Stem Cells and Labeling for Spinal Cord Injury
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, přehledy
PubMed
28035961
PubMed Central
PMC5297641
DOI
10.3390/ijms18010006
PII: ijms18010006
Knihovny.cz E-zdroje
- Klíčová slova
- spinal cord injury, stem cell labeling, stem cells,
- MeSH
- buněčný tracking metody MeSH
- lidé MeSH
- nervové kmenové buňky cytologie transplantace MeSH
- neurogeneze MeSH
- poranění míchy diagnostické zobrazování patologie terapie MeSH
- regenerace nervu MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Spinal cord injury (SCI) is a devastating condition that usually results in sudden and long-lasting locomotor and sensory neuron degeneration below the lesion site. During the last two decades, the search for new therapies has been revolutionized with the improved knowledge of stem cell (SC) biology. SCs therapy offers several attractive strategies for spinal cord repair. The transplantation of SCs promotes remyelination, neurite outgrowth and axonal elongation, and activates resident or transplanted progenitor cells across the lesion cavity. However, optimized growth and differentiation protocols along with reliable safety assays should be established prior to the clinical application of SCs. Additionally, the ideal method of SCs labeling for efficient cell tracking after SCI remains a challenging issue that requires further investigation. This review summarizes the current findings on the SCs-based therapeutic strategies, and compares different SCs labeling approaches for SCI.
Zobrazit více v PubMed
Ronaghi M., Erceg S., Moreno-Manzano V., Stojkovic M. Challenges of stem cell therapy for spinal cord injury: Human embryonic stem cells, endogenous neural stem cells, or induced pluripotent stem cells? Stem Cells. 2010;28:93–99. doi: 10.1002/stem.253. PubMed DOI
Singh A., Tetreault L., Kalsi-Ryan S., Nouri A., Fehlings M.G. Global prevalence and incidence of traumatic spinal cord injury. Clin. Epidemiol. 2014;6:309–331. PubMed PMC
National Spinal Cord Injury Statistical Center Spinal cord injury (SCI) 2016 facts and figures at a glance. J. Spinal Cord Med. 2016;39:493–494. PubMed PMC
Goel A. Stem cell therapy in spinal cord injury: Hollow promise or promising science? J. Craniovertebr. Junction Spine. 2016;7:121–126. doi: 10.4103/0974-8237.181880. PubMed DOI PMC
Beattie M.S., Li Q., Bresnahan J.C. Cell death and plasticity after experimental spinal cord injury. Prog. Brain Res. 2000;128:9–21. PubMed
Blight A.R. Spinal cord injury models: Neurophysiology. J. Neurotrauma. 1992;9:147–149. doi: 10.1089/neu.1992.9.147. PubMed DOI
Grossman S.D., Rosenberg L.J., Wrathall J.R. Relationship of altered glutamate receptor subunit mRNA expression to acute cell loss after spinal cord contusion. Exp. Neurol. 2001;168:283–289. doi: 10.1006/exnr.2001.7629. PubMed DOI
Oyinbo C.A. Secondary injury mechanisms in traumatic spinal cord injury: A nugget of this multiply cascade. Acta Neurobiol. Exp. (Wars) 2011;71:281–299. PubMed
Pineau I., Lacroix S. Proinflammatory cytokine synthesis in the injured mouse spinal cord: Multiphasic expression pattern and identification of the cell types involved. J. Comp. Neurol. 2007;500:267–285. doi: 10.1002/cne.21149. PubMed DOI
Lukovic D., Stojkovic M., Moreno-Manzano V., Jendelova P., Sykova E., Bhattacharya S.S., Erceg S. Concise review: Reactive astrocytes and stem cells in spinal cord injury: Good guys or bad guys? Stem Cells. 2015;33:1036–1041. doi: 10.1002/stem.1959. PubMed DOI
Pekny M., Nilsson M. Astrocyte activation and reactive gliosis. Glia. 2005;50:427–434. doi: 10.1002/glia.20207. PubMed DOI
Silver J., Miller J.H. Regeneration beyond the glial scar. Nat. Rev. Neurosci. 2004;5:146–156. doi: 10.1038/nrn1326. PubMed DOI
Lukovic D., Valdés-Sanchez L., Sanchez-Vera I., Moreno-Manzano V., Stojkovic M., Bhattacharya S.S., Erceg S. Brief report: Astrogliosis promotes functional recovery of completely transected spinal cord following transplantation of hESC-derived oligodendrocyte and motoneuron progenitors. Stem Cells. 2014;32:594–599. doi: 10.1002/stem.1562. PubMed DOI
Erceg S., Laínez S., Ronaghi M., Stojkovic P., Pérez-Aragó M.A., Moreno-Manzano V., Moreno-Palanques R., Planells-Cases R., Stojkovic M. Differentiation of human embryonic stem cells to regional specific neural precursors in chemically defined medium conditions. PLoS ONE. 2008;3:e2122. doi: 10.1371/journal.pone.0002122. PubMed DOI PMC
Volarevic V., Erceg S., Bhattacharya S.S., Stojkovic P., Horner P., Stojkovic M. Stem cell-based therapy for spinal cord injury. Cell Transplant. 2013;22:1309–1323. doi: 10.3727/096368912X657260. PubMed DOI
Lukovic D., Moreno-Manzano V., Lopez-Mocholi E., Rodriguez-Jiménez F.J., Jendelova P., Sykova E., Oria M., Stojkovic M., Erceg S. Complete rat spinal cord transection as a faithful model of spinal cord injury for translational cell transplantation. Sci. Rep. 2015;5:9640. doi: 10.1038/srep09640. PubMed DOI PMC
Erceg S., Ronaghi M., Oria M., Roselló M.G., Aragó M.A., Lopez M.G., Radojevic I., Moreno-Manzano V., Rodríguez-Jiménez F.J., Bhattacharya S.S., et al. Transplanted oligodendrocytes and motoneuron progenitors generated from human embryonic stem cells promote locomotor recovery after spinal cord transection. Stem Cells. 2010;28:1541–1549. doi: 10.1002/stem.489. PubMed DOI PMC
Moreno-Manzano V., Rodríguez-Jiménez F.J., García-Roselló M., Laínez S., Erceg S., Calvo M.T., Ronaghi M., Lloret M., Planells-Cases R., Sánchez-Puelles J.M., et al. Activated spinal cord ependymal stem cells rescue neurological function. Stem Cells. 2009;27:733–743. doi: 10.1002/stem.24. PubMed DOI
Lako M., Armstrong L., Stojkovic M. Induced pluripotent stem cells: It looks simple but can looks deceive? Stem Cells. 2010;28:845–850. doi: 10.1002/stem.411. PubMed DOI
Angelos M.G., Kaufman D.S. Pluripotent stem cell applications forregenerative medicine. Curr. Opin. Organ Transplant. 2015;20:663–670. PubMed PMC
Erceg S., Lukovic D., Moreno-Manzano V., Stojkovic M., Bhattacharya S.S. Derivation of cerebellar neurons from human pluripotent stem cells. Curr. Protoc. Stem Cell Biol. 2012 doi: 10.1002/9780470151808.sc01h05s20. PubMed DOI
Hodgetts S.I., Edel M., Harvey A.R. The state of play with iPSCs and spinal cord injury models. J. Clin. Med. 2015;4:193–203. doi: 10.3390/jcm4010193. PubMed DOI PMC
Jin X., Lin T., Xu Y. Stem cell therapy and immunological rejection in animal models. Curr. Mol. Pharmacol. 2015 doi: 10.2174/1874467208666150928153511. PubMed DOI
Lee-Kubli C.A., Lu P. Induced pluripotent stem cell-derived neural stem cell therapies for spinal cord injury. Neural Regen. Res. 2015;10:10–16. PubMed PMC
Amemori T., Ruzicka J., Romanyuk N., Jhanwar-Uniyal M., Sykova E., Jendelova P. Comparison of intraspinal and intrathecal implantation of induced pluripotent stem cell-derived neural precursors for the treatment of spinal cord injury in rats. Stem Cell Res. Ther. 2015;6:257. doi: 10.1186/s13287-015-0255-2. PubMed DOI PMC
Kawabata S., Takano M., Numasawa-Kuroiwa Y., Itakura G., Kobayashi Y., Nishiyama Y., Sugai K., Nishimura S., Iwai H., Isoda M., et al. Grafted human iPScell-derived oligodendrocyte precursor cells contribute to robust remyelination of demyelinated axons after spinal cord injury. Stem Cell Rep. 2016;6:1–8. doi: 10.1016/j.stemcr.2015.11.013. PubMed DOI PMC
Pomeshchik Y., Puttonen K.A., Kidin I., Ruponen M., Lehtonen S., Malm T., Åkesson E., Hovatta O., Koistinaho J. Transplanted human induced pluripotent stem cell-derived neural progenitor cells do not promote functional recovery of pharmacologically immunosuppressed mice with contusion spinal cord injury. Cell Transplant. 2015;24:1799–1812. doi: 10.3727/096368914X684079. PubMed DOI
Karimi-Abdolrezaee S., Eftekharpour E., Wang J., Morshead C.M., Fehlings M.G. Delayed transplantation of adult neural precursor cells promotes remyelination and functional neurological recovery after spinal cordinjury. J. Neurosci. 2006;26:3377–3389. doi: 10.1523/JNEUROSCI.4184-05.2006. PubMed DOI PMC
Gómez-Villafuertes R., Rodríguez-Jiménez F.J., Alastrue-Agudo A., Stojkovic M., Miras-Portugal M.T., Moreno-Manzano V. Purinergic receptors in spinal cord-derived ependymal stem/progenitor cells and their potential role in cell-based therapy for spinal cord injury. Cell Transplant. 2015;24:1493–1509. doi: 10.3727/096368914X682828. PubMed DOI
Rodriguez-Jimenez F.J., Alastrue-Agudo A., Stojkovic M., Erceg S., Moreno-Manzano V. Connexin 50 expression in ependymal stem progenitor cells after spinal cord injury activation. Int. J. Mol. Sci. 2015;16:26608–26618. doi: 10.3390/ijms161125981. PubMed DOI PMC
Rodríguez-Jiménez F.J., Alastrue-Agudo A., Erceg S., Stojkovic M., Moreno-Manzano V. FM19G11 favors spinal cord injury regeneration and stem cell self-renewal by mitochondrial uncoupling and glucose metabolism induction. Stem Cells. 2012;30:2221–2233. doi: 10.1002/stem.1189. PubMed DOI
Valdes-Sánchez T., Rodriguez-Jimenez F.J., García-Cruz D.M., Escobar-Ivirico J.L., Alastrue-Agudo A., Erceg S., Monleón M., Moreno-Manzano V. Methacrylate-endcapped caprolactone and FM19G11 provide a proper niche for spinal cord-derived neural cells. J. Tissue Eng. Regen. Med. 2015;9:734–739. doi: 10.1002/term.1735. PubMed DOI
Moreno-Manzano V., Rodríguez-Jiménez F.J., Aceña-Bonilla J.L., Fustero-Lardíes S., Erceg S., Dopazo J., Montaner D., Stojkovic M., Sánchez-Puelles J.M. FM19G11, a new hypoxia-inducible factor (HIF) modulator, affects stem cell differentiation status. J. Biol. Chem. 2010;285:1333–1342. doi: 10.1074/jbc.M109.008326. PubMed DOI PMC
Gazdic M., Volarevic V., Arsenijevic N., Stojkovic M. Mesenchymal stem cells: A friend or foe in immune-mediated diseases. Stem Cell Rev. 2015;11:280–287. doi: 10.1007/s12015-014-9583-3. PubMed DOI
Ruff C.A., Wilcox J.T., Fehlings M.G. Cell-based transplantation strategies to promote plasticity following spinal cord injury. Exp. Neurol. 2012;235:78–90. doi: 10.1016/j.expneurol.2011.02.010. PubMed DOI
Sasaki M., Radtke C., Tan A.M., Zhao P., Hamada H., Houkin K., Honmou O., Kocsis J.D. BDNF-hypersecreting human mesenchymal stem cells promote functional recovery, axonal sprouting, and protection of corticospinal neurons after spinal cord injury. J. Neurosci. 2009;29:14932–14941. doi: 10.1523/JNEUROSCI.2769-09.2009. PubMed DOI PMC
Nguyen P.K., Riegler J., Wu J.C. Stem cell imaging: From bench to bedside. Cell Stem Cell. 2014;14:431–444. doi: 10.1016/j.stem.2014.03.009. PubMed DOI PMC
Paspala S.A., Vishwakarma S.K., Murthy T.V., Rao T.N., Khan A.A. Potential role of stem cells in severe spinal cord injury: Current perspectives and clinical data. Stem Cells Cloning. 2012;5:15–27. doi: 10.2147/SCCAA.S28477. PubMed DOI PMC
Srivastava A.K., Bulte J.W. Seeing stem cells at work in vivo. Stem Cell Rev. 2014;10:127–144. doi: 10.1007/s12015-013-9468-x. PubMed DOI PMC
Li J., Lepski G. Cell transplantation for spinal cord injury: A systematic review. BioMed Res. Int. 2013;2013:786475. doi: 10.1155/2013/786475. PubMed DOI PMC
Callera F., de Melo C.M. Magnetic resonance tracking of magnetically labeled autologous bone marrow CD34+ cells transplanted into the spinal cord via lumbar puncture technique in patients with chronic spinal cord injury: CD34+ cells’ migration into the injured site. Stem Cells Dev. 2007;16:461–466. doi: 10.1089/scd.2007.0083. PubMed DOI
Obenaus A., Dilmac N., Tone B., Tian H.R., Hartman R., Digicaylioglu M., Snyder E.Y., Ashwal S. Long-term magnetic resonance imaging of stem cells in neonatal ischemic injury. Ann. Neurol. 2011;69:282–291. doi: 10.1002/ana.22168. PubMed DOI PMC
Guzman R., Uchida N., Bliss T.M., He D., Christopherson K.K., Stellwagen D., Capela A., Greve J., Malenka R.C., Moseley M.E., et al. Long-term monitoring of transplanted human neural stem cells in developmental and pathological contexts with MRI. Proc. Natl. Acad. Sci. USA. 2007;104:10211–10216. doi: 10.1073/pnas.0608519104. PubMed DOI PMC
Gonzalez-Lara L.E., Xu X., Hofstetrova K., Pniak A., Chen Y., McFadden C.D., Martinez-Santiesteban F.M., Rutt B.K., Brown A., Foster P.J. The use of cellular magnetic resonance imaging to track the fate of iron-labeled multipotent stromal cells after direct transplantation in a mouse model of spinal cord injury. Mol. Imaging Biol. 2011;13:702–711. doi: 10.1007/s11307-010-0393-y. PubMed DOI
Zhu J., Zhou L., Xing Wu F. Tracking neural stem cells in patients with brain trauma. N. Engl. J. Med. 2006;355:2376–2378. doi: 10.1056/NEJMc055304. PubMed DOI
Cohen M.E., Muja N., Fainstein N., Bulte J.W.M., Ben-Hur T. Conserved fate and function of ferumoxides-labeled neural precursor cells in vitro and in vivo. J. Neurosci. Res. 2010;88:936–944. doi: 10.1002/jnr.22277. PubMed DOI PMC
Amemori T., Romanyuk N., Jendelova P., Herynek V., Turnovcova K., Prochazka P., Kapcalova M., Cocks G., Price J., Sykova E. Human conditionally immortalized neural stem cells improve locomotor function after spinal cord injury in the rat. Stem Cell Res. Ther. 2013;4:68. doi: 10.1186/scrt219. PubMed DOI PMC
Cromer Berman S.M., Kshitiz, Wang C.J., Orukari I., Levchenko A., Bulte J.W., Walczak P. Cell motility of neural stem cells is reduced after SPIO-labeling, which is mitigated after exocytosis. Magn. Reson. Med. 2013;69:255–262. doi: 10.1002/mrm.24216. PubMed DOI PMC
Hu S.L., Lu P.G., Zhang L.J., Li F., Chen Z., Wu N., Meng H., Lin J.K., Feng H. In Vivo magnetic resonance imaging tracking of SPIO-labeled human umbilical cord mesenchymal stem cells. J. Cell. Biochem. 2012;113:1005–1012. doi: 10.1002/jcb.23432. PubMed DOI
Urdzíková L., Jendelová P., Glogarová K., Burian M., Hájek M., Syková E. Transplantation of bone marrow stem cells as well as mobilization by granulocyte-colony stimulating factor promotes recovery after spinal cord injury in rats. J. Neurotrauma. 2006;23:1379–1391. doi: 10.1089/neu.2006.23.1379. PubMed DOI
Chotivichit A., Ruangchainikom M., Chiewvit P., Wongkajornsilp A., Sujirattanawimol K. Chronic spinal cord injury treated with transplanted autologous bone marrow-derived mesenchymal stem cells tracked by magnetic resonance imaging: A case report. J. Med. Case Rep. 2015;9:79. doi: 10.1186/s13256-015-0535-6. PubMed DOI PMC
Vaněček V., Zablotskii V., Forostyak S., Růžička J., Herynek V., Babič M., Jendelová P., Kubinová S., Dejneka A., Syková E. Highly efficient magnetic targeting of mesenchymal stem cells in spinal cord injury. Int. J. Nanomed. 2012;7:3719–3730. doi: 10.2147/IJN.S32824. PubMed DOI PMC
Zhang R.-P., Xu C., Liu Y., Li J.-D., Xie J. Visual bone marrow mesenchymal stem cell transplantation in the repair of spinal cord injury. Neural Regen. Res. 2015;10:404–411. doi: 10.4103/1673-5374.155440. PubMed DOI PMC
Donnelly E.M., Lamanna J., Boulis N.M. Stem cell therapy for the spinal cord. Stem Cell Res. Ther. 2012;3:24. doi: 10.1186/scrt115. PubMed DOI PMC
Li Z., Suzuki Y., Huang M., Cao F., Xie X., Connolly A.J., Yang P.C., Wu J.C. Comparison of reporter gene and iron particle labeling for tracking fate of human embryonic stem cells and differentiated endothelial cells in living subjects. Stem Cells. 2008;26:864–873. doi: 10.1634/stemcells.2007-0843. PubMed DOI PMC
DeHaro J., Zurita M., Ayllón L., Vaquero J. Detection of 111In-oxine-labeled bone marrow stromal cells after intravenous or intralesional administration in chronic paraplegic rats. Neurosci. Lett. 2005;377:7–11. doi: 10.1016/j.neulet.2004.11.060. PubMed DOI
Li S.C., Tachiki L.M., Luo J., Dethlefs B.A., Chen Z., Loudon W.G. A biological global positioning system: Considerations for tracking stem cell behaviors in the whole body. Stem Cell Rev. 2010;6:317–333. doi: 10.1007/s12015-010-9130-9. PubMed DOI PMC
Lo W.C., Hsu C.H., Wu A.T., Yang L.Y., Chen W.H., Chiu W.T., Lai W.F., Wu C.H., Gelovani J.G., Deng W.P. A novel cell-based therapy for contusion spinal cord injury using GDNFdelivering NIH3T3 cells with dual reporter genes monitored by molecular imaging. J. Nucl. Med. 2008;49:1512–1519. doi: 10.2967/jnumed.108.051896. PubMed DOI
Berman S.C., Galpoththawela C., Gilad A.A., Bulte J.W., Walczak P. Long-term MR cell tracking of neural stem cells grafted in immunocompetent versus immunodeficient mice reveals distinct differences in contrast between live and dead cells. Magn. Reson. Med. 2011;65:564–574. doi: 10.1002/mrm.22613. PubMed DOI PMC
Takahashi Y., Tsuji O., Kumagai G., Hara C.M., Okano H.J., Miyawaki A., Toyama Y., Okano H., Nakamura M. Comparative study of methods for administering neural stem/progenitor cells to treat spinal cord injury in mice. Cell Transplant. 2011;20:727–739. doi: 10.3727/096368910X536554. PubMed DOI
Okada S., Ishii K., Yamane J., Iwanami A., Ikegami T., Katoh H., Iwamoto Y., Nakamura M., Miyoshi H., Okano H.J., et al. In vivo imaging of engrafted neural stem cells: Its application in evaluating the optimal timing of transplantation for spinal cord injury. FASEB J. 2005;19:1839–1841. doi: 10.1096/fj.05-4082fje. PubMed DOI
Lukovic D., Moreno Manzano V., Stojkovic M., Bhattacharya S.S., Erceg S. Concise review: Human pluripotent stem cells in the treatment of spinal cord injury. Stem Cells. 2012;30:1787–1792. doi: 10.1002/stem.1159. PubMed DOI
Song F., Tian M., Zhang H. Molecular imaging in stem cell therapy for spinal cord injury. BioMed Res. Int. 2014;2014:759514. doi: 10.1155/2014/759514. PubMed DOI PMC