Bone marrow stem cells and polymer hydrogels--two strategies for spinal cord injury repair
Jazyk angličtina Země Nizozemsko Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem, přehledy
PubMed
16633897
PubMed Central
PMC11520705
DOI
10.1007/s10571-006-9007-2
Knihovny.cz E-zdroje
- MeSH
- autologní transplantace MeSH
- buňky kostní dřeně fyziologie MeSH
- hydrogely terapeutické užití MeSH
- komprese míchy terapie MeSH
- krysa rodu Rattus MeSH
- lidé MeSH
- mezenchymální kmenové buňky fyziologie MeSH
- monocyty transplantace MeSH
- pohyb buněk MeSH
- polymery terapeutické užití MeSH
- poranění míchy terapie MeSH
- regenerace nervu MeSH
- transplantace kostní dřeně metody MeSH
- transplantace mezenchymálních kmenových buněk metody MeSH
- zvířata MeSH
- Check Tag
- krysa rodu Rattus MeSH
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
- Názvy látek
- hydrogely MeSH
- polymery MeSH
1. Emerging clinical studies of treating brain and spinal cord injury (SCI) led us to examine the effect of autologous adult stem cell transplantation as well as the use of polymer scaffolds in spinal cord regeneration. We compared an intravenous injection of mesenchymal stem cells (MSCs) or the injection of a freshly prepared mononuclear fraction of bone marrow cells (BMCs) on the treatment of an acute or chronic balloon-induced spinal cord compression lesion in rats. Based on our experimental studies, autologous BMC implantation has been used in a Phase I/II clinical trial in patients (n=20) with a transversal spinal cord lesion. 2. MSCs were isolated from rat bone marrow by their adherence to plastic, labeled with iron-oxide nanoparticles and expanded in vitro. Macroporous hydrogels based on derivatives of 2-hydroxyethyl methacrylate (HEMA) or 2-hydroxypropyl methacrylamide (HPMA) were prepared, then modified by their copolymerization with a hydrolytically degradable crosslinker, N,O-dimethacryloylhydroxylamine, or by different surface electric charges. Hydrogels or hydrogels seeded with MSCs were implanted into rats with hemisected spinal cords. 3. Lesioned animals grafted with MSCs or BMCs had smaller lesions 35 days postgrafting and higher scores in BBB testing than did control animals and also showed a faster recovery of sensitivity in their hind limbs using the plantar test. The functional improvement was more pronounced in MSC-treated rats. In MR images, the lesion populated by grafted cells appeared as a dark hypointense area and was considerably smaller than in control animals. Morphometric measurements showed an increase in the volume of spared white matter in cell-treated animals. In the clinical trial, we compared intraarterial (via a. vertebralis, n=6) versus intravenous administration of BMCs (n=14) in a group of subacute (10-33 days post-SCI, n=8) and chronic patients (2-18 months, n=12). For patient follow-up we used MEP, SEP, MRI, and the ASIA score. Our clinical study revealed that the implantation of BMCs into patients is safe, as there were no complications following cell administration. Partial improvement in the ASIA score and partial recovery of MEP or SEP have been observed in all subacute patients who received cells via a. vertebralis (n=4) and in one out of four subacute patients who received cells intravenously. Improvement was also found in one chronic patient who received cells via a. vertebralis. A much larger population of patients is needed before any conclusions can be drawn. The implantation of hydrogels into hemisected rat spinal cords showed that cellular ingrowth was most pronounced in copolymers of HEMA with a positive surface electric charge. Although most of the cells had the morphological properties of connective tissue elements, we found NF-160-positive axons invading all the implanted hydrogels from both the proximal and distal stumps. The biodegradable hydrogels degraded from the border that was in direct contact with the spinal cord tissue. They were resorbed by macrophages and replaced by newly formed tissue containing connective tissue elements, blood vessels, GFAP-positive astrocytic processes, and NF-160-positive neurofilaments. Additionally, we implanted hydrogels seeded with nanoparticle-labeled MSCs into hemisected rat spinal cords. Hydrogels seeded with MSCs were visible on MR images as hypointense areas, and subsequent Prussian blue histological staining confirmed positively stained cells within the hydrogels. 4. We conclude that treatment with different bone marrow cell populations had a positive effect on behavioral outcome and histopathological assessment after SCI in rats; this positive effect was most pronounced following MSC treatment. Our clinical study suggests a possible positive effect in patients with SCI. Bridging the lesion cavity can be an approach for further improving regeneration. Our preclinical studies showed that macroporous polymer hydrogels based on derivatives of HEMA or HPMA are suitable materials for bridging cavities after SCI; their chemical and physical properties can be modified to a specific use, and 3D implants seeded with different cell types may facilitate the ingrowth of axons.
Zobrazit více v PubMed
Akiyama, Y., Radtke, C., Honmou, O., and Kocsis, J. D. (2002b). Remyelination of the spinal cord following intravenous delivery of bone marrow cells. PubMed DOI PMC
Akiyama, Y., Radtke, C., and Kocsis, J. D. (2002a). Remyelination of the rat spinal cord by transplantation of identified bone marrow stromal cells. PubMed DOI PMC
Azizi, S. A., Stokes, D., Augelli, B. J., DiGirolamo, C., and Prockop, D. J. (1998). Engraftment and migration of human bone marrow stromal cells implanted in the brains of albino rats–similarities to astrocyte grafts. PubMed DOI PMC
Basso, D. M., Beattie, M. S., Bresnahan, J. C., Anderson, D. K., Faden, A. I., Gruner, J. A., PubMed DOI
Bixby, J. L., and Harris, W. A. (1991). Molecular mechanisms of axon growth and guidance. PubMed DOI
Bjorklund, A., and Lindvall (2000). Cell replacement therapies for central nervous system disorders. PubMed DOI
Bracken, M. B., Shepard, M. J., Collins, W. F., Holford, T. R., Young, W., Baskin, D. S., PubMed DOI
Bracken, M. B., Shepard, M. J., Holford, T. R., Leo-Summers, L., Aldrich, E. F., Fazl, M., PubMed DOI
Brazelton, T. R., Rossi, F. M., Keshet, G. I., and Blau, H. M. (2000). From marrow to brain: Expression of neuronal phenotypes in adult mice. PubMed DOI
Bregman, B. S. (1987). Spinal cord transplants permit the growth of serotonergic axons across the site of neonatal spinal cord transection. PubMed DOI
Brustle, O., Jones, K. N., Learish, R. D., Karram, K., Choudhary, K., Wiestler, O. D., PubMed DOI
Chen, X., Katakowski, M., Li, Y., Lu, D., Wang, L., Zhang, L., PubMed DOI
Chong, Z. Z., Kang, J. Q., and Maiese, K. (2002). Hematopoietic factor erythropoietin fosters neuroprotectionthrough novel signal transduction cascades. PubMed DOI
Chopp, M., and Li, Y. (2002). Treatment of neural injury with marrow stromal cells. PubMed DOI
Chopp, M., Zhang, X. H., Li, Y., Wang, L., Chen, J., Lu, D., PubMed DOI
Coumans, J. V., Lin, T. T., MacArthur, L., McAtee, M., Nash, C., and Bregman, B. S. (2001). Axonal regeneration and functional recovery after complete spinal cord transection in rats by delazed treatment with transplants and neurotrophins. PubMed DOI PMC
Dame, C., Wolber, E. M., Freitag, P., Hofmann, D., Bartmann, P., and Fandrey, J. (2003). Trombopoietingene expression in the developing human central nervous system. PubMed DOI
Eaves, C. J., Cashman, J. D., Kay, R. J., Dougherty, G. J., Otsuka, T., Gaboury, L. A., PubMed DOI
Eglitis, M. A., Dawson, D., Park, K. W., and Mouradian, M. M. (1999). Targeting of marrow-derived astrocytes to the ischemic brain. PubMed DOI
Fawcett, J. W., and Asher, R. A. (1999). The glial scar and central nervous system repair. PubMed DOI
Geisler, F. H., Coleman, W. P., Grieco, G., and Poonian, D. (2001). The Sygen multicenter acute spinal cord injury study. PubMed DOI
Hejčl, A., Urdzíková, L., Přádný, M., Michálek, J., Jendelová, P., and Syková, E. (2005). Positively charged HEMA-based hydrogels implanted immediately and one week after spinal cord injury in rat. Abstract,
Hofstetter, C. P., Schwarz, E. J., Hess, D., Widenfalk, J., El Manira, A., Prockop, J. D., and Olson, L. (2002). Marrow stromal cellsform guiding strands in the injured spinal cord and promote recovery. PubMed DOI PMC
Horvat, J. C. (1991). Transplants of fetal neural tissue and autologous peripheral nerves in an attempt to repair spinal cord injuries in the adult rat. An overall view. PubMed
Houle, J. D., and Ziegler, M. K. (1994). Bridging a complete transection lesion of adult rat spinal cord with growth factor-treated nitrocellulose implants. PubMed DOI PMC
Houweling, D. A., Lankhorst, A. J., Gispen, W. H., Bar, P. R., and Joosten, E. A. (1998). Collagen containing neurotrophin-3 (NT-3) attracts regrowing injured corticospinal axons in the adult rat spinal cord and promotes partial functional recovery. PubMed DOI
Hugenholtz, H., Cass, D. E., Dvorak, M. F., Fewer, D. H., Fox, R. J., Izukawa, D. M., PubMed DOI
Inoue, M., Honmou, O., Oka, S., Houkin, K., Hashi, K., and Kocsis, J. D. (2003). Comparative analysis of remyelinating potential of focal and intravenous administration of autologous bone marrow cells into the rat demyelinated spinal cord. PubMed DOI PMC
Iwanami, A., Kaneko, S., Nakamura, M., Kanemura, Y., Mori, H., Kobayashi, S., PubMed DOI
Jendelová, P., Herynek, V., De Croos, J., Glogarová, K., Andersson, B., Hájek, M., and Syková, E. (2003). Imaging the fate of implanted bone marrow stromal cells labeled with superparamagnetic nanoparticles. PubMed DOI
Jendelová, P., Lesný, P., Přádný, M., Hejčl, A., Michálek, J., and Syková, E. (2004a). Hydrogel implantation into a spinal cord lesion— an alternative to conventional cell grafting.
Jendelová, P., Herynek, V., Urdzíková, L., Glogarová, K., Kroupová, J., Bryja, V., PubMed
Kuhlengel, K. R., Bunge, M. B., Bunge, R. P., and Burton, H. (1990). Implantation of cultured sensory neurons and Schwann cells into lesioned neonatal rat spinal cord. II. Implant characteristics and examination of corticospinal tract growth. PubMed DOI
Lee, D. H., Strittmatter, S. M., and Sah, D. W. (2003). Targeting the Nogo receptor to treat central nervous system injuries. PubMed DOI
Lesný, P., De Croos, J., Přádný, M., Vacik, J., Michálek, J., Woerly, S., and Syková, E. (2002). Polymer hydrogels usable for nervous tissue repair. PubMed DOI
Lesný, P., Přádný, M., Jendelová, P., Michálek, J., Vacik, J., and Syková, E. (in press). Macroporous hydrogels based on 2-hydroxyethyl methacrylate. Part 4: Growth of rat bone marrow stromal cells in three-dimensional hydrogels with positive and negative surface charges and in polyelectrolyte complexes. PubMed
Liu, S., Bodjarian, N., Langlois, O., Bonnard, A. S., Boisset, N., Peulve, P., PubMed DOI
Lu, D., Mahmood, A., Wang, L., Li, Y., Lu, M., and Chopp, M. (2001). Adult bone marrow stromal cells administered intravenously to rats after traumatic brain injury migrate into brain and improve neurological outcome. PubMed DOI
Mahmood, A., Lu, D., Wang, L., and Chopp, M. (2002). Intracerebral transplantation of marrow stromal cells cultured with neurotrophic factors promotes functional recovery in adult rats subjected to traumatic brain injury. PubMed DOI
Majunder, M., Thiede, M., and Mosca, J. (1998). Phenotype and funtional comparison of cultured of marrow derived mesenchymal stem cells and stomal cells. PubMed DOI
Maquet, V., Martin, D., Scholtes, F., Franzen, R., Schoenen, J., Moonen, G., and Jer me, R. (2001). Poly(D,L-lactide) foams modified by poly(ethylene oxide)-block-poly(D,L-lactide) copolymers and a-FGF: PubMed DOI
Mehler, M. F., Rozental, R., Dougherty, M., Spray, D. C., and Kessler, J. A. (1993). Cytokine regulation of neuronal differentiation of hippocampal progenitor cells. PubMed DOI
Mezey, E., Chandross, K. J., Harta, G., Maki, R. A., and McKercher, S. R. (2000). Turning blood into brain: cells bearing neuronal antigens generated PubMed DOI
Ogawa, Y., Sawamoto, K., Miyta, T., Watanabe, M., Nakamura, M, Bregman, B., PubMed DOI
Okada, S., Ishii, K., Yamane, J., Iwanami, A., Ikegami, T., Katoh, H., PubMed DOI
Oudega, M., Gautier, S. E., Chapon, P., Fragoso, M., Bates, M. L., Parel, J. M., and Bunge, M. B. (2001). Axonal regeneration into Schwann cell grafts within resorbable poly(alpha-hydroxyacid) guidance channels in the adult rat spinal cord. PubMed DOI
Park, H. C., Shims, Y. S., Ha, Y., Yoon, S. H., Park, S. R., Choi, B. H., and Park, H. S. (2005). Treatment of complete spinal cord injury patients by autologous bone marrow cell transplantation and administration of granulocyte-macrophage colony stimulating factor. PubMed DOI
Pitts, L. H., Ross, A., Chase, G. A., and Faden, A. I. (1995). Treatment with thyrotropin-releasing hormone (TRH) in patients with traumatic spinal cord injuries. PubMed DOI
Pointillart, V., Petitjean, M. E., Wiart, L., Vital, J. M., Lassie, P., Thicoipe, M., and Dabadie, P. (2000). Pharmacological therapy of spinal cord injury during the acute phase. PubMed DOI
Přádný, M., Lesný, P., Fiala, J., Vacik, J., Slouf, M., Michálek, J., and Syková, E. (2002). Macroporous hydrogels based on 2-hydroxyethylmethacrylate. Part 1. Copolymers of 2-hydroxyethylmethacrylate with methacrylic acid. DOI
Přádný, M., Michálek, J., Lesný, P., Hejčl, A., Vacík, J., Slouf, M., and Syková, E. (in press). Macroporous hydrogels based on 2-hydroxyethyl methacrylate. Part 5: Hydrolytically degradable materials. PubMed
Prockop, D. J. (1997). Marrow stromal cells as stem cells for nonhematopoietic tissues. PubMed DOI
Sasaki, M., Honmou, O., Akiyama, Y., Uede, T., Hashi, K., and Kocsis, J. D. (2001). Transplantation of an acutely isolated bone marrow fraction repairs demyelinated adult rat spinal cord axons. PubMed DOI PMC
Syková, E., and Jendelová, P. (2005). Magnetic resonance tracking of implanted adult and embryonic stem cells in injured brain and spinal cord. PubMed DOI
Syková, E., Jendelová, P., Glogarová, K., Urdzíková, L., Burian, M., and Hájek, M. (2005a). Bone marrow cells as tool for the therapy of spinal cord injury. Program No 819.7 2005. Abstract viewer/Itinerary Planner, Society for Neuroscience, Washington, DC.
Syková, E., Urdzíková, L., Jendelová, P., Burian, M., Glogarová, K., and Hájek, M. (2005b). Bone marrow cells—a tool for spinal cord injury repair.
Teng, Y. D., Lavik, E. B., Qu, X., Park, K. I., Ourednik, J., Zurakowski, D., PubMed DOI PMC
Urdzíková, L., Jendelová, P., Glogarová, K., Burian, M., Hájek, M., and Syková, E. (in press). Transplantation of bone marrow stem cells as well as mobilization by granulocyte— colony stimulating factor promote recovery after spinal cord injury in rat. PubMed
Urdzíková, L., Jendelová, P., Glogarová, K., and Syková, E. (2005). The intravenous treatment with mesenchymal stromal cells promotes functional recovery of chronic spinal cord injuries. In Cassoviensia, F. M. (ed.),
Venstrom, K. A., and Reichardt, L. F. (1993). Extracellular matrix. 2: Role of extracellular matrix molecules and their receptors in the nervous system. PubMed DOI
Wang, L., Li, Y., Chen, J., Gautam, S. C., Zhang, Z., Lu, M., and Chopp, M. (2002). Ischemic cerebral tissue and MCP-1 enhance rat bone marrow stromal cell migration in interface culture. PubMed DOI
Woerly, S., Doan, V. D., Sosa, N., de Vellis, J., and Espinosa, A. (2001b). Reconstruction of the transected cat spinal cord following NeuroGel implantation: axonal tracing, immunohistochemical and ultrastructural studies. PubMed DOI
Woerly, S., Pinet, E., de Robertis, L., Van Diep, D., and Bousmina, M. (2001a). Spinal cord repair with PHPMA hydrogel containing RGD peptides (NeuroGel). PubMed DOI
Woerly, S., Pinet, E., De Robertis, L., Bousmina, M., Laroche, G., Roitback, T., PubMed DOI
Woodbury, D., Schwarz, E. J., Prockop, D. J., and Black, I. B. (2000). Adult rat and human bone marrow stromal cells differentiate into neurons. PubMed DOI
Wrathall, J. R., Rigamonti, D. D., Braford, M. R., and Kao, C. C. (1982). Reconstruction of the contused cat spinal cord by the delayed nerve graft technique and cultured peripheral non-neuronal cells. PubMed DOI
Wu, S., Suzuki, Y., Ejiri, Y., Noda, T., Bai, H., Kitada, M., PubMed DOI
Xu, X. M., Chen, A., Guenard, V., Kleitman, N., and Bunge, M. B. (1997). Bridging Schwann cell transplants promote axonal regeneration from both the rostral and caudal stumps of transected adult rat spinal cord. PubMed DOI
Mesenchymal Stem Cells in Treatment of Spinal Cord Injury and Amyotrophic Lateral Sclerosis
Modified Methacrylate Hydrogels Improve Tissue Repair after Spinal Cord Injury
Mesenchymal stem cells, nanofiber scaffolds and ocular surface reconstruction
Highly efficient magnetic targeting of mesenchymal stem cells in spinal cord injury