The effects of grafted mesenchymal stem cells labeled with iron oxide or cobalt-zinc-iron nanoparticles on the biological macromolecules of rat brain tissue extracts
Jazyk angličtina Země Nový Zéland Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
28684912
PubMed Central
PMC5484567
DOI
10.2147/ijn.s133156
PII: ijn-12-4519
Knihovny.cz E-zdroje
- Klíčová slova
- MRI, cell transplantation, comet assay, genotoxicity, lipid peroxidation, protein oxidative damage,
- MeSH
- dinoprost analogy a deriváty MeSH
- ELISA MeSH
- isoprostany analýza metabolismus MeSH
- kobalt chemie MeSH
- kovové nanočástice aplikace a dávkování chemie toxicita MeSH
- magnetická rezonanční tomografie metody MeSH
- mezenchymální kmenové buňky chemie MeSH
- mozek diagnostické zobrazování účinky léků metabolismus MeSH
- oxid křemičitý chemie MeSH
- potkani inbrední LEW MeSH
- prospektivní studie MeSH
- tkáňové extrakty MeSH
- transplantace mezenchymálních kmenových buněk * MeSH
- železité sloučeniny chemie MeSH
- železo chemie MeSH
- zinek chemie MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- 8-epi-prostaglandin F2alpha MeSH Prohlížeč
- dinoprost MeSH
- ferric oxide MeSH Prohlížeč
- isoprostany MeSH
- kobalt MeSH
- oxid křemičitý MeSH
- tkáňové extrakty MeSH
- železité sloučeniny MeSH
- železo MeSH
- zinek MeSH
INTRODUCTION: Rat mesenchymal stem cells (rMSCs) labeled with 1) poly-l-lysine-coated superparamagnetic iron oxide nanoparticles or 2) silica-coated cobalt-zinc-iron nanoparticles were implanted into the left brain hemisphere of rats, to assess their effects on the levels of oxidative damage to biological macromolecules in brain tissue. METHODS: Controls were implanted with unlabeled rMSCs. Animals were sacrificed 24 hours or 4 weeks after the treatment, and the implantation site along with the surrounding tissue was isolated from the brain. At the same intervals, parallel groups of animals were scanned in vivo by magnetic resonance imaging (MRI). The comet assay with enzymes of excision DNA repair (endonuclease III and formamidopyrimidine-DNA glycosylase) was used to analyze breaks and oxidative damage to DNA in the brain tissue. Oxidative damage to proteins and lipids was determined by measuring the levels of carbonyl groups and 15-F2t-isoprostane (enzyme-linked immunosorbent assay). MRI displayed implants of labeled cells as extensive hypointense areas in the brain tissue. In histological sections, the expression of glial fibrillary acidic protein and CD68 was analyzed to detect astrogliosis and inflammatory response. RESULTS: Both contrast labels caused a similar response in the T2-weighted magnetic resonance (MR) image and the signal was clearly visible within 4 weeks after implantation of rMSCs. No increase of oxidative damage to DNA, lipids, or proteins over the control values was detected in any sample of brain tissue from the treated animals. Also, immunohistochemistry did not indicate any serious tissue impairment around the graft. CONCLUSION: Both tested types of nanoparticles appear to be prospective and safe labels for tracking the transplanted cells by MR.
Zobrazit více v PubMed
Li L, Jiang W, Luo K, et al. Superparamagnetic iron oxide nanoparticles as MRI contrast agents for non-invasive stem cell labeling and tracking. Theranostics. 2013;3(8):595–615. PubMed PMC
Jasmin, Torres AL, Jelicks L, de Carvalho AC, Spray DC, Mendez-Otero R. Labeling stem cells with superparamagnetic iron oxide nanoparticles: analysis of the labeling efficacy by microscopy and magnetic resonance imaging. Methods Mol Biol. 2012;906:239–252. PubMed PMC
Valdiglesias V, Fernández-Bertólez N, Kilic G, et al. Are iron oxide nanoparticles safe? Current knowledge and future perspectives. J Trace Elem Med Biol. 2016;38:53–63. PubMed
Donaldson K, Borm P, Castranova V, Gulumian M. The limits of testing particle-mediated oxidative stress in vitro in predicting diverse pathologies; relevance for testing of nanoparticles. Part Fibre Toxicol. 2009;6:13–21. PubMed PMC
Shetab-Boushehri SV, Abdollahi M. Current concerns on the validity of in vitro models that use transformed neoplastic cells in pharmacology and toxicology. Int J Pharm. 2012;8(6):594–595.
Hanini A, Schmitt A, Kacem K, Chau F, Ammar S, Gavard J. Evaluation of iron oxide nanoparticle biocompatibility. Int J Nanomedicine. 2011;6:787–794. PubMed PMC
Jarockyte G, Daugelaite E, Stasys M, et al. Accumulation and toxicity of superparamagnetic iron oxide nanoparticles in cells and experimental animals. Int J Mol Sci. 2016;17(8):1193–1215. PubMed PMC
Novotna B, Jendelova P, Kapcalova M, et al. Oxidative damage to biological macromolecules in human bone marrow mesenchymal stromal cells labeled with various types of iron oxide nanoparticles. Toxicol Lett. 2012;210(1):53–63. PubMed
Novotna B, Turnovcova K, Veverka P, et al. The impact of silica encapsulated cobalt zinc ferrite nanoparticles on DNA, lipids and proteins of rat bone marrow mesenchymal stem cells. Nanotoxicology. 2016;10(6):662–670. PubMed
Babic M, Horak D, Trchova M, et al. Poly(l-lysine)-modified iron oxide nanoparticles for stem cell labeling. Bioconjug Chem. 2008;19(3):740–745. PubMed
Dominici M, Le Blanc K, Mueller I, et al. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy. 2006;8(4):315–317. PubMed
Vanecek V, Zablotskii V, Forostyak S, et al. Highly efficient magnetic targeting of mesenchymal stem cells in spinal cord injury. Int J Nanomedicine. 2012;7:3719–3730. PubMed PMC
Forostyak S, Homola A, Turnovcova K, Svitil P, Jendelova P, Sykova E. Intrathecal delivery of mesenchymal stromal cells protects the structure of altered perineuronal nets in SOD1 rats and amends the course of ALS. Stem Cells. 2014;32(12):3163–3172. PubMed PMC
Jendelova P, Herynek V, Urdzikova L, et al. Magnetic resonance tracking of transplanted bone marrow and embryonic stem cells labeled by iron oxide nanoparticles in rat brain and spinal cord. J Neurosci Res. 2004;76(2):232–243. PubMed
Singh NP, McCoy MT, Tice RR, Schneider EI. A simple technique for quantitation of low levels of DNA damage in individual cells. Exp Cell Res. 1988;175(1):184–191. PubMed
Tice RR, Agurell E, Anderson D, et al. Single cell gel/comet assay: guidelines for in vitro and in vivo genetic toxicology testing. Environ Mol Mutagen. 2000;35(3):206–221. PubMed
Collins AR. The comet assay for DNA damage and repair: principles, applications, and limitations. Mol Biotechnol. 2004;26(3):249–261. PubMed
Novotna B, Topinka J, Solansky I, Chvatalova I, Lnenickova Z, Sram RJ. Impact of air pollution and genotype variability on DNA damage in Prague policemen. Toxicol Lett. 2007;172(1–2):37–47. PubMed
Hanzalova K, Rossner P, Jr, Sram RJ. Oxidative Damage Induced by Carcinogenic Polycyclic Aromatic Hydrocarbons and Organic Extracts From Urban Air Particulate Matter. Mutat Res. 2010;696(2):114–121. PubMed
Donaldson K, Poland CA, Schins RP. Possible genotoxic mechanisms of nanoparticles: criteria for improved test strategies. Nanotoxicology. 2010;4(4):414–420. PubMed
Guzman R, Uchida N, Bliss TM, et al. Long-term monitoring of transplanted human neural stem cells in developmental and pathological contexts with MRI. Proc Natl Acad Sci USA. 2007;104(24):10211–10216. PubMed PMC
Zhang ZG, Jiang Q, Zhang R, et al. Magnetic resonance imaging and neurosphere therapy of stroke in rat. Ann Neurol. 2003;53(2):259–263. PubMed
Urdzikova L, Jendelova P, Glogarova K, Burian M, Hajek M, Sykova E. Transplantation of bone marrow stem cells as well as mobilization by granulocyte-colony stimulating factor promotes recovery after spinal cord injury in rats. J Neurotrauma. 2006;23(9):1379–1391. PubMed
Amemori T, Romanyuk N, Jendelova P, et al. Human conditionally immortalized neural stem cells improve locomotor function after spinal cord injury in the rat. Stem Cell Res Ther. 2013;4(3):68–82. PubMed PMC
van Buul GM, Kotek G, Wielopolski PA, et al. Clinically translatable cell tracking and quantification by MRI in cartilage repair using super-paramagnetic iron oxides. PLoS One. 2011;6(2):e17001. PubMed PMC