The Impact of Air Pollution Exposure on the MicroRNA Machinery and Lung Cancer Development

. 2021 Jan 19 ; 11 (1) : . [epub] 20210119

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid33477935

Grantová podpora
CZ.02.1.01/0.0/0.0/16_019/0000798 Ministry of Education, Youth and Sports of the Czech Republic
LM2018124 Ministry of Education, Youth and Sports of the Czech Republic
18-02079S Czech Science Foundation

Small non-coding RNA molecules (miRNAs) play an important role in the epigenetic regulation of gene expression. As these molecules have been repeatedly implicated in human cancers, they have been suggested as biomarkers of the disease. Additionally, miRNA levels have been shown to be affected by environmental pollutants, including airborne contaminants. In this review, we searched the current literature for miRNAs involved in lung cancer, as well as miRNAs deregulated as a result of exposure to air pollutants. We then performed a synthesis of the data and identified those molecules commonly deregulated under both conditions. We detected a total of 25 miRNAs meeting the criteria, among them, miR-222, miR-21, miR-126-3p, miR-155 and miR-425 being the most prominent. We propose these miRNAs as biomarkers of choice for the identification of human populations exposed to air pollution with a significant risk of developing lung cancer.

Zobrazit více v PubMed

Lee R.C., Feinbaum R.L., Ambros V., The C. Elegans Heterochronic Gene Lin-4 Encodes Small RNAs with Antisense Complementarity to Lin-14. Cell. 1993;75:843–854. doi: 10.1016/0092-8674(93)90529-Y. PubMed DOI

miRbase. [(accessed on 1 December 2020)]; Available online: http://mirbase.org/

Kozomara A., Birgaoanu M., Griffiths-Jones S. MiRBase: From MicroRNA Sequences to Function. Nucleic Acids Res. 2019;47:D155–D162. doi: 10.1093/nar/gky1141. PubMed DOI PMC

Alles J., Fehlmann T., Fischer U., Backes C., Galata V., Minet M., Hart M., Abu-Halima M., Grässer F.A., Lenhof H.-P., et al. An Estimate of the Total Number of True Human MiRNAs. Nucleic Acids Res. 2019;47:3353–3364. doi: 10.1093/nar/gkz097. PubMed DOI PMC

Tomari Y., Zamore P.D. MicroRNA Biogenesis: Drosha Can’t Cut It without a Partner. Curr. Biol. 2005;15:R61–R64. doi: 10.1016/j.cub.2004.12.057. PubMed DOI

Michlewski G., Cáceres J.F. Post-Transcriptional Control of MiRNA Biogenesis. RNA. 2019;25:1–16. doi: 10.1261/rna.068692.118. PubMed DOI PMC

Bernardo B.C., Charchar F.J., Lin R.C.Y., McMullen J.R. A MicroRNA Guide for Clinicians and Basic Scientists: Background and Experimental Techniques. Heart Lung Circ. 2012;21:131–142. doi: 10.1016/j.hlc.2011.11.002. PubMed DOI

Tian T., Wang J., Zhou X. A Review: MicroRNA Detection Methods. Org. Biomol. Chem. 2015;13:2226–2238. doi: 10.1039/C4OB02104E. PubMed DOI

Bartošík M., Jiráková L. Current Methods of MicroRNA Analysis. Klin. Onkol. 2018;31 doi: 10.14735/amko20182S93. PubMed DOI

Krepelkova I., Mrackova T., Izakova J., Dvorakova B., Chalupova L., Mikulik R., Slaby O., Bartos M., Ruzicka V. Evaluation of MiRNA Detection Methods for the Analytical Characteristic Necessary for Clinical Utilization. Biotechniques. 2019;66:277–284. doi: 10.2144/btn-2019-0021. PubMed DOI

Tajadini M., Panjehpour M., Javanmard S. Comparison of SYBR Green and TaqMan Methods in Quantitative Real-Time Polymerase Chain Reaction Analysis of Four Adenosine Receptor Subtypes. Adv. Biomed. Res. 2014;3:85. doi: 10.4103/2277-9175.127998. PubMed DOI PMC

González-Bermúdez L., Anglada T., Genescà A., Martín M., Terradas M. Identification of Reference Genes for RT-QPCR Data Normalisation in Aging Studies. Sci. Rep. 2019;9:13970. doi: 10.1038/s41598-019-50035-0. PubMed DOI PMC

Backes C., Meese E., Keller A. Specific MiRNA Disease Biomarkers in Blood, Serum and Plasma: Challenges and Prospects. Mol. Diagn. Ther. 2016;20:509–518. doi: 10.1007/s40291-016-0221-4. PubMed DOI

Vishnoi A., Rani S. MiRNA Biogenesis and Regulation of Diseases: An Overview. In: Rani S., editor. MicroRNA Profiling. Volume 1509. Springer; New York, NY, USA: 2017. pp. 1–10. Methods in Molecular Biology. PubMed

Wojciechowska A., Osiak A., Kozar-Kamińska K. MicroRNA in Cardiovascular Biology and Disease. Adv. Clin. Exp. Med. 2017;26:868–874. doi: 10.17219/acem/62915. PubMed DOI

Calin G.A., Dumitru C.D., Shimizu M., Bichi R., Zupo S., Noch E., Aldler H., Rattan S., Keating M., Rai K., et al. Frequent Deletions and Down-Regulation of Micro-RNA Genes MiR15 and MiR16 at 13q14 in Chronic Lymphocytic Leukemia. Proc. Natl. Acad. Sci. USA. 2002;99:15524–15529. doi: 10.1073/pnas.242606799. PubMed DOI PMC

World Health Organization [(accessed on 1 December 2020)]; Available online: https://www.who.int/

Pogribny I.P. MicroRNA Dysregulation during Chemical Carcinogenesis. Epigenomics. 2009;1:281–290. doi: 10.2217/epi.09.17. PubMed DOI

Chen T. The Role of MicroRNA in Chemical Carcinogenesis. J. Environ. Sci. Health Part C. 2010;28:89–124. doi: 10.1080/10590501.2010.481477. PubMed DOI

Izzotti A., Pulliero A. The Effects of Environmental Chemical Carcinogens on the MicroRNA Machinery. Int. J. Hyg. Environ. Health. 2014;217:601–627. doi: 10.1016/j.ijheh.2014.01.001. PubMed DOI

Ceccaroli C., Pulliero A., Geretto M., Izzotti A. Molecular Fingerprints of Environmental Carcinogens in Human Cancer. J. Environ. Sci. Health C Environ. Carcinog. Ecotoxicol. Rev. 2015;33:188–228. doi: 10.1080/10590501.2015.1030491. PubMed DOI

Pogribny I.P., Beland F.A., Rusyn I. The Role of MicroRNAs in the Development and Progression of Chemical-Associated Cancers. Toxicol. Appl. Pharmacol. 2016;312:3–10. doi: 10.1016/j.taap.2015.11.013. PubMed DOI

Li M., Huo X., Davuljigari C.B., Dai Q., Xu X. MicroRNAs and Their Role in Environmental Chemical Carcinogenesis. Environ. Geochem. Health. 2019;41:225–247. doi: 10.1007/s10653-018-0179-8. PubMed DOI

Rzeszutek I., Singh A. Small RNAs, Big Diseases. Int. J. Mol. Sci. 2020;21:5699. doi: 10.3390/ijms21165699. PubMed DOI PMC

Peng Y., Croce C.M. The Role of MicroRNAs in Human Cancer. Signal Transduct. Target. Ther. 2016;1:15004. doi: 10.1038/sigtrans.2015.4. PubMed DOI PMC

Zhang B., Pan X., Cobb G.P., Anderson T.A. MicroRNAs as Oncogenes and Tumor Suppressors. Dev. Biol. 2007;302:1–12. doi: 10.1016/j.ydbio.2006.08.028. PubMed DOI

Celic T., Meuth V., Six I., Massy Z., Metzinger L. The Mir-221/222 Cluster Is a Key Player in Vascular Biology via the Fine-Tuning of Endothelial Cell Physiology. CVP. 2016;15:40–46. doi: 10.2174/1570161114666160914175149. PubMed DOI

Takamizawa J., Konishi H., Yanagisawa K., Tomida S., Osada H., Endoh H., Harano T., Yatabe Y., Nagino M., Nimura Y., et al. Reduced Expression of the Let-7 MicroRNAs in Human Lung Cancers in Association with Shortened Postoperative Survival. Cancer Res. 2004;64:3753–3756. doi: 10.1158/0008-5472.CAN-04-0637. PubMed DOI

Travis W.D., Brambilla E., Burke A.P., Marx A., Nicholson A.G. Introduction to The 2015 World Health Organization Classification of Tumors of the Lung, Pleura, Thymus, and Heart. J. Thorac. Oncol. 2015;10:1240–1242. doi: 10.1097/JTO.0000000000000663. PubMed DOI

Noone A.-M., Cronin K.A., Altekruse S.F., Howlader N., Lewis D.R., Petkov V.I., Penberthy L. Cancer Incidence and Survival Trends by Subtype Using Data from the Surveillance Epidemiology and End Results Program, 1992–2013. Cancer Epidemiol. Biomark. Prev. 2017;26:632–641. doi: 10.1158/1055-9965.EPI-16-0520. PubMed DOI PMC

Feng B., Zhang K., Wang R., Chen L. Non-Small-Cell Lung Cancer and MiRNAs: Novel Biomarkers and Promising Tools for Treatment. Clin. Sci. 2015;128:619–634. doi: 10.1042/CS20140530. PubMed DOI

Patnaik S.K., Kannisto E.D., Mallick R., Vachani A., Yendamuri S. Whole Blood MicroRNA Expression May Not Be Useful for Screening Non-Small Cell Lung Cancer. PLoS ONE. 2017;12:e0181926. doi: 10.1371/journal.pone.0181926. PubMed DOI PMC

He Q., Fang Y., Lu F., Pan J., Wang L., Gong W., Fei F., Cui J., Zhong J., Hu R., et al. Analysis of Differential Expression Profile of MiRNA in Peripheral Blood of Patients with Lung Cancer. J. Clin. Lab. Anal. 2019;33:e23003. doi: 10.1002/jcla.23003. PubMed DOI PMC

Singh A., Kant R., Saluja T.S., Tripathi T., Srivastava K., Naithani M., Gupta A., Mirza A.A., Prakash V., Singh S.K. Differential Diagnosis of Non-Small Cell Lung Carcinoma by Circulating MicroRNA. J. Cancer Res. Ther. 2020;16:127–131. doi: 10.4103/jcrt.JCRT_872_19. PubMed DOI

Wozniak M.B., Scelo G., Muller D.C., Mukeria A., Zaridze D., Brennan P. Circulating MicroRNAs as Non-Invasive Biomarkers for Early Detection of Non-Small-Cell Lung Cancer. PLoS ONE. 2015;10:e0125026. doi: 10.1371/journal.pone.0125026. PubMed DOI PMC

Tai M.C., Yanagisawa K., Nakatochi M., Hotta N., Hosono Y., Kawaguchi K., Naito M., Taniguchi H., Wakai K., Yokoi K., et al. Blood-Borne MiRNA Profile-Based Diagnostic Classifier for Lung Adenocarcinoma. Sci. Rep. 2016;6:31389. doi: 10.1038/srep31389. PubMed DOI PMC

Feng H., Ge F., Du L., Zhang Z., Liu D. MiR-34b-3p Represses Cell Proliferation, Cell Cycle Progression and Cell Apoptosis in Non-Small-Cell Lung Cancer (NSCLC) by Targeting CDK4. J. Cell. Mol. Med. 2019;23:5282–5291. doi: 10.1111/jcmm.14404. PubMed DOI PMC

Olbromski M., Grzegrzolka J., Jankowska-Konsur A., Witkiewicz W., Podhorska-Okolow M., Dziegiel P. MicroRNAs Modulate the Expression of the SOX18 Transcript in Lung Squamous Cell Carcinoma. Oncol. Rep. 2016;36:2884–2892. doi: 10.3892/or.2016.5102. PubMed DOI

Olbromski M., Rzechonek A., Grzegrzolka J., Glatzel-Plucinska N., Chachaj A., Werynska B., Podhorska-Okolow M., Dziegiel P. Influence of MiR-7a and MiR-24-3p on the SOX18 Transcript in Lung Adenocarcinoma. Oncol. Rep. 2018;39:201–208. doi: 10.3892/or.2017.6077. PubMed DOI

D’Antona P., Cattoni M., Dominioni L., Poli A., Moretti F., Cinquetti R., Gini E., Daffrè E., Noonan D.M., Imperatori A., et al. Serum MiR-223: A Validated Biomarker for Detection of Early-Stage Non-Small Cell Lung Cancer. Cancer Epidemiol. Biomark. Prev. 2019;28:1926–1933. doi: 10.1158/1055-9965.EPI-19-0626. PubMed DOI

Wen Z.N., Ling Z.G., Huang Y., Li X. Expression and differential diagnostic value of serum microRNA for invasive pulmonary aspergillosis. Zhonghua Jie He He Hu Xi Za Zhi. 2017;40:272–277. doi: 10.3760/cma.j.issn.1001-0939.2017.04.006. PubMed DOI

Feng Y., Yang C., Hu D., Wang X., Liu X. MiR-675 Promotes Disease Progression of Non-Small Cell Lung Cancer via Activating NF-ΚB Signaling Pathway. Cell. Mol. Biol. 2017;63:7–10. doi: 10.14715/cmb/2017.63.5.2. PubMed DOI

Liang Y.-Y., Huang J.-C., Tang R.-X., Chen W.-J., Chen P., Cen W.-L., Shi K., Gao L., Gao X., Liu A.-G., et al. Clinical Value of MiR-198-5p in Lung Squamous Cell Carcinoma Assessed Using Microarray and RT-QPCR. World J. Surg. Oncol. 2018;16:22. doi: 10.1186/s12957-018-1320-y. PubMed DOI PMC

Liu M., Zeng X., Lu Y.-X., Mo Y.-J., Liao T.-H., Gan C., Lu X.-Q. Study on Molecular Mechanism of MiRNA-29a in Promoting Proliferation and Invasion of Non-Small-Cell Lung Cancer by Inhibiting MTSS1. Eur. Rev. Med. Pharmacol. Sci. 2018;22:5531–5538. doi: 10.26355/eurrev_201809_15814. PubMed DOI

He J., Yu L., Wang C.-M., Zhou X.-F. MiR-1275 Promotes Non-Small Cell Lung Cancer Cell Proliferation and Metastasis by Regulating LZTS3 Expression. Eur. Rev. Med. Pharmacol. Sci. 2018;22:2680–2687. doi: 10.26355/eurrev_201805_14964. PubMed DOI

Maemura K., Watanabe K., Ando T., Hiyama N., Sakatani T., Amano Y., Kage H., Nakajima J., Yatomi Y., Nagase T., et al. Altered Editing Level of MicroRNAs Is a Potential Biomarker in Lung Adenocarcinoma. Cancer Sci. 2018;109:3326–3335. doi: 10.1111/cas.13742. PubMed DOI PMC

Pak M.G., Lee C.-H., Lee W.-J., Shin D.-H., Roh M.-S. Unique MicroRNAs in Lung Adenocarcinoma Groups According to Major TKI Sensitive EGFR Mutation Status. Diagn. Pathol. 2015;10:99. doi: 10.1186/s13000-015-0339-4. PubMed DOI PMC

Zhu K., Ding H., Wang W., Liao Z., Fu Z., Hong Y., Zhou Y., Zhang C.-Y., Chen X. Tumor-Suppressive MiR-218-5p Inhibits Cancer Cell Proliferation and Migration via EGFR in Non-Small Cell Lung Cancer. Oncotarget. 2016;7:28075–28085. doi: 10.18632/oncotarget.8576. PubMed DOI PMC

Xia Y., Hu C., Lian L., Hui K., Wang L., Qiao Y., Liu L., Liang L., Jiang X. MiR-497 Suppresses Malignant Phenotype in Non-small Cell Lung Cancer via Targeting KDR. Oncol. Rep. 2019;42:443–452. doi: 10.3892/or.2019.7163. PubMed DOI

Goto A., Tanaka M., Yoshida M., Umakoshi M., Nanjo H., Shiraishi K., Saito M., Kohno T., Kuriyama S., Konno H., et al. The Low Expression of MiR-451 Predicts a Worse Prognosis in Non-Small Cell Lung Cancer Cases. PLoS ONE. 2017;12:e0181270. doi: 10.1371/journal.pone.0181270. PubMed DOI PMC

Sun X., Xu M., Liu H., Ming K. MicroRNA-219 Is Downregulated in Non-Small Cell Lung Cancer and Inhibits Cell Growth and Metastasis by Targeting HMGA2. Mol. Med. Rep. 2017;16:3557–3564. doi: 10.3892/mmr.2017.7000. PubMed DOI

Ye M.-F., Zhang J.-G., Guo T.-X., Pan X.-J. MiR-504 Inhibits Cell Proliferation and Invasion by Targeting LOXL2 in Non Small Cell Lung Cancer. Biomed. Pharmacother. 2018;97:1289–1295. doi: 10.1016/j.biopha.2017.11.005. PubMed DOI

Liu S., Ge X., Su L., Zhang A., Mou X. MicroRNA-454 Inhibits Non-small Cell Lung Cancer Cells Growth and Metastasis via Targeting Signal Transducer and Activator of Transcription-3. Mol. Med. Rep. 2018;17:3979–3986. doi: 10.3892/mmr.2017.8350. PubMed DOI

Wu Z., Yuan Q., Yang C., Zhang X., Qi P., Huang H., Ma Z. Downregulation of Oncogenic Gene TGFβR2 by MiRNA-107 Suppresses Non-Small Cell Lung Cancer. Pathol. Res. Pract. 2020;216:152690. doi: 10.1016/j.prp.2019.152690. PubMed DOI

Qian L., Lin L., Du Y., Hao X., Zhao Y., Liu X. MicroRNA-588 Suppresses Tumor Cell Migration and Invasion by Targeting GRN in Lung Squamous Cell Carcinoma. Mol. Med. Rep. 2016;14:3021–3028. doi: 10.3892/mmr.2016.5643. PubMed DOI PMC

Yang D., Wang J.-J., Li J.-S., Xu Q.-Y. MiR-103 Functions as a Tumor Suppressor by Directly Targeting Programmed Cell Death 10 in NSCLC. Oncol. Res. 2018;26:519–528. doi: 10.3727/096504017X15000757094686. PubMed DOI PMC

Pirooz H.J., Jafari N., Rastegari M., Fathi-Roudsari M., Tasharrofi N., Shokri G., Tamadon M., Sazegar H., Kouhkan F. Functional SNP in MicroRNA-491-5p Binding Site of MMP9 3′-UTR Affects Cancer Susceptibility. J. Cell. Biochem. 2018;119:5126–5134. doi: 10.1002/jcb.26471. PubMed DOI

Flamini V., Jiang W.G., Cui Y. Therapeutic Role of MiR-140-5p for the Treatment of Non-Small Cell Lung Cancer. Anticancer Res. 2017;37:4319–4327. doi: 10.21873/anticanres.11825. PubMed DOI

Jeon S.H., Yoo J.K., Kim C.M., Lim E.S., Lee S.J., Lee J.M., Oh S.-H., Kim J.K. The Novel Hsa-MiR-12528 Regulates Tumourigenesis and Metastasis through Hypo-Phosphorylation of AKT Cascade by Targeting IGF-1R in Human Lung Cancer. Cell Death Dis. 2018;9:493. doi: 10.1038/s41419-018-0535-8. PubMed DOI PMC

Xu L., Xu X., Huang H., Ma Z., Zhang S., Niu P., Chen Y., Ping J., Lu P., Yu C., et al. MiR-1260b Promotes the Migration and Invasion in Non-Small Cell Lung Cancer via Targeting PTPRK. Pathol. Res. Pract. 2018;214:776–783. doi: 10.1016/j.prp.2018.02.002. PubMed DOI

Fujiwara Y., Saito M., Robles A.I., Nishida M., Takeshita F., Watanabe M., Ochiya T., Yokota J., Kohno T., Harris C.C., et al. A Nucleolar Stress-Specific P53-MiR-101 Molecular Circuit Functions as an Intrinsic Tumor-Suppressor Network. EBioMedicine. 2018;33:33–48. doi: 10.1016/j.ebiom.2018.06.031. PubMed DOI PMC

Liang G., Meng W., Huang X., Zhu W., Yin C., Wang C., Fassan M., Yu Y., Kudo M., Xiao S., et al. MiR-196b-5p-Mediated Downregulation of TSPAN12 and GATA6 Promotes Tumor Progression in Non-Small Cell Lung Cancer. Proc. Natl. Acad. Sci. USA. 2020;117:4347–4357. doi: 10.1073/pnas.1917531117. PubMed DOI PMC

Wang H.X., Wang X.Y., Fei J.W., Li F.H., Han J., Qin X. MicroRNA-23B Inhibits Non-Small Cell Lung Cancer Proliferation, Invasion and Migration via Downregulation of RUNX2 and Inhibition of Wnt/Β-Catenin Signaling Pathway. J. Biol. Regul. Homeost. Agents. 2020;34:825–835. doi: 10.23812/20-11-A-34. PubMed DOI

Ying L., Du L., Zou R., Shi L., Zhang N., Jin J., Xu C., Zhang F., Zhu C., Wu J., et al. Development of a Serum MiRNA Panel for Detection of Early Stage Non-Small Cell Lung Cancer. Proc. Natl. Acad. Sci. USA. 2020;117:25036–25042. doi: 10.1073/pnas.2006212117. PubMed DOI PMC

Li J., Fang H., Jiang F., Ning Y. External Validation of a Panel of Plasma MicroRNA Biomarkers for Lung Cancer. Biomark. Med. 2019;13:1557–1564. doi: 10.2217/bmm-2019-0213. PubMed DOI

Zhang Y.-L., Zhang Z.-L., Zhu X.-B., Xu L., Lu P., Xu M., Liu W.-J., Zhang X.-Y., Yao H.-M., Ye X.-W. Low Plasma MiR-25 Expression Is a Favorite Prognosis Factor in Non-Small Cell Lung Cancer. Eur. Rev. Med. Pharmacol. Sci. 2019;23:5251–5259. doi: 10.26355/eurrev_201906_18191. PubMed DOI

Niu Y., Su M., Wu Y., Fu L., Kang K., Li Q., Li L., Hui G., Li F., Gou D. Circulating Plasma MiRNAs as Potential Biomarkers of Non-Small Cell Lung Cancer Obtained by High-Throughput Real-Time PCR Profiling. Cancer Epidemiol. Biomark. Prev. 2019;28:327–336. doi: 10.1158/1055-9965.EPI-18-0723. PubMed DOI

Sun Y., Mei H., Xu C., Tang H., Wei W. Circulating MicroRNA-339-5p and -21 in Plasma as an Early Detection Predictors of Lung Adenocarcinoma. Pathol. Res. Pract. 2018;214:119–125. doi: 10.1016/j.prp.2017.10.011. PubMed DOI

Wang Y., Zhao H., Gao X., Wei F., Zhang X., Su Y., Wang C., Li H., Ren X. Identification of a Three-MiRNA Signature as a Blood-Borne Diagnostic Marker for Early Diagnosis of Lung Adenocarcinoma. Oncotarget. 2016;7:26070–26086. doi: 10.18632/oncotarget.8429. PubMed DOI PMC

Feng M., Zhao J., Wang L., Liu J. Upregulated Expression of Serum Exosomal MicroRNAs as Diagnostic Biomarkers of Lung Adenocarcinoma. Ann. Clin. Lab. Sci. 2018;48:712–718. PubMed

Zhou G.-H., Yang W.-H., Sun B. Clinical Impact of Serum MiR-661 in Diagnosis and Prognosis of Non-Small Cell Lung Cancer. Eur. Rev. Med. Pharmacol. Sci. 2017;21:5696–5701. doi: 10.26355/eurrev_201712_14015. PubMed DOI

Zhu Y., Li T., Chen G., Yan G., Zhang X., Wan Y., Li Q., Zhu B., Zhuo W. Identification of a Serum MicroRNA Expression Signature for Detection of Lung Cancer, Involving MiR-23b, MiR-221, MiR-148b and MiR-423-3p. Lung Cancer. 2017;114:6–11. doi: 10.1016/j.lungcan.2017.10.002. PubMed DOI

Shang A.Q., Xie Y.N., Wang J., Sun L., Wei J., Lu W.Y., Lan J.Y., Wang W.W., Wang L., Wang L.L. Predicative Values of Serum MicroRNA-22 and MicroRNA-126 Levels for Non-Small Cell Lung Cancer Development and Metastasis: A Case-Control Study. Neoplasma. 2017;64:453–459. doi: 10.4149/neo_2017_317. PubMed DOI

Sun M., Song J., Zhou Z., Zhu R., Jin H., Ji Y., Lu Q., Ju H. Comparison of Serum MicroRNA21 and Tumor Markers in Diagnosis of Early Non-Small Cell Lung Cancer. Dis. Markers. 2016;2016:3823121. doi: 10.1155/2016/3823121. PubMed DOI PMC

Wang C., Ding M., Xia M., Chen S., Van Le A., Soto-Gil R., Shen Y., Wang N., Wang J., Gu W., et al. A Five-MiRNA Panel Identified From a Multicentric Case-Control Study Serves as a Novel Diagnostic Tool for Ethnically Diverse Non-Small-Cell Lung Cancer Patients. EBioMedicine. 2015;2:1377–1385. doi: 10.1016/j.ebiom.2015.07.034. PubMed DOI PMC

Lu J., Gu X., Liu F., Rui Z., Liu M., Zhao L. Antitumor Effects of Hsa-miR661-3p on Non-small Cell Lung Cancer in Vivo and in Vitro. Oncol. Rep. 2019;41:2987–2996. doi: 10.3892/or.2019.7084. PubMed DOI

Kunita A., Morita S., Irisa T.U., Goto A., Niki T., Takai D., Nakajima J., Fukayama M. MicroRNA-21 in Cancer-Associated Fibroblasts Supports Lung Adenocarcinoma Progression. Sci. Rep. 2018;8:8838. doi: 10.1038/s41598-018-27128-3. PubMed DOI PMC

Luo J., Shi K., Yin S.-Y., Tang R.-X., Chen W.-J., Huang L.-Z., Gan T.-Q., Cai Z.-W., Chen G. Clinical Value of MiR-182-5p in Lung Squamous Cell Carcinoma: A Study Combining Data from TCGA, GEO, and RT-QPCR Validation. World J. Surg. Oncol. 2018;16:76. doi: 10.1186/s12957-018-1378-6. PubMed DOI PMC

Tessema M., Yingling C.M., Picchi M.A., Wu G., Ryba T., Lin Y., Bungum A.O., Edell E.S., Spira A., Belinsky S.A. ANK1 Methylation Regulates Expression of MicroRNA-486-5p and Discriminates Lung Tumors by Histology and Smoking Status. Cancer Lett. 2017;410:191–200. doi: 10.1016/j.canlet.2017.09.038. PubMed DOI PMC

Chen L.-J., Li X.-Y., Zhao Y.-Q., Liu W.-J., Wu H.-J., Liu J., Mu X.-Q., Wu H.-B. Down-Regulated MicroRNA-375 Expression as a Predictive Biomarker in Non-Small Cell Lung Cancer Brain Metastasis and Its Prognostic Significance. Pathol. Res. Pract. 2017;213:882–888. doi: 10.1016/j.prp.2017.06.012. PubMed DOI

Daugaard I., Knudsen A., Kjeldsen T.E., Hager H., Hansen L.L. The Association between MiR-34 Dysregulation and Distant Metastases Formation in Lung Adenocarcinoma. Exp. Mol. Pathol. 2017;102:484–491. doi: 10.1016/j.yexmp.2017.05.012. PubMed DOI

Xie K., Wang C., Qin N., Yang J., Zhu M., Dai J., Jin G., Shen H., Ma H., Hu Z. Genetic Variants in Regulatory Regions of MicroRNAs Are Associated with Lung Cancer Risk. Oncotarget. 2016;7:47966–47974. doi: 10.18632/oncotarget.10299. PubMed DOI PMC

Zhang Y., Xu X., Zhang M., Wang X., Bai X., Li H., Kan L., Zhou Y., Niu H., He P. MicroRNA-663a Is Downregulated in Non-Small Cell Lung Cancer and Inhibits Proliferation and Invasion by Targeting JunD. BMC Cancer. 2016;16:315. doi: 10.1186/s12885-016-2350-x. PubMed DOI PMC

Xie K., Ma H., Liang C., Wang C., Qin N., Shen W., Gu Y., Yan C., Zhang K., Dai N., et al. A Functional Variant in MiR-155 Regulation Region Contributes to Lung Cancer Risk and Survival. Oncotarget. 2015;6:42781–42792. doi: 10.18632/oncotarget.5840. PubMed DOI PMC

Tang R., Zhong T., Dang Y., Zhang X., Li P., Chen G. Association between Downexpression of MiR-203 and Poor Prognosis in Non-Small Cell Lung Cancer Patients. Clin. Transl. Oncol. 2016;18:360–368. doi: 10.1007/s12094-015-1377-9. PubMed DOI

Kotsyfakis M., Patelarou E. MicroRNAs as Biomarkers of Harmful Environmental and Occupational Exposures: A Systematic Review. Biomarkers. 2019;24:623–630. doi: 10.1080/1354750X.2019.1652348. PubMed DOI

Mancini F.R., Laine J.E., Tarallo S., Vlaanderen J., Vermeulen R., van Nunen E., Hoek G., Probst-Hensch N., Imboden M., Jeong A., et al. MicroRNA Expression Profiles and Personal Monitoring of Exposure to Particulate Matter. Environ. Pollut. 2020;263:114392. doi: 10.1016/j.envpol.2020.114392. PubMed DOI

Liu Q., Wang W., Jing W. Indoor Air Pollution Aggravates Asthma in Chinese Children and Induces the Changes in Serum Level of MiR-155. Int. J. Environ. Health Res. 2019;29:22–30. doi: 10.1080/09603123.2018.1506569. PubMed DOI

Krauskopf J., van Veldhoven K., Chadeau-Hyam M., Vermeulen R., Carrasco-Turigas G., Nieuwenhuijsen M., Vineis P., de Kok T.M., Kleinjans J.C. Short-Term Exposure to Traffic-Related Air Pollution Reveals a Compound-Specific Circulating MiRNA Profile Indicating Multiple Disease Risks. Environ. Int. 2019;128:193–200. doi: 10.1016/j.envint.2019.04.063. PubMed DOI

Tsamou M., Vrijens K., Madhloum N., Lefebvre W., Vanpoucke C., Nawrot T.S. Air Pollution-Induced Placental Epigenetic Alterations in Early Life: A Candidate MiRNA Approach. Epigenetics. 2018;13:135–146. doi: 10.1080/15592294.2016.1155012. PubMed DOI PMC

Rodosthenous R.S., Kloog I., Colicino E., Zhong J., Herrera L.A., Vokonas P., Schwartz J., Baccarelli A.A., Prada D. Extracellular Vesicle-Enriched MicroRNAs Interact in the Association between Long-Term Particulate Matter and Blood Pressure in Elderly Men. Environ. Res. 2018;167:640–649. doi: 10.1016/j.envres.2018.09.002. PubMed DOI PMC

Krauskopf J., Caiment F., van Veldhoven K., Chadeau-Hyam M., Sinharay R., Chung K.F., Cullinan P., Collins P., Barratt B., Kelly F.J., et al. The Human Circulating MiRNome Reflects Multiple Organ Disease Risks in Association with Short-Term Exposure to Traffic-Related Air Pollution. Environ. Int. 2018;113:26–34. doi: 10.1016/j.envint.2018.01.014. PubMed DOI

Espín-Pérez A., Krauskopf J., Chadeau-Hyam M., van Veldhoven K., Chung F., Cullinan P., Piepers J., van Herwijnen M., Kubesch N., Carrasco-Turigas G., et al. Short-Term Transcriptome and MicroRNAs Responses to Exposure to Different Air Pollutants in Two Population Studies. Environ. Pollut. 2018;242:182–190. doi: 10.1016/j.envpol.2018.06.051. PubMed DOI

Chen R., Li H., Cai J., Wang C., Lin Z., Liu C., Niu Y., Zhao Z., Li W., Kan H. Fine Particulate Air Pollution and the Expression of MicroRNAs and Circulating Cytokines Relevant to Inflammation, Coagulation, and Vasoconstriction. Environ. Health Perspect. 2018;126:017007. doi: 10.1289/EHP1447. PubMed DOI PMC

Pergoli L., Cantone L., Favero C., Angelici L., Iodice S., Pinatel E., Hoxha M., Dioni L., Letizia M., Albetti B., et al. Extracellular Vesicle-Packaged MiRNA Release after Short-Term Exposure to Particulate Matter Is Associated with Increased Coagulation. Part. Fibre Toxicol. 2017;14:32. doi: 10.1186/s12989-017-0214-4. PubMed DOI PMC

Vriens A., Nawrot T.S., Saenen N.D., Provost E.B., Kicinski M., Lefebvre W., Vanpoucke C., Van Deun J., De Wever O., Vrijens K., et al. Recent Exposure to Ultrafine Particles in School Children Alters MiR-222 Expression in the Extracellular Fraction of Saliva. Environ. Health. 2016;15:80. doi: 10.1186/s12940-016-0162-8. PubMed DOI PMC

Rodosthenous R.S., Coull B.A., Lu Q., Vokonas P.S., Schwartz J.D., Baccarelli A.A. Ambient Particulate Matter and MicroRNAs in Extracellular Vesicles: A Pilot Study of Older Individuals. Part. Fibre Toxicol. 2016;13:13. doi: 10.1186/s12989-016-0121-0. PubMed DOI PMC

Pavanello S., Bonzini M., Angelici L., Motta V., Pergoli L., Hoxha M., Cantone L., Pesatori A.C., Apostoli P., Tripodi A., et al. Extracellular Vesicle-Driven Information Mediates the Long-Term Effects of Particulate Matter Exposure on Coagulation and Inflammation Pathways. Toxicol. Lett. 2016;259:143–150. doi: 10.1016/j.toxlet.2016.08.002. PubMed DOI PMC

Motta V., Favero C., Dioni L., Iodice S., Battaglia C., Angelici L., Vigna L., Pesatori A.C., Bollati V. MicroRNAs Are Associated with Blood-Pressure Effects of Exposure to Particulate Matter: Results from a Mediated Moderation Analysis. Environ. Res. 2016;146:274–281. doi: 10.1016/j.envres.2016.01.010. PubMed DOI PMC

Louwies T., Vuegen C., Panis L.I., Cox B., Vrijens K., Nawrot T.S., De Boever P. MiRNA Expression Profiles and Retinal Blood Vessel Calibers Are Associated with Short-Term Particulate Matter Air Pollution Exposure. Environ. Res. 2016;147:24–31. doi: 10.1016/j.envres.2016.01.027. PubMed DOI

Li X., Lv Y., Hao J., Sun H., Gao N., Zhang C., Lu R., Wang S., Yin L., Pu Y., et al. Role of MicroRNA-4516 Involved Autophagy Associated with Exposure to Fine Particulate Matter. Oncotarget. 2016;7:45385–45397. doi: 10.18632/oncotarget.9978. PubMed DOI PMC

Hou L., Barupal J., Zhang W., Zheng Y., Liu L., Zhang X., Dou C., McCracken J.P., Díaz A., Motta V., et al. Particulate Air Pollution Exposure and Expression of Viral and Human MicroRNAs in Blood: The Beijing Truck Driver Air Pollution Study. Environ. Health Perspect. 2016;124:344–350. doi: 10.1289/ehp.1408519. PubMed DOI PMC

Bollati V., Angelici L., Rizzo G., Pergoli L., Rota F., Hoxha M., Nordio F., Bonzini M., Tarantini L., Cantone L., et al. Microvesicle-Associated MicroRNA Expression Is Altered upon Particulate Matter Exposure in Healthy Workers and in A549 Cells. J. Appl. Toxicol. 2014;35:59–67. doi: 10.1002/jat.2987. PubMed DOI PMC

Fossati S., Baccarelli A., Zanobetti A., Hoxha M., Vokonas P.S., Wright R.O., Schwartz J. Ambient Particulate Air Pollution and MicroRNAs in Elderly Men. Epidemiology. 2014;25:68–78. doi: 10.1097/EDE.0000000000000026. PubMed DOI PMC

Velasco-Torres Y., Ruiz V., Montaño M., Pérez-Padilla R., Falfán-Valencia R., Pérez-Ramos J., Pérez-Bautista O., Ramos C. Participation of the MiR-22-HDAC4-DLCO Axis in Patients with COPD by Tobacco and Biomass. Biomolecules. 2019;9:837. doi: 10.3390/biom9120837. PubMed DOI PMC

Khan A., Thatcher T.H., Woeller C.F., Sime P.J., Phipps R.P., Hopke P.K., Utell M.J., Krahl P.L., Mallon T.M., Thakar J. Machine Learning Approach for Predicting Past Environmental Exposures From Molecular Profiling of Post-Exposure Human Serum Samples. J. Occup. Environ. Med. 2019;61:S55–S64. doi: 10.1097/JOM.0000000000001692. PubMed DOI PMC

Du Y., Ding Y., Chen X., Mei Z., Ding H., Wu Y., Jie Z. MicroRNA-181c Inhibits Cigarette Smoke–Induced Chronic Obstructive Pulmonary Disease by Regulating CCN1 Expression. Respir. Res. 2017;18:155. doi: 10.1186/s12931-017-0639-1. PubMed DOI PMC

Herberth G., Bauer M., Gasch M., Hinz D., Röder S., Olek S., Kohajda T., Rolle-Kampczyk U., von Bergen M., Sack U., et al. Maternal and Cord Blood MiR-223 Expression Associates with Prenatal Tobacco Smoke Exposure and Low Regulatory T-Cell Numbers. J. Allergy Clin. Immunol. 2014;133:543–550. doi: 10.1016/j.jaci.2013.06.036. PubMed DOI

Marczylo E.L., Amoako A.A., Konje J.C., Gant T.W., Marczylo T.H. Smoking Induces Differential MiRNA Expression in Human Spermatozoa: A Potential Transgenerational Epigenetic Concern? Epigenetics. 2012;7:432–439. doi: 10.4161/epi.19794. PubMed DOI

Ruiz-Vera T., Ochoa-Martínez Á.C., Pruneda-Álvarez L.G., Zarazúa S., Pérez-Maldonado I.N. Exposure to Biomass Smoke Is Associated with an Increased Expression of Circulating MiRNA-126 and MiRNA-155 in Mexican Women: A Pilot Study. Drug Chem. Toxicol. 2019;42:335–342. doi: 10.1080/01480545.2018.1526181. PubMed DOI

Rider C.F., Yamamoto M., Günther O.P., Hirota J.A., Singh A., Tebbutt S.J., Carlsten C. Controlled Diesel Exhaust and Allergen Coexposure Modulates MicroRNA and Gene Expression in Humans: Effects on Inflammatory Lung Markers. J. Allergy Clin. Immunol. 2016;138:1690–1700. doi: 10.1016/j.jaci.2016.02.038. PubMed DOI

Song M.-K., Ryu J.-C. Blood MiRNAs as Sensitive and Specific Biological Indicators of Environmental and Occupational Exposure to Volatile Organic Compound (VOC) Int. J. Hyg. Environ. Health. 2015;218:590–602. doi: 10.1016/j.ijheh.2015.06.002. PubMed DOI

Fry R.C., Rager J.E., Bauer R., Sebastian E., Peden D.B., Jaspers I., Alexis N.E. Air Toxics and Epigenetic Effects: Ozone Altered MicroRNAs in the Sputum of Human Subjects. Am. J. Physiol. Lung Cell. Mol. Physiol. 2014;306:L1129–L1137. doi: 10.1152/ajplung.00348.2013. PubMed DOI PMC

Garofalo M., Di Leva G., Romano G., Nuovo G., Suh S.-S., Ngankeu A., Taccioli C., Pichiorri F., Alder H., Secchiero P., et al. MiR-221&222 Regulate TRAIL Resistance and Enhance Tumorigenicity through PTEN and TIMP3 Downregulation. Cancer Cell. 2009;16:498–509. doi: 10.1016/j.ccr.2009.10.014. PubMed DOI PMC

Amini S., Abak A., Sakhinia E., Abhari A. MicroRNA-221 and MicroRNA-222 in Common Human Cancers: Expression, Function, and Triggering of Tumor Progression as a Key Modulator. Lab. Med. 2019;50:333–347. doi: 10.1093/labmed/lmz002. PubMed DOI

Zhang L., Hao C., Zhai R., Wang D., Zhang J., Bao L., Li Y., Yao W. Downregulation of Exosomal Let-7a-5p in Dust Exposed- Workers Contributes to Lung Cancer Development. Respir. Res. 2018;19:235. doi: 10.1186/s12931-018-0949-y. PubMed DOI PMC

Li X., Wei Y., Wang Z. MicroRNA-21 and Hypertension. Hypertens. Res. 2018;41:649–661. doi: 10.1038/s41440-018-0071-z. PubMed DOI

Bica-Pop C., Cojocneanu-Petric R., Magdo L., Raduly L., Gulei D., Berindan-Neagoe I. Overview upon MiR-21 in Lung Cancer: Focus on NSCLC. Cell. Mol. Life Sci. 2018;75:3539–3551. doi: 10.1007/s00018-018-2877-x. PubMed DOI PMC

Gao Y., Deng K., Liu X., Dai M., Chen X., Chen J., Chen J., Huang Y., Dai S., Chen J. Molecular Mechanism and Role of MicroRNA-93 in Human Cancers: A Study Based on Bioinformatics Analysis, Meta-analysis, and Quantitative Polymerase Chain Reaction Validation. J. Cell. Biochem. 2019;120:6370–6383. doi: 10.1002/jcb.27924. PubMed DOI

Micolucci L., Akhtar M.M., Olivieri F., Rippo M.R., Procopio A.D. Diagnostic Value of MicroRNAs in Asbestos Exposure and Malignant Mesothelioma: Systematic Review and Qualitative Meta-Analysis. Oncotarget. 2016;7:58606–58637. doi: 10.18632/oncotarget.9686. PubMed DOI PMC

Liu R., Zhang Y.S., Zhang S., Cheng Z.M., Yu J.L., Zhou S., Song J. MiR-126-3p Suppresses the Growth, Migration and Invasion of NSCLC via Targeting CCR1. Eur. Rev. Med. Pharmacol. Sci. 2019;23:679–689. doi: 10.26355/eurrev_201901_16881. PubMed DOI

Chen Q., Hu H., Jiao D., Yan J., Xu W., Tang X., Chen J., Wang J. MiR-126-3p and MiR-451a Correlate with Clinicopathological Features of Lung Adenocarcinoma: The Underlying Molecular Mechanisms. Oncol. Rep. 2016;36:909–917. doi: 10.3892/or.2016.4854. PubMed DOI

Mitra R., Adams C.M., Jiang W., Greenawalt E., Eischen C.M. Pan-Cancer Analysis Reveals Cooperativity of Both Strands of MicroRNA That Regulate Tumorigenesis and Patient Survival. Nat. Commun. 2020;11:968. doi: 10.1038/s41467-020-14713-2. PubMed DOI PMC

Gulei D., Raduly L., Broseghini E., Ferracin M., Berindan-Neagoe I. The Extensive Role of MiR-155 in Malignant and Non-Malignant Diseases. Mol. Asp. Med. 2019;70:33–56. doi: 10.1016/j.mam.2019.09.004. PubMed DOI

Mahesh G., Biswas R. MicroRNA-155: A Master Regulator of Inflammation. J. Interferon Cytokine Res. 2019;39:321–330. doi: 10.1089/jir.2018.0155. PubMed DOI PMC

Wang J., Li Z., Ge Q., Wu W., Zhu Q., Luo J., Chen L. Characterization of MicroRNA Transcriptome in Tumor, Adjacent, and Normal Tissues of Lung Squamous Cell Carcinoma. J. Thorac. Cardiovasc. Surg. 2015;149:1404–1414.e4. doi: 10.1016/j.jtcvs.2015.02.012. PubMed DOI

Fu Y., Li Y., Wang X., Li F., Lu Y. Overexpression of MiR-425-5p Is Associated with Poor Prognosis and Tumor Progression in Non-Small Cell Lung Cancer. Cancer Biomark. 2020;27:147–156. doi: 10.3233/CBM-190782. PubMed DOI

Boxberger N., Hecker M., Zettl U.K. Dysregulation of Inflammasome Priming and Activation by MicroRNAs in Human Immune-Mediated Diseases. J. Immunol. 2019;202:2177–2187. doi: 10.4049/jimmunol.1801416. PubMed DOI

Esteves J.V., Enguita F.J., Machado U.F. MicroRNAs-Mediated Regulation of Skeletal Muscle GLUT4 Expression and Translocation in Insulin Resistance. J. Diabetes Res. 2017;2017:1–11. doi: 10.1155/2017/7267910. PubMed DOI PMC

Gomez J.L., Chen A., Diaz M.P., Zirn N., Gupta A., Britto C., Sauler M., Yan X., Stewart E., Santerian K., et al. A Network of Sputum MicroRNAs Is Associated with Neutrophilic Airway Inflammation in Asthma. Am. J. Respir. Crit. Care Med. 2020;202:51–64. doi: 10.1164/rccm.201912-2360OC. PubMed DOI PMC

Luo P., Wang Q., Ye Y., Zhang J., Lu D., Cheng L., Zhou H., Xie M., Wang B. MiR-223-3p Functions as a Tumor Suppressor in Lung Squamous Cell Carcinoma by MiR-223-3p-Mutant P53 Regulatory Feedback Loop. J. Exp. Clin. Cancer Res. 2019;38:74. doi: 10.1186/s13046-019-1079-1. PubMed DOI PMC

Outdoor Air Pollution. International Agency for Research on Cancer; Lyon, France: 2015. IARC Working Group on the Evaluation of Carcinogenic Risks to Humans.

Rossnerova A., Pokorna M., Svecova V., Sram R.J., Topinka J., Zölzer F., Rossner P. Adaptation of the Human Population to the Environment: Current Knowledge, Clues from Czech Cytogenetic and “Omics” Biomonitoring Studies and Possible Mechanisms. Mutat. Res. Rev. Mutat. Res. 2017;773:188–203. doi: 10.1016/j.mrrev.2017.07.002. PubMed DOI

Vineis P., Chatziioannou A., Cunliffe V.T., Flanagan J.M., Hanson M., Kirsch-Volders M., Kyrtopoulos S. Epigenetic Memory in Response to Environmental Stressors. FASEB J. 2017;31:2241–2251. doi: 10.1096/fj.201601059RR. PubMed DOI

Rossnerova A., Izzotti A., Pulliero A., Bast A., Rattan S.I.S., Rossner P. The Molecular Mechanisms of Adaptive Response Related to Environmental Stress. Int. J. Mol. Sci. 2020;21:7053. doi: 10.3390/ijms21197053. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...