Complete rat spinal cord transection as a faithful model of spinal cord injury for translational cell transplantation

. 2015 Apr 10 ; 5 () : 9640. [epub] 20150410

Jazyk angličtina Země Anglie, Velká Británie Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid25860664

Spinal cord injury (SCI) results in neural loss and consequently motor and sensory impairment below the injury. There are currently no effective therapies for the treatment of traumatic SCI in humans. Various animal models have been developed to mimic human SCI. Widely used animal models of SCI are complete or partial transection or experimental contusion and compression, with both bearing controversy as to which one more appropriately reproduces the human SCI functional consequences. Here we present in details the widely used procedure of complete spinal cord transection as a faithful animal model to investigate neural and functional repair of the damaged tissue by exogenous human transplanted cells. This injury model offers the advantage of complete damage to a spinal cord at a defined place and time, is relatively simple to standardize and is highly reproducible.

Zobrazit více v PubMed

Erceg S. PubMed PMC

Keirstead H. S. PubMed PMC

Kerr C. L. PubMed

Kumagai G. PubMed PMC

Liang P., Jin L. H., Liang T., Liu E. Z. & Zhao S. G. Human neural stem cells promote corticospinal axons regeneration and synapse reformation in injured spinal cord of rats. Chinese medical journal 119, 1331–1338 (2006). PubMed

Nori S. PubMed PMC

Tsuji O. PubMed PMC

Tsuji O. PubMed PMC

Waters R. L., Adkins R. H. & Yakura J. S. Definition of complete spinal cord injury. Paraplegia 29, 573–581 (1991). PubMed

Yang C. C. PubMed PMC

Sakai K. PubMed PMC

Lopez-Vales R., Fores J., Navarro X. & Verdu E. Chronic transplantation of olfactory ensheathing cells promotes partial recovery after complete spinal cord transection in the rat. Glia 55, 303–311 (2007). PubMed

Lopez-Vales R., Fores J., Verdu E. & Navarro X. Acute and delayed transplantation of olfactory ensheathing cells promote partial recovery after complete transection of the spinal cord. Neurobiol Dis 21, 57–68 (2006). PubMed

Basso D. M., Beattie M. S. & Bresnahan J. C. A sensitive and reliable locomotor rating scale for open field testing in rats. J Neurotrauma 12, 1–21 (1995). PubMed

Schucht P., Raineteau O., Schwab M. E. & Fouad K. Anatomical correlates of locomotor recovery following dorsal and ventral lesions of the rat spinal cord. Exp Neurol 176, 143–153 (2002). PubMed

Basso D. M., Beattie M. S. & Bresnahan J. C. Graded histological and locomotor outcomes after spinal cord contusion using the NYU weight-drop device versus transection. Exp Neurol 139, 244–256 (1996). PubMed

Diehl P., Kliesch U., Dietz V. & Curt A. Impaired facilitation of motor evoked potentials in incomplete spinal cord injury. Journal of neurology 253, 51–57 (2006). PubMed

Hess C. W., Mills K. R. & Murray N. M. Responses in small hand muscles from magnetic stimulation of the human brain. The Journal of physiology 388, 397–419 (1987). PubMed PMC

Rossini P. M. & Rossi S. Clinical applications of motor evoked potentials. Electroencephalography and clinical neurophysiology 106, 180–194 (1998). PubMed

Blight A. R. Spinal cord injury models: neurophysiology. J Neurotrauma 9, 147–149; discussion 149–150 (1992). PubMed

Guth L., Brewer C. R., Collins W. F., Goldberger M. E. & Perl E. R. Criteria for evaluating spinal cord regeneration experiments. Surgical neurology 14, 392 (1980). PubMed

Jendelova P. PubMed

Moreno-Manzano V. PubMed

Chen J. PubMed

Hejcl A. PubMed

Kubinova S. & Sykova E. Biomaterials combined with cell therapy for treatment of spinal cord injury. Regenerative medicine 7, 207–224 (2012). PubMed

Iannotti C. PubMed

Lai B. Q., Wang J. M., Ling E. A., Wu J. L. & Zeng Y. S. Graft of a tissue-engineered neural scaffold serves as a promising strategy to restore myelination after rat spinal cord transection. Stem Cells Dev 23, 910–921 (2014). PubMed PMC

Talac R. PubMed

Kang K. N. PubMed

Lukovic D. PubMed

Kang K. N. PubMed

Fouad K. PubMed PMC

Hurtado A. PubMed PMC

Krenz N. R. & Weaver L. C. Sprouting of primary afferent fibers after spinal cord transection in the rat. Neuroscience 85, 443–458 (1998). PubMed

Nistor G. I., Totoiu M. O., Haque N., Carpenter M. K. & Keirstead H. S. Human embryonic stem cells differentiate into oligodendrocytes in high purity and myelinate after spinal cord transplantation. Glia 49, 385–396 (2005). PubMed

Oria M. PubMed

Oria M., Chatauret N., Raguer N. & Cordoba J. A new method for measuring motor evoked potentials in the awake rat: effects of anesthetics. J Neurotrauma 25, 266–275 (2008). PubMed

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Stem Cells and Labeling for Spinal Cord Injury

. 2016 Dec 26 ; 18 (1) : . [epub] 20161226

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...