Assessing Lettuce Exposure to a Multipharmaceutical Mixture under Hydroponic Conditions: Findings through LC-ESI-TQ Analysis and Ecotoxicological Assessments
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
39713641
PubMed Central
PMC11656385
DOI
10.1021/acsomega.4c08013
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
The escalating global water scarcity demands innovative solutions, one of which is hydroponic vegetable cultivation systems that increasingly use reclaimed wastewater. Nevertheless, even treated wastewater may still harbor various emerging organic contaminants, including pharmaceuticals. This study aimed to comprehensively assess the impact of pharmaceuticals, focusing on bioconcentration factors (BCFs), translocation factors (TFs), pharmaceutical persistence in aqueous environment, ecotoxicological end points, and associated environmental and health risks. Lettuce (Lactuca sativa) was cultivated hydroponically throughout its entire growth cycle, exposed to seven distinct concentration levels of contaminants ranging from 0 to 500 μg·L-1 over a 35-day period. The findings revealed a diverse range of BCFs (2.3 to 880 L·kg-1) and TFs (0.019-1.48), suggesting a high potential of pharmaceutical uptake and translocation by L. sativa. The degradation of 20 pharmaceuticals within the water-lettuce system followed first-order degradation kinetics. Substantial ecotoxicological effects on L. sativa were observed, including increased mortality, alterations in root morphology and length, and changes in biomass weight (p < 0.05). Furthermore, the estimated daily intake of pharmaceuticals through L. sativa consumption suggested considerable health risks, even if lettuce would be one of the many vegetables consumed. It is hypothetical, as the values were calculated. Moreover, this study assessed the environmental risk associated with the emergence of antimicrobial resistance (AMR) in aquatic environments, revealing a significantly high risk of AMR emergence. In conclusion, these findings emphasize the multifaceted challenges posed by pharmaceutical contamination in aquatic environments and the necessity of proactive measures to mitigate associated risks to both environmental and human health.
Zobrazit více v PubMed
Lee E.; Rout P. R.; Bae J. The Applicability of Anaerobically Treated Domestic Wastewater as a Nutrient Medium in Hydroponic Lettuce Cultivation: Nitrogen Toxicity and Health Risk Assessment. Sci. Total Environ. 2021, 780, 14648210.1016/j.scitotenv.2021.146482. PubMed DOI
García M. G.; Fernández-López C.; Pedrero-Salcedo F.; Alarcón J. J. Absorption of Carbamazepine and Diclofenac in Hydroponically Cultivated Lettuces and Human Health Risk Assessment. Agric. Water Manage. 2018, 206, 42–47. 10.1016/j.agwat.2018.04.018. DOI
Zimmerman J. B.; Mihelcic J. R.; Smith J. Global Stressors on Water Quality and Quantity. Environ. Sci. Technol. 2008, 42 (12), 4247–4254. 10.1021/es0871457. PubMed DOI
Winker M.; Fischer M.; Bliedung A.; Bürgow G.; Germer J.; Mohr M.; Nink A.; Schmitt B.; Wieland A.; Dockhorn T. Water Reuse in Hydroponic Systems: A Realistic Future Scenario for Germany? Facts and Evidence Gained during a Transdisciplinary Research Project. J. Water Reuse Desalin. 2020, 10 (4), 363–379. 10.2166/wrd.2020.020. DOI
Magwaza S. T.; Magwaza L. S.; Odindo A. O.; Mditshwa A. Hydroponic Technology as Decentralised System for Domestic Wastewater Treatment and Vegetable Production in Urban Agriculture: A Review. Sci. Total Environ. 2020, 698, 13415410.1016/j.scitotenv.2019.134154. PubMed DOI
Bliedung A.; Dockhorn T.; Germer J.; Mayerl C.; Mohr M. Experiences of Running a Hydroponic System in a Pilot Scale for Resource-Efficient Water Reuse. J. Water Reuse Desalin. 2020, 10 (4), 347–362. 10.2166/wrd.2020.014. DOI
Yang L.; Giannis A.; Chang V. W.-C.; Liu B.; Zhang J.; Wang J.-Y. Application of Hydroponic Systems for the Treatment of Source-Separated Human Urine. Ecol. Eng. 2015, 81, 182–191. 10.1016/j.ecoleng.2015.04.013. DOI
Cifuentes-Torres L.; Correa-Reyes G.; Mendoza-Espinosa L. G. Can. Reclaimed Water Be Used for Sustainable Food Production in Aquaponics?. Front. Plant Sci. 2021, 12, 66998410.3389/fpls.2021.669984. PubMed DOI PMC
Cifuentes-Torres L.; Mendoza-Espinosa L. G.; Correa-Reyes G.; Daesslé L. W. Hydroponics with Wastewater: A Review of Trends and Opportunities. Water Environ. J. 2021, 35 (1), 166–180. 10.1111/wej.12617. DOI
Ceci L.; Cavalera M. A.; Serrapica F.; Di Francia A.; Masucci F.; Carelli G. Use of Reclaimed Urban Wastewater for the Production of Hydroponic Barley Forage: Water Characteristics, Feed Quality and Effects on Health Status and Production of Lactating Cows. Front. Vet. Sci. 2023, 10, 127446610.3389/fvets.2023.1274466. PubMed DOI PMC
Barbosa G.; Gadelha F.; Kublik N.; Proctor A.; Reichelm L.; Weissinger E.; Wohlleb G.; Halden R. Comparison of Land, Water, and Energy Requirements of Lettuce Grown Using Hydroponic vs. Conventional Agricultural Methods. Int. J. Environ. Res. Public Health 2015, 12 (6), 6879–6891. 10.3390/ijerph120606879. PubMed DOI PMC
Norström A.; Larsdotter K.; Gumaelius L.; la Cour Jansen J.; Dalhammar G. A Small Scale Hydroponics Wastewater Treatment System under Swedish Conditions. Water Sci. Technol. 2004, 48 (11–12), 161–167. 10.2166/wst.2004.0830. PubMed DOI
Vaillant N.; Monnet F.; Sallanon H.; Coudret A.; Hitmi A. Use of Commercial Plant Species in a Hydroponic System to Treat Domestic Wastewaters. J. Environ. Qual. 2004, 33 (2), 695–702. 10.2134/jeq2004.6950. PubMed DOI
Richa A.; Touil S.; Fizir M.; Martinez V. Recent Advances and Perspectives in the Treatment of Hydroponic Wastewater: A Review. Rev. Environ. Sci. Biotechnol. 2020, 19 (4), 945–966. 10.1007/s11157-020-09555-9. DOI
Bijlsma L.; Pitarch E.; Fonseca E.; Ibáñez M.; Botero A. M.; Claros J.; Pastor L.; Hernández F. Investigation of Pharmaceuticals in a Conventional Wastewater Treatment Plant: Removal Efficiency, Seasonal Variation and Impact of a Nearby Hospital. J. Environ. Chem. Eng. 2021, 9 (4), 10554810.1016/j.jece.2021.105548. DOI
Khasawneh O. F. S.; Palaniandy P. Occurrence and Removal of Pharmaceuticals in Wastewater Treatment Plants. Process Safety Environ. Prot. 2021, 150, 532–556. 10.1016/j.psep.2021.04.045. DOI
Srichamnong W.; Kalambaheti N.; Woskie S.; Kongtip P.; Sirivarasai J.; Matthews K. R. Occurrence of Antibiotic-resistant Bacteria on Hydroponically Grown Butterhead Lettuce (Lactuca Sativa Var. Capitata). Food Sci. Nutr. 2021, 9 (3), 1460–1470. 10.1002/fsn3.2116. PubMed DOI PMC
Akenga P.; Gachanja A.; Fitzsimons M. F.; Tappin A.; Comber S. Uptake, Accumulation and Impact of Antiretroviral and Antiviral Pharmaceutical Compounds in Lettuce. Sci. Total Environ. 2021, 766, 14449910.1016/j.scitotenv.2020.144499. PubMed DOI
Rhodes G.; Chuang Y.-H.; Hammerschmidt R.; Zhang W.; Boyd S. A.; Li H. Uptake of Cephalexin by Lettuce, Celery, and Radish from Water. Chemosphere 2021, 263, 12791610.1016/j.chemosphere.2020.127916. PubMed DOI
Calderón-Preciado D.; Renault Q.; Matamoros V.; Cañameras N.; Bayona J. M. Uptake of Organic Emergent Contaminants in Spath and Lettuce: An In Vitro Experiment. J. Agric. Food Chem. 2012, 60 (8), 2000–2007. 10.1021/jf2046224. PubMed DOI
Wu X.; Ernst F.; Conkle J. L.; Gan J. Comparative Uptake and Translocation of Pharmaceutical and Personal Care Products (PPCPs) by Common Vegetables. Environ. Int. 2013, 60, 15–22. 10.1016/j.envint.2013.07.015. PubMed DOI
Chuang Y.-H.; Liu C.-H.; Sallach J. B.; Hammerschmidt R.; Zhang W.; Boyd S. A.; Li H. Mechanistic Study on Uptake and Transport of Pharmaceuticals in Lettuce from Water. Environ. Int. 2019, 131, 10497610.1016/j.envint.2019.104976. PubMed DOI
Tian R.; Zhang R.; Uddin M.; Qiao X.; Chen J.; Gu G. Uptake and Metabolism of Clarithromycin and Sulfadiazine in Lettuce. Environ. Pollut. 2019, 247, 1134–1142. 10.1016/j.envpol.2019.02.009. PubMed DOI
Rocha D. C.; Kochi L. Y.; Kitamura R. S. A.; Brito J. C. M.; da Silva Nogueira K.; Gomes M. P. Unveiling the Impact of Antimicrobial-Infused Water on Hydroponic Baby Leafy Vegetables (Lettuce, Rocket, and Watercress): Physiological Effects and Food Safety. J. Environ. Chem. Eng. 2024, 12 (2), 11233510.1016/j.jece.2024.112335. DOI
Miller E. L.; Nason S. L.; Karthikeyan K. G.; Pedersen J. A. Root Uptake of Pharmaceuticals and Personal Care Product Ingredients. Environ. Sci. Technol. 2016, 50 (2), 525–541. 10.1021/acs.est.5b01546. PubMed DOI
Keerthanan S.; Jayasinghe C.; Biswas J. K.; Vithanage M. Pharmaceutical and Personal Care Products (PPCPs) in the Environment: Plant Uptake, Translocation, Bioaccumulation, and Human Health Risks. Crit. Rev. Environ. Sci. Technol. 2021, 51 (12), 1221–1258. 10.1080/10643389.2020.1753634. DOI
Ravichandran M. K.; Philip L. Insight into the Uptake, Fate and Toxic Effects of Pharmaceutical Compounds in Two Wetland Plant Species through Hydroponics Studies. Chem. Eng. J. 2021, 426, 13107810.1016/j.cej.2021.131078. DOI
Goh Y. S.; Hum Y. C.; Lee Y. L.; Lai K. W.; Yap W.-S.; Tee Y. K. A Meta-Analysis: Food Production and Vegetable Crop Yields of Hydroponics. Sci. Hortic. 2023, 321, 11233910.1016/j.scienta.2023.112339. DOI
Jan S.; Rashid Z.; Ahngar T. A.; Iqbal S.; Naikoo M. A.; Majeed S.; Bhat T. A.; Gul R.; Nazir I. Hydroponics – A Review. Int. J. Curr. Microbiol. Appl. Sci. 2020, 9 (8), 1779–1787. 10.20546/ijcmas.2020.908.206. DOI
Rajaseger G. Hydroponics: Current Trends in Sustainable Crop Production. Bioinformation 2023, 19 (9), 925–938. 10.6026/97320630019925. PubMed DOI PMC
Mattson N. S.; Peters C. A Recipe for Hydroponic Success. Inside Grower 2014, 2014, 16–19.
Mravcová L.; Amrichová A.; Navrkalová J.; Hamplová M.; Sedlář M.; Gargošová H. Z.; Fučík J. Optimization and Validation of Multiresidual Extraction Methods for Pharmaceuticals in Soil, Lettuce, and Earthworms. Environ. Sci. Pollut. Res. 2024, 31, 33120–33140. 10.1007/s11356-024-33492-7. PubMed DOI PMC
Bao Y.; Li Y.; Pan C. Effects of the Removal of Soil Extractable Oxytetracycline Fractions on Its Bioaccumulation in Earthworm and Horsebean. Water, Air, Soil Pollut. 2018, 229 (3), 7910.1007/s11270-018-3742-0. DOI
Yu X.; Liu X.; Liu H.; Chen J.; Sun Y. The Accumulation and Distribution of Five Antibiotics from Soil in 12 Cultivars of Pak Choi. Environ. Pollut. 2019, 254, 11311510.1016/j.envpol.2019.113115. PubMed DOI
Wu X.; Dodgen L. K.; Conkle J. L.; Gan J. Plant Uptake of Pharmaceutical and Personal Care Products from Recycled Water and Biosolids: A Review. Sci. Total Environ. 2015, 536, 655–666. 10.1016/j.scitotenv.2015.07.129. PubMed DOI
Schmidt T.; Kimmel S.; Hoeger S.; Lemic D.; Bazok R.; Viric Gasparic H. Plant Protection Products in Agricultural Fields – Residues in Earthworms and Assessment of Potentially Toxic Effects to the Environment. J. Central Eur. Agric. 2022, 23 (3), 604–614. 10.5513/JCEA01/23.3.3625. DOI
Jiao S.; Zheng S.; Yin D.; Wang L.; Chen L. Aqueous Photolysis of Tetracycline and Toxicity of Photolytic Products to Luminescent Bacteria. Chemosphere 2008, 73 (3), 377–382. 10.1016/j.chemosphere.2008.05.042. PubMed DOI
Kiki C.; Rashid A.; Wang Y.; Li Y.; Zeng Q.; Yu C.-P.; Sun Q. Dissipation of Antibiotics by Microalgae: Kinetics, Identification of Transformation Products and Pathways. J. Hazard. Mater. 2020, 387, 12198510.1016/j.jhazmat.2019.121985. PubMed DOI
Peñas-Garzón M.; Gómez-Avilés A.; Belver C.; Rodriguez J. J.; Bedia J. Degradation Pathways of Emerging Contaminants Using TiO2-Activated Carbon Heterostructures in Aqueous Solution under Simulated Solar Light. Chem. Eng. J. 2020, 392, 12486710.1016/j.cej.2020.124867. DOI
Ma X.; Zhang H.; Wang Z.; Yao Z.; Chen J.; Chen J. Bioaccumulation and Trophic Transfer of Short Chain Chlorinated Paraffins in a Marine Food Web from Liaodong Bay, North China. Environ. Sci. Technol. 2014, 48 (10), 5964–5971. 10.1021/es500940p. PubMed DOI
Zhu M.; Chen J.; Peijnenburg W. J. G. M.; Xie H.; Wang Z.; Zhang S. Controlling Factors and Toxicokinetic Modeling of Antibiotics Bioaccumulation in Aquatic Organisms: A Review. Crit. Rev. Environ. Sci. Technol. 2023, 53 (15), 1431–1451. 10.1080/10643389.2022.2142033. DOI
Hyland K. C.; Blaine A. C.; Higgins C. P. Accumulation of Contaminants of Emerging Concern in Food Crops—Part 2: Plant Distribution. Environ. Toxicol. Chem. 2015, 34 (10), 2222–2230. 10.1002/etc.3068. PubMed DOI
Knight E. R.; Carter L. J.; McLaughlin M. J. Bioaccumulation, Uptake, and Toxicity of Carbamazepine in Soil–Plant Systems. Environ. Toxicol. Chem. 2018, 37 (4), 1122–1130. 10.1002/etc.4053. PubMed DOI
Hyland K. C.; Blaine A. C.; Dickenson E. R. V.; Higgins C. P. Accumulation of Contaminants of Emerging Concern in Food Crops—Part 1: Edible Strawberries and Lettuce Grown in Reclaimed Water. Environ. Toxicol. Chem. 2015, 34 (10), 2213–2221. 10.1002/etc.3066. PubMed DOI
Sallach J. B.; Zhang Y.; Hodges L.; Snow D.; Li X.; Bartelt-Hunt S. Concomitant Uptake of Antimicrobials and Salmonella in Soil and into Lettuce Following Wastewater Irrigation. Environ. Pollut. 2015, 197, 269–277. 10.1016/j.envpol.2014.11.018. PubMed DOI
Kodešová R.; Klement A.; Golovko O.; Fér M.; Kočárek M.; Nikodem A.; Grabic R. Soil Influences on Uptake and Transfer of Pharmaceuticals from Sewage Sludge Amended Soils to Spinach. J. Environ. Manage. 2019, 250, 10940710.1016/j.jenvman.2019.109407. PubMed DOI
El Gemayel L. J.; Bashour I. I.; Abou Jawdeh Y. A.; Farran M. T.; Farajalla N.. Effect of Antibiotics on Plant Growth in a Water Culture. In Antibiotics and Antimicrobial Resistance Genes; Springer, 2020; pp 239–253.
Leitão I.; Leclercq C. C.; Ribeiro D. M.; Renaut J.; Almeida A. M.; Martins L. L.; Mourato M. P. Stress Response of Lettuce (Lactuca sativa) to Environmental Contamination with Selected Pharmaceuticals: A Proteomic Study. J. Proteomics 2021, 245, 10429110.1016/j.jprot.2021.104291. PubMed DOI
Garcia C. J.; García-Villalba R.; Garrido Y.; Gil M. I.; Tomás-Barberán F. A. Untargeted Metabolomics Approach Using UPLC-ESI-QTOF-MS to Explore the Metabolome of Fresh-Cut Iceberg Lettuce. Metabolomics 2016, 12 (8), 13810.1007/s11306-016-1082-x. DOI
Carter L. J.; Williams M.; Böttcher C.; Kookana R. S. Uptake of Pharmaceuticals Influences Plant Development and Affects Nutrient and Hormone Homeostases. Environ. Sci. Technol. 2015, 49 (20), 12509–12518. 10.1021/acs.est.5b03468. PubMed DOI
Kreuzig R.; Haller-Jans J.; Bischoff C.; Leppin J.; Germer J.; Mohr M.; Bliedung A.; Dockhorn T. Reclaimed Water Driven Lettuce Cultivation in a Hydroponic System: The Need of Micropollutant Removal by Advanced Wastewater Treatment. Environ. Sci. Pollut. Res. 2021, 28 (36), 50052–50062. 10.1007/s11356-021-14144-6. PubMed DOI PMC
Švecová H.; Staňová A. V.; Klement A.; Kodešová R.; Grabic R. LC-HRMS Method for Study of Pharmaceutical Uptake in Plants: Effect of PH under Aeroponic Condition. Environ. Sci. Pollut. Res. 2023, 30 (42), 96219–96230. 10.1007/s11356-023-29035-1. PubMed DOI PMC
Pang Z.; Lu Y.; Zhou G.; Hui F.; Xu L.; Viau C.; Spigelman A. F.; MacDonald P. E.; Wishart D. S.; Li S.; Xia J. MetaboAnalyst 6.0: Towards a Unified Platform for Metabolomics Data Processing, Analysis and Interpretation. Nucleic Acids Res. 2024, 52, W398–W406. 10.1093/nar/gkae253. PubMed DOI PMC
Leitão I.; Mourato M. P.; Carvalho L.; Oliveira M. C.; Marques M. M.; Martins L. L. Antioxidative Response of Lettuce (Lactuca sativa) to Carbamazepine-Induced Stress. Environ. Sci. Pollut. Res. 2021, 28 (33), 45920–45932. 10.1007/s11356-021-13979-3. PubMed DOI
Moazeni M.; Heidari Z.; Golipour S.; Ghaisari L.; Sillanpää M.; Ebrahimi A. Dietary Intake and Health Risk Assessment of Nitrate, Nitrite, and Nitrosamines: A Bayesian Analysis and Monte Carlo Simulation. Environ. Sci. Pollut. Res. 2020, 27 (36), 45568–45580. 10.1007/s11356-020-10494-9. PubMed DOI
Sanaei F.; Amin M. M.; Alavijeh Z. P.; Esfahani R. A.; Sadeghi M.; Bandarrig N. S.; Fatehizadeh A.; Taheri E.; Rezakazemi M. Health Risk Assessment of Potentially Toxic Elements Intake via Food Crops Consumption: Monte Carlo Simulation-Based Probabilistic and Heavy Metal Pollution Index. Environ. Sci. Pollut. Res. 2021, 28 (2), 1479–1490. 10.1007/s11356-020-10450-7. PubMed DOI
Geng J.; Liu X.; Wang J.; Li S. Accumulation and Risk Assessment of Antibiotics in Edible Plants Grown in Contaminated Farmlands: A Review. Sci. Total Environ. 2022, 853, 15861610.1016/j.scitotenv.2022.158616. PubMed DOI
Azanu D.; Mortey C.; Darko G.; Weisser J. J.; Styrishave B.; Abaidoo R. C. Uptake of Antibiotics from Irrigation Water by Plants. Chemosphere 2016, 157, 107–114. 10.1016/j.chemosphere.2016.05.035. PubMed DOI
Bair D. A.; Anderson C. G.; Chung Y.; Scow K. M.; Franco R. B.; Parikh S. J. Impact of Biochar on Plant Growth and Uptake of Ciprofloxacin, Triclocarban and Triclosan from Biosolids. J. Environ. Sci. Health, Part B 2020, 55 (11), 990–1001. 10.1080/03601234.2020.1807264. PubMed DOI
Lam K.-L.; Kong W.-P.; Ling P.-Y.; Lau T.-H.; Ho K.-H.; Lee F. W.-F.; Chan P.-L. Antibiotic-Resistant Bacteria in Hydroponic Lettuce in Retail: A Comparative Survey. Foods 2020, 9 (9), 132710.3390/foods9091327. PubMed DOI PMC
Murray C. J. L.; Ikuta K. S.; Sharara F.; Swetschinski L.; Aguilar G. R.; Gray A.; Han C.; Bisignano C.; Rao P.; Wool E.; Johnson S. C.; Browne A. J.; Chipeta M. G.; Fell F.; Hackett S.; Haines-Woodhouse G.; Kashef Hamadani B. H.; Kumaran E. A. P.; McManigal B.; Achalapong S.; Agarwal R.; Akech S.; Albertson S.; Amuasi J.; Andrews J.; Aravkin A.; Ashley E.; Babin F.-X.; Bailey F.; Baker S.; Basnyat B.; Bekker A.; Bender R.; Berkley J. A.; Bethou A.; Bielicki J.; Boonkasidecha S.; Bukosia J.; Carvalheiro C.; Castañeda-Orjuela C.; Chansamouth V.; Chaurasia S.; Chiurchiù S.; Chowdhury F.; Clotaire Donatien R.; Cook A. J.; Cooper B.; Cressey T. R.; Criollo-Mora E.; Cunningham M.; Darboe S.; Day N. P. J.; De Luca M.; Dokova K.; Dramowski A.; Dunachie S. J.; Duong Bich T.; Eckmanns T.; Eibach D.; Emami A.; Feasey N.; Fisher-Pearson N.; Forrest K.; Garcia C.; Garrett D.; Gastmeier P.; Giref A. Z.; Greer R. C.; Gupta V.; Haller S.; Haselbeck A.; Hay S. I.; Holm M.; Hopkins S.; Hsia Y.; Iregbu K. C.; Jacobs J.; Jarovsky D.; Javanmardi F.; Jenney A. W. J.; Khorana M.; Khusuwan S.; Kissoon N.; Kobeissi E.; Kostyanev T.; Krapp F.; Krumkamp R.; Kumar A.; Kyu H. H.; Lim C.; Lim K.; Limmathurotsakul D.; Loftus M. J.; Lunn M.; Ma J.; Manoharan A.; Marks F.; May J.; Mayxay M.; Mturi N.; Munera-Huertas T.; Musicha P.; Musila L. A.; Mussi-Pinhata M. M.; Naidu R. N.; Nakamura T.; Nanavati R.; Nangia S.; Newton P.; Ngoun C.; Novotney A.; Nwakanma D.; Obiero C. W.; Ochoa T. J.; Olivas-Martinez A.; Olliaro P.; Ooko E.; Ortiz-Brizuela E.; Ounchanum P.; Pak G. D.; Paredes J. L.; Peleg A. Y.; Perrone C.; Phe T.; Phommasone K.; Plakkal N.; Ponce-de-Leon A.; Raad M.; Ramdin T.; Rattanavong S.; Riddell A.; Roberts T.; Robotham J. V.; Roca A.; Rosenthal V. D.; Rudd K. E.; Russell N.; Sader H. S.; Saengchan W.; Schnall J.; Scott J. A. G.; Seekaew S.; Sharland M.; Shivamallappa M.; Sifuentes-Osornio J.; Simpson A. J.; Steenkeste N.; Stewardson A. J.; Stoeva T.; Tasak N.; Thaiprakong A.; Thwaites G.; Tigoi C.; Turner C.; Turner P.; van Doorn H. R.; Velaphi S.; Vongpradith A.; Vongsouvath M.; Vu H.; Walsh T.; Walson J. L.; Waner S.; Wangrangsimakul T.; Wannapinij P.; Wozniak T.; Young Sharma T. E. M. W.; Yu K. C.; Zheng P.; Sartorius B.; Lopez A. D.; Stergachis A.; Moore C.; Dolecek C.; Naghavi M. Global Burden of Bacterial Antimicrobial Resistance in 2019: A Systematic Analysis. Lancet 2022, 399 (10325), 629–655. 10.1016/S0140-6736(21)02724-0. PubMed DOI PMC
Bourdat-Deschamps M.; Leang S.; Bernet N.; Daudin J.-J.; Nélieu S. Multi-Residue Analysis of Pharmaceuticals in Aqueous Environmental Samples by Online Solid-Phase Extraction–Ultra-High-Performance Liquid Chromatography-Tandem Mass Spectrometry: Optimisation and Matrix Effects Reduction by Quick, Easy, Cheap, Effective, Rugged and Safe Extraction. J. Chromatogr A 2014, 1349, 11–23. 10.1016/j.chroma.2014.05.006. PubMed DOI
Sun Y.; Lyu H.; Cheng Z.; Wang Y.; Tang J. Insight into the Mechanisms of Ball-Milled Biochar Addition on Soil Tetracycline Degradation Enhancement: Physicochemical Properties and Microbial Community Structure. Chemosphere 2022, 291, 13269110.1016/j.chemosphere.2021.132691. PubMed DOI
Fang L.; Chen C.; Zhang F.; Ali E. F.; Sarkar B.; Rinklebe J.; Shaheen S. M.; Chen X.; Xiao R. Occurrence Profiling and Environmental Risk Assessment of Veterinary Antibiotics in Vegetable Soils at Chongqing Region, China. Environ. Res. 2023, 227, 11579910.1016/j.envres.2023.115799. PubMed DOI
Ren J.; Shi H.; Liu J.; Zheng C.; Lu G.; Hao S.; Jin Y.; He C. Occurrence, Source Apportionment and Ecological Risk Assessment of Thirty Antibiotics in Farmland System. J. Environ. Manage. 2023, 335, 11754610.1016/j.jenvman.2023.117546. PubMed DOI