, Boddeke HWGM. CL-IB-MECA induced release of CCL2 by astrocytes: Possible role for the adenosine A3 receptor? Naunyn-Schmiedeb Arch Pharmacol. 2004;369:R178.

Ge ZD, Peart JN, Kreckler LM, Wan TC, Jacobson MA, Gross GJ, Auchampach JA. Cl-IB-MECA [2-chloro-N6-(3-iodobenzyl) adenosine-5′-N-methylcarboxamide] reduces ischemia/reperfusion injury in mice by activating the A3 adenosine receptor. J Pharmacol Exp Ther. 2006;319:1200–1210. doi: 10.1124/jpet.106.111351. PubMed DOI

Coppi E, Cherchi F, Fusco I, Failli P, Vona A, Dettori I, Gaviano L, Lucarini E, Jacobson KA, Tosh DK, et al. Adenosine A3 receptor activation inhibits pronociceptive N-type Ca2+ currents and cell excitability in dorsal root ganglion neurons. Pain. 2019;160:1103–1118. doi: 10.1097/j.pain.0000000000001488. PubMed DOI PMC

Cohen S, Stemmer SM, Zozulya G, Ochaion A, Patoka R, Barer F, Bar-Yehuda S, Rath-Wolfson L, Jacobson KA, Fishman P. CF102 an A3 adenosine receptor agonist mediates anti-tumor and anti-inflammatory effects in the liver. J Cell Physiol. 2011;226:2438–2447. doi: 10.1002/jcp.22593. PubMed DOI PMC

Morello S, Sorrentino R, Montinaro A, Luciano A, Maiolino P, Ngkelo A, Arra C, Adcock IM, Pinto A. NK1.1 cells and CD8 T cells mediate the antitumor activity of Cl-IB-MECA in a mouse melanoma model. Neoplasia. 2011;13:365–373. doi: 10.1593/neo.101628. PubMed DOI PMC

Bar Yehuda S, Stemmer SM, Madi L, Castel D, Ochaion A, Cohen S, Barer F, Perez-Liz G, Del Valle L, Fishman P. Effect of CF102 on growth suppression and apoptosis in an orthotopic model of hepatocellular carcinoma. J Clin Oncol. 2008;26(Suppl 15):S22113. doi: 10.1200/jco.2008.26.15_suppl.22113. PubMed DOI

Safadi R, Braun M, Francis A, Milgrom Y, Massarwa M, Hakimian D, Hazou W, Issachar A, Harpaz Z, Farbstein M, et al. Randomised clinical trial: A phase 2 double-blind study of namodenoson in non-alcoholic fatty liver disease and steatohepatitis. Aliment Pharmacol Ther. 2021;54:1405–1415. doi: 10.1111/apt.16664. PubMed DOI PMC

Stemmer SM, Manojlovic NS, Marinca MV, Petrov P, Cherciu N, Ganea D, Ciuleanu TE, Puscas IA, Beg MS, Purcell WT, et al. A phase II, randomized, double-blind, placebo-controlled trial evaluating efficacy and safety of namodenoson (CF102), an A3 adenosine receptor agonist (A3AR), as a second-line treatment in patients with Child-Pugh B (CPB) advanced hepatocellular carcinoma (HCC) J Clin Oncol. 2019;37(Suppl 15):S2503. doi: 10.1200/JCO.2019.37.15_suppl.2503. DOI

Stemmer SM, Manojlovic NS, Marinca MV, Petrov P, Cherciu N, Ganea D, Ciuleanu TE, Pusca IA, Beg MS, Purcell WT, et al. Namodenoson in advanced hepatocellular carcinoma and Child-Pugh B cirrhosis: Randomized placebo-controlled clinical trial. Cancers (Basel) 2021;13:187. doi: 10.3390/cancers13020187. PubMed DOI PMC

Ohana G, Cohen S, Rath-Wolfson L, Fishman P. A3 adenosine receptor agonist, CF102, protects against hepatic ischemia/reperfusion injury following partial hepatectomy. Mol Med Rep. 2016;14:4335–4341. doi: 10.3892/mmr.2016.5746. PubMed DOI

David M, Gospodinov DK, Gheorghe N, Mateev GS, Rusinova MV, Hristakieva E, Solovastru LG, Patel RV, Giurcaneanu C, Hitova MC, et al. Treatment of plaque-type psoriasis with oral CF101: Data from a phase II/III multicenter, randomized, controlled trial. J Drugs Dermatol. 2016;15:931–938. PubMed

Storme J, Tosh DK, Gao ZG, Jacobson KA, Stove CP. Probing structure-activity relationship in β-arrestin2 recruitment of diversely substituted adenosine derivatives. Biochem Pharmacol. 2018;158:103–113. doi: 10.1016/j.bcp.2018.10.003. PubMed DOI PMC

Suresh RR, Jain S, Chen Z, Tosh DK, Ma Y, Podszun MC, Rotman Y, Salvemini D, Jacobson KA. Design and in vivo activity of A3 adenosine receptor agonist prodrugs. Purinergic Signal. 2020;16:367–377. doi: 10.1007/s11302-020-09715-0. PubMed DOI PMC

Pottie E, Tosh DK, Gao ZG, Jacobson KA, Stove CP. Assessment of biased agonism at the A3 adenosine receptor using β-arrestin and miniGαi recruitment assays. Biochem Pharmacol. 2020;177:113934. doi: 10.1016/j.bcp.2020.113934. PubMed DOI PMC

Kim SJ, Min HY, Chung HJ, Park EJ, Hong JY, Kang YJ, Shin DH, Jeong LS, Lee SK. Inhibition of cell proliferation through cell cycle arrest and apoptosis by thio-Cl-IB-MECA, a novel A3 adenosine receptor agonist, in human lung cancer cells. Cancer Lett. 2008;264:309–315. doi: 10.1016/j.canlet.2008.01.037. PubMed DOI

Baltos JA, Paoletta S, Nguyen AT, Gregory KJ, Tosh DK, Christopoulos A, Jacobson KA, May LT. Structure-activity analysis of biased agonism at the human adenosine A3 receptor. Mol Pharmacol. 2016;90:12–22. doi: 10.1124/mol.116.103283. PubMed DOI PMC

Vecchio EA, Baltos JA, Nguyen ATN, Christopoulos A, White PJ, May LT. New paradigms in adenosine receptor pharmacology: Allostery, oligomerization and biased agonism. Br J Pharmacol. 2018;175:4036–4046. doi: 10.1111/bph.14337. PubMed DOI PMC

Fredebohm J, Boettcher M, Eisen C, Gaidaμ M, Heller A, Keleg S, Tost J, Greulich-Bode KM, Hotz-Wagenblatt A, Lathrop M, et al. Establishment and characterization of a highly tumourigenic and cancer stem cell enriched pancreatic cancer cell line as a well defined model system. PLoS One. 2012;7:e48503. doi: 10.1371/journal.pone.0048503. PubMed DOI PMC

Novak I, Yu H, Magni L, Deshar G. Purinergic signaling in pancreas-from physiology to therapeutic strategies in pancreatic cancer. Int J Mol Sci. 2020;21:8781. doi: 10.3390/ijms21228781. PubMed DOI PMC

Qiu GH, Xie X, Xu F, Shi XH, Wang Y, Deng L. Distinctive pharmacological differences between liver cancer cell lines HepG2 and Hep3B. Cytotechnology. 2015;67:1–12. doi: 10.1007/s10616-014-9761-9. PubMed DOI PMC

Torres A, Vargas Y, Uribe D, Jaramillo C, Gleisner A, Salazar-Onfray F, López MN, Melo R, Oyarzún C, San Martín R, Quezada C. Adenosine A3 receptor elicits chemoresistance mediated by multiple resistance-associated protein-1 in human glioblastoma stem-like cells. Oncotarget. 2016;7:67373–67386. doi: 10.18632/oncotarget.12033. PubMed DOI PMC

Torres Á, Erices JI, Sanchez F, Ehrenfeld P, Turchi L, Virolle T, Uribe D, Niechi I, Spichiger C, Rocha JD, et al. Extracellular adenosine promotes cell migration/invasion of glioblastoma stem-like cells through A3 Adenosine Receptor activation under hypoxia. Cancer Lett. 2019;446:112–122. doi: 10.1016/j.canlet.2019.01.004. PubMed DOI

Montraveta A, Xargay-Torrent S, López-Guerra M, Rosich L, Pérez-Galán P, Salaverria I, Beà S, Kalko SG, de Frias M, Campàs C, et al. Synergistic anti-tumor activity of acadesine (AICAR) in combination with the anti-CD20 monoclonal antibody rituximab in in vivo and in vitro models of mantle cell lymphoma. Oncotarget. 2014;5:726–739. doi: 10.18632/oncotarget.1455. PubMed DOI PMC

Fishman P, Bar-Yehuda S, Barer F, Madi L, Multani AS, Pathak S. The A3 adenosine receptor as a new target for cancer therapy and chemoprotection. Exp Cell Res. 2001;269:230–236. doi: 10.1006/excr.2001.5327. PubMed DOI

Soares AS, Costa VM, Diniz C, Fresco P. The combination of Cl-IB-MECA with paclitaxel: A new anti-metastatic therapeutic strategy for melanoma. Cancer Chemother Pharmacol. 2014;74:847–860. doi: 10.1007/s00280-014-2557-y. PubMed DOI

Soares AS, Costa VM, Diniz C, Fresco P. Potentiation of cytotoxicity of paclitaxel in combination with Cl-IB-MECA in human C32 metastatic melanoma cells: A new possible therapeutic strategy for melanoma. Biomed Pharmacother. 2013;67:777–789. doi: 10.1016/j.biopha.2013.08.003. PubMed DOI

Mlejnek P, Dolezel P, Kosztyu P. P-glycoprotein mediates resistance to A3 adenosine receptor agonist 2-chloro-N6-(3-io dobenzyl)-adenosine-5′-n-methyluronamide in human leukemia cells. J Cell Physiol. 2012;227:676–685. doi: 10.1002/jcp.22775. PubMed DOI

Abel B, Tosh DK, Durell SR, Murakami M, Vahedi S, Jacobson KA, Ambudkar SV. Evidence for the interaction of A3 adenosine receptor agonists at the drug-binding site(s) of human P-glycoprotein (ABCB1) Mol Pharmacol. 2019;96:180–192. doi: 10.1124/mol.118.115295. PubMed DOI PMC

Noskova V, Dzubak P, Kuzmina G, Ludkova A, Stehlik D, Trojanec R, Janostakova A, Korinkova G, Mihal V, Hajduch M. In vitro chemoresistance profile and expression/function of MDR associated proteins in resistant cell lines derived from CCRF-CEM, K562, A549 and MDA MB 231 parental cells. Neoplasma. 2002;49:418–425. PubMed

Le Poul E, Hisada S, Mizuguchi Y, Dupriez VJ, Burgeon E, Detheux M. Adaptation of aequorin functional assay to high throughput screening. J Biomol Screen. 2002;7:57–65. doi: 10.1089/108705702753520341. PubMed DOI

Borková L, Frydrych I, Jakubcová N, Adámek R, Lišková B, Gurská S, Medvedíková M, Hajdúch M, Urban M. Synthesis and biological evaluation of triterpenoid thiazoles derived from betulonic acid, dihydrobetulonic acid, and ursonic acid. Eur J Med Chem. 2020;185:111806. doi: 10.1016/j.ejmech.2019.111806. PubMed DOI

Chou TC. Theoretical basis, experimental design, and computerized simulation of synergism and antagonism in drug combination studies. Pharmacol Rev. 2006;58:621–681. doi: 10.1124/pr.58.3.10. PubMed DOI

Chou TC, Talalay P. Quantitative analysis of dose-effect relationships: The combined effects of multiple drugs or enzyme inhibitors. Adv Enzyme Regul. 1984;22:27–55. doi: 10.1016/0065-2571(84)90007-4. PubMed DOI

Bourderioux A, Naus P, Perlíková P, Pohl R, Pichová I, Votruba I, Dzubák P, Konecný P, Hajdúch M, Stray KM, et al. Synthesis and significant cytostatic activity of 7-hetaryl-7-deazaadenosines. J Med Chem. 2011;54:5498–5507. doi: 10.1021/jm2005173. PubMed DOI

Schneider CA, Rasband WS, Eliceiri KW. NIH image to imageJ: 25 Years of image analysis. Nat Methods. 2012;9:671–675. doi: 10.1038/nmeth.2089. PubMed DOI PMC

Dzubák P, Hajdúch M, Gazák R, Svobodová A, Psotová J, Walterová D, Sedmera P, Kren V. New derivatives of silybin and 2,3-dehydrosilybin and their cytotoxic and P-glycoprotein modulatory activity. Bioorg Med Chem. 2006;14:3793–3810. doi: 10.1016/j.bmc.2006.01.035. PubMed DOI

Borea PA, Varani K, Vincenzi F, Baraldi PG, Tabrizi MA, Merighi S, Gessi S. The A3 adenosine receptor: History and perspectives. Pharmacol Rev. 2015;67:74–102. doi: 10.1124/pr.113.008540. PubMed DOI

Laudadio MA, Psarropoulou C. The A3 adenosine receptor agonist 2-Cl-IB-MECA facilitates epileptiform discharges in the CA3 area of immature rat hippocampal slices. Epilepsy Res. 2004;59:83–94. doi: 10.1016/j.eplepsyres.2004.03.005. PubMed DOI

Jafari SM, Panjehpour M, Aghaei M, Joshaghani HR, Enderami SE. A3 adenosine receptor agonist inhibited survival of breast cancer stem cells via GLI-1 and ERK1/2 pathway. J Cell Biochem. 2017;118:2909–2920. doi: 10.1002/jcb.25945. PubMed DOI

Merighi S, Benini A, Mirandola P, Gessi S, Varani K, Leung E, Maclennan S, Borea PA. A3 adenosine receptor activation inhibits cell proliferation via phosphatidylinositol 3-kinase/Akt-dependent inhibition of the extracellular signal-regulated kinase 1/2 phosphorylation in A375 human melanoma cells. J Biol Chem. 2005;280:19516–19526. doi: 10.1074/jbc.M413772200. PubMed DOI

Borea PA, Gessi S, Merighi S, Vincenzi F, Varani K. Pharmacology of adenosine receptors: The state of the art. Physiol Rev. 2018;98:1591–1625. doi: 10.1152/physrev.00049.2017. PubMed DOI

Haines K, Sarabia SF, Alvarez KR, Tomlinson G, Vasudevan SA, Heczey AA, Roy A, Finegold MJ, Parsons DW, Plon SE, et al. Characterization of pediatric hepatocellular carcinoma reveals genomic heterogeneity and diverse signaling pathway activation. Pediatr Blood Cancer. 2019;66:e27745. doi: 10.1002/pbc.27745. PubMed DOI

Jones S, Zhang XS, Parsons DW, Lin JC, Leary RJ, Angenendt P, Mankoo P, Carter H, Kamiyama H, Jimeno A, et al. Core signaling pathways in human pancreatic cancers revealed by global genomic analyses. Science. 2008;321:1801–1806. doi: 10.1126/science.1164368. PubMed DOI PMC

Olive KP, Jacobetz MA, Davidson CJ, Gopinathan A, McIntyre D, Honess D, Madhu B, Goldgraben MA, Caldwell ME, Allard D, et al. Inhibition of Hedgehog signaling enhances delivery of chemotherapy in a mouse model of pancreatic cancer. Science. 2009;324:1457–1461. doi: 10.1126/science.1171362. PubMed DOI PMC

Ding J, Zhou XT, Zou HY, Wu J. Hedgehog signaling pathway affects the sensitivity of hepatoma cells to drug therapy through the ABCC1 transporter. Lab Invest. 2017;97:819–832. doi: 10.1038/labinvest.2017.34. PubMed DOI

He TC, Sparks AB, Rago C, Hermeking H, Zawel L, da Costa LT, Morin PJ, Vogelstein B, Kinzler KW. Identification of c-MYC as a target of the APC pathway. Science. 1998;281:1509–1512. doi: 10.1126/science.281.5382.1509. PubMed DOI

Tetsu O, McCormick F. Beta-catenin regulates expression of cyclin D1 in colon carcinoma cells. Nature. 1999;398:422–426. doi: 10.1038/18884. PubMed DOI

Spoelstra EC, Westerhoff HV, Pinedo HM, Dekker H, Lankelma J. The multidrug-resistance-reverser verapamil interferes with cellular P-glycoprotein-mediated pumping of daunorubicin as a non-competing substrate. Eur J Biochem. 1994;221:363–373. doi: 10.1111/j.1432-1033.1994.tb18748.x. PubMed DOI

Queiroz KCS, Ruela-de-Sousa RR, Fuhler GM, Aberson HL, Ferreira CV, Peppelenbosch MP, Spek CA. Hedgehog signaling maintains chemoresistance in myeloid leukemic cells. Oncogene. 2010;29:6314–6322. doi: 10.1038/onc.2010.375. PubMed DOI

Jacobson KA. Adenosine A3 receptors: Novel ligands and paradoxical effects. Trends Pharmacol Sci. 1998;19:184–191. doi: 10.1016/S0165-6147(98)01203-6. PubMed DOI PMC

Aghaei M, Panjehpour M, Karami-Tehrani F, Salami S. Molecular mechanisms of A3 adenosine receptor-induced G1 cell cycle arrest and apoptosis in androgen-dependent and independent prostate cancer cell lines: Involvement of intrinsic pathway. J Cancer Res Clin Oncol. 2011;137:1511–1523. doi: 10.1007/s00432-011-1031-z. PubMed DOI PMC

Gao ZG, Jacobson KA. Translocation of arrestin induced by human A3 adenosine receptor ligands in an engineered cell line: Comparison with G protein-dependent pathways. Purinergic Signal. 2008;4:S78–S79. PubMed PMC

Mundell S, Kelly E. Adenosine receptor desensitization and trafficking. Biochim Biophys Acta. 2011;1808:1319–1328. doi: 10.1016/j.bbamem.2010.06.007. PubMed DOI

Hu J, Nakano H, Sakurai H, Colburn NH. Insufficient p65 phosphorylation at S536 specifically contributes to the lack of NF-kappaB activation and transformation in resistant JB6 cells. Carcinogenesis. 2004;25:1991–2003. doi: 10.1093/carcin/bgh198. PubMed DOI

De Luca A, Maiello MR, D'Alessio A, Pergameno M, Normanno N. The RAS/RAF/MEK/ERK and the PI3K/AKT signalling pathways: Role in cancer pathogenesis and implications for therapeutic approaches. Expert Opin Ther Targets. 2012;16(Suppl 2):S17–S27. doi: 10.1517/14728222.2011.639361. PubMed DOI

Hasnain SZ, Lourie R, Das I, Chen AC, McGuckin MA. The interplay between endoplasmic reticulum stress and inflammation. Immunol Cell Biol. 2012;90:260–270. doi: 10.1038/icb.2011.112. PubMed DOI PMC

Tam AB, Mercado EL, Hoffmann A, Niwa M. ER stress activates NF-κB by integrating functions of basal IKK activity, IRE1 and PERK. PLoS One. 2012;7:e45078. doi: 10.1371/journal.pone.0045078. PubMed DOI PMC

Makhov P, Naito S, Haifler M, Kutikov A, Boumber Y, Uzzo RG, Kolenko VM. The convergent roles of NF-κB and ER stress in sunitinib-mediated expression of pro-tumorigenic cytokines and refractory phenotype in renal cell carcinoma. Cell Death Dis. 2018;9:374. doi: 10.1038/s41419-018-0388-1. PubMed DOI PMC

Alessi DR, Andjelkovic M, Caudwell B, Cron P, Morrice N, Cohen P, Hemmings BA. Mechanism of activation of protein kinase B by insulin and IGF-1. EMBO J. 1996;15:6541–6551. doi: 10.1002/j.1460-2075.1996.tb01045.x. PubMed DOI PMC

Vincent EE, Elder DJ, Thomas EC, Phillips L, Morgan C, Pawade J, Sohail M, May MT, Hetzel MR, Tavaré JM. Akt phosphorylation on Thr308 but not on Ser473 correlates with Akt protein kinase activity in human non-small cell lung cancer. Br J Cancer. 2011;104:1755–1761. doi: 10.1038/bjc.2011.132. PubMed DOI PMC

Yung HW, Charnock-Jones DS, Burton GJ. Regulation of AKT phosphorylation at Ser473 and Thr308 by endoplasmic reticulum stress modulates substrate specificity in a severity dependent manner. PLoS One. 2011;6:e17894. doi: 10.1371/journal.pone.0017894. PubMed DOI PMC

Wu LF, Wei BL, Guo YT, Ye YQ, Li GP, Pu ZJ, Feng JL. Apoptosis induced by adenosine involves endoplasmic reticulum stress in EC109 cells. Int J Mol Med. 2012;30:797–804. doi: 10.3892/ijmm.2012.1085. PubMed DOI

Nie J, Liu A, Tan Q, Zhao K, Hu K, Li Y, Yan B, Zhou L. AICAR activates ER stress-dependent apoptosis in gallbladder cancer cells. Biochem Biophys Res Commun. 2017;482:246–252. doi: 10.1016/j.bbrc.2016.11.050. PubMed DOI

Ding L, Billadeau DD. Glycogen synthase kinase-3β: A novel therapeutic target for pancreatic cancer. Expert Opin Ther Targets. 2020;24:417–426. doi: 10.1080/14728222.2020.1743681. PubMed DOI PMC

Fishman P, Bar Yehuda S, Stemmer SM, Madi L. CF101 enhances the apoptotic effect of chemotherapy on colon and pancreatic carcinoma cell lines: Molecular mechanisms involved. J Clin Oncol. 2004;22(Suppl 14):S3173. doi: 10.1200/jco.2004.22.90140.3173. DOI

Kwee SA, Tiirikainen M. Beta-catenin activation and immunotherapy resistance in hepatocellular carcinoma: Mechanisms and biomarkers. Hepatoma Res. 2021;7:8. PubMed PMC

Hinz M, Krappmann D, Eichten A, Heder A, Scheidereit C, Strauss M. NF-kappaB function in growth control: Regulation of cyclin D1 expression and G0/G1-to-S-phase transition. Mol Cell Biol. 1999;19:2690–2698. doi: 10.1128/MCB.19.4.2690. PubMed DOI PMC

Bar-Yehuda S, Madi L, Silberman D, Gery S, Shkapenuk M, Fishman P. CF101, an agonist to the A3 adenosine receptor, enhances the chemotherapeutic effect of 5-fluorouracil in a colon carcinoma murine model. Neoplasia. 2005;7:85–90. doi: 10.1593/neo.04364. PubMed DOI PMC

Varani K, Vincenzi F, Targa M, Paradiso B, Parrilli A, Fini M, Lanza G, Borea PA. The stimulation of A(3) adenosine receptors reduces bone-residing breast cancer in a rat preclinical model. Eur J Cancer. 2013;49:482–491. doi: 10.1016/j.ejca.2012.06.005. PubMed DOI

Frydrych I, Dolezel P, Mlejnek P. P-glycoprotein overexpression confers resistance to A3 adenosine receptor agonists 2-chloro-N6-(3-iodobenzyl)-adenosine-5′-N-methyluronamide (Cl-IB-MECA) in human leukemia cells. Purinergic Signal. 2008;4(Suppl 1):S1–S210.

Lim JC, Kania KD, Wijesuriya H, Chawla S, Sethi JK, Pulaski L, Romero IA, Couraud PO, Weksler BB, Hladky SB, Barrand MA. Activation of beta-catenin signalling by GSK-3 inhibition increases p-glycoprotein expression in brain endothelial cells. J Neurochem. 2008;106:1855–1865. PubMed PMC

Buschauer S, Koch A, Wiggermann P, Müller M, Hellerbrand C. Hepatocellular carcinoma cells surviving doxorubicin treatment exhibit increased migratory potential and resistance to doxorubicin re-treatment in vitro. Oncol Lett. 2018;15:4635–4640. PubMed PMC

Yin W, Xiang D, Wang T, Zhang Y, Pham CV, Zhou S, Jiang G, Hou Y, Zhu Y, Han Y, et al. The inhibition of ABCB1/MDR1 or ABCG2/BCRP enables doxorubicin to eliminate liver cancer stem cells. Sci Rep. 2021;11:10791. doi: 10.1038/s41598-021-89931-9. PubMed DOI PMC

Hoare SRJ. The problems of applying classical pharmacology analysis to modern in vitro drug discovery assays: Slow binding kinetics and high target concentration. SLAS Discov. 2021;26:835–850. PubMed

Fredholm BB. Adenosine receptors as drug targets. Exp Cell Res. 2010;316:1284–1288. doi: 10.1016/j.yexcr.2010.02.004. PubMed DOI PMC

Kim SG, Ravi G, Hoffmann C, Jung YJ, Kim M, Chen A, Jacobson KA. p53-Independent induction of Fas and apoptosis in leukemic cells by an adenosine derivative, Cl-IB-MECA. Biochem Pharmacol. 2002;63:871–880. doi: 10.1016/S0006-2952(02)00839-0. PubMed DOI PMC

Mlejnek P, Dolezel P, Frydrych I. Effects of synthetic A3 adenosine receptor agonists on cell proliferation and viability are receptor independent at micromolar concentrations. J Physiol Biochem. 2013;69:405–417. doi: 10.1007/s13105-012-0222-7. PubMed DOI

Jajoo S, Mukherjea D, Watabe K, Ramkumar V. Adenosine A(3) receptor suppresses prostate cancer metastasis by inhibiting NADPH oxidase activity. Neoplasia. 2009;11:1132–1145. doi: 10.1593/neo.09744. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...