Complete rat spinal cord transection as a faithful model of spinal cord injury for translational cell transplantation
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
25860664
PubMed Central
PMC5381701
DOI
10.1038/srep09640
PII: srep09640
Knihovny.cz E-zdroje
- MeSH
- embryonální kmenové buňky MeSH
- krysa rodu Rattus MeSH
- lidé MeSH
- modely nemocí na zvířatech * MeSH
- poranění míchy patologie patofyziologie terapie MeSH
- translační biomedicínský výzkum * MeSH
- transplantace buněk * MeSH
- zvířata MeSH
- Check Tag
- krysa rodu Rattus MeSH
- lidé MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Spinal cord injury (SCI) results in neural loss and consequently motor and sensory impairment below the injury. There are currently no effective therapies for the treatment of traumatic SCI in humans. Various animal models have been developed to mimic human SCI. Widely used animal models of SCI are complete or partial transection or experimental contusion and compression, with both bearing controversy as to which one more appropriately reproduces the human SCI functional consequences. Here we present in details the widely used procedure of complete spinal cord transection as a faithful animal model to investigate neural and functional repair of the damaged tissue by exogenous human transplanted cells. This injury model offers the advantage of complete damage to a spinal cord at a defined place and time, is relatively simple to standardize and is highly reproducible.
Zobrazit více v PubMed
Kerr C. L. PubMed
Liang P., Jin L. H., Liang T., Liu E. Z. & Zhao S. G. Human neural stem cells promote corticospinal axons regeneration and synapse reformation in injured spinal cord of rats. Chinese medical journal 119, 1331–1338 (2006). PubMed
Waters R. L., Adkins R. H. & Yakura J. S. Definition of complete spinal cord injury. Paraplegia 29, 573–581 (1991). PubMed
Lopez-Vales R., Fores J., Navarro X. & Verdu E. Chronic transplantation of olfactory ensheathing cells promotes partial recovery after complete spinal cord transection in the rat. Glia 55, 303–311 (2007). PubMed
Lopez-Vales R., Fores J., Verdu E. & Navarro X. Acute and delayed transplantation of olfactory ensheathing cells promote partial recovery after complete transection of the spinal cord. Neurobiol Dis 21, 57–68 (2006). PubMed
Basso D. M., Beattie M. S. & Bresnahan J. C. A sensitive and reliable locomotor rating scale for open field testing in rats. J Neurotrauma 12, 1–21 (1995). PubMed
Schucht P., Raineteau O., Schwab M. E. & Fouad K. Anatomical correlates of locomotor recovery following dorsal and ventral lesions of the rat spinal cord. Exp Neurol 176, 143–153 (2002). PubMed
Basso D. M., Beattie M. S. & Bresnahan J. C. Graded histological and locomotor outcomes after spinal cord contusion using the NYU weight-drop device versus transection. Exp Neurol 139, 244–256 (1996). PubMed
Diehl P., Kliesch U., Dietz V. & Curt A. Impaired facilitation of motor evoked potentials in incomplete spinal cord injury. Journal of neurology 253, 51–57 (2006). PubMed
Hess C. W., Mills K. R. & Murray N. M. Responses in small hand muscles from magnetic stimulation of the human brain. The Journal of physiology 388, 397–419 (1987). PubMed PMC
Rossini P. M. & Rossi S. Clinical applications of motor evoked potentials. Electroencephalography and clinical neurophysiology 106, 180–194 (1998). PubMed
Blight A. R. Spinal cord injury models: neurophysiology. J Neurotrauma 9, 147–149; discussion 149–150 (1992). PubMed
Guth L., Brewer C. R., Collins W. F., Goldberger M. E. & Perl E. R. Criteria for evaluating spinal cord regeneration experiments. Surgical neurology 14, 392 (1980). PubMed
Jendelova P. PubMed
Moreno-Manzano V. PubMed
Chen J. PubMed
Hejcl A. PubMed
Kubinova S. & Sykova E. Biomaterials combined with cell therapy for treatment of spinal cord injury. Regenerative medicine 7, 207–224 (2012). PubMed
Iannotti C. PubMed
Lai B. Q., Wang J. M., Ling E. A., Wu J. L. & Zeng Y. S. Graft of a tissue-engineered neural scaffold serves as a promising strategy to restore myelination after rat spinal cord transection. Stem Cells Dev 23, 910–921 (2014). PubMed PMC
Talac R. PubMed
Kang K. N. PubMed
Lukovic D. PubMed
Kang K. N. PubMed
Krenz N. R. & Weaver L. C. Sprouting of primary afferent fibers after spinal cord transection in the rat. Neuroscience 85, 443–458 (1998). PubMed
Nistor G. I., Totoiu M. O., Haque N., Carpenter M. K. & Keirstead H. S. Human embryonic stem cells differentiate into oligodendrocytes in high purity and myelinate after spinal cord transplantation. Glia 49, 385–396 (2005). PubMed
Oria M. PubMed
Oria M., Chatauret N., Raguer N. & Cordoba J. A new method for measuring motor evoked potentials in the awake rat: effects of anesthetics. J Neurotrauma 25, 266–275 (2008). PubMed
Stem Cells and Labeling for Spinal Cord Injury