Optimization and validation of multiresidual extraction methods for pharmaceuticals in Soil, Lettuce, and Earthworms
Jazyk angličtina Země Německo Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
FCH-S-23-8297
Ministerstvo Školství, Mládeže a Tělovýchovy
PubMed
38676866
PubMed Central
PMC11133184
DOI
10.1007/s11356-024-33492-7
PII: 10.1007/s11356-024-33492-7
Knihovny.cz E-zdroje
- Klíčová slova
- Liquid chromatography, Mass spectrometry, Multiresidual analytical methods, Pharmaceutical pollution, QuEChERS, Solid-phase extraction,
- MeSH
- chromatografie kapalinová MeSH
- extrakce na pevné fázi MeSH
- látky znečišťující půdu * analýza MeSH
- léčivé přípravky analýza MeSH
- Oligochaeta * MeSH
- půda * chemie MeSH
- salát (hlávkový) * chemie MeSH
- tandemová hmotnostní spektrometrie MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- látky znečišťující půdu * MeSH
- léčivé přípravky MeSH
- půda * MeSH
The presence of human and veterinary pharmaceuticals (PhACs) in the environment poses potential risks. To comprehensively assess these risks, robust multiresidual analytical methods are essential for determining a broad spectrum of PhAC classes in various environmental compartments (soil, plants, and soil organisms). This study optimized extraction methods for analyzing over 40 PhACs from various matrices, including soil, lettuce, and earthworms. A four-step ultrasonic extraction method with varying extraction conditions and subsequent solid phase extraction was developed for soil samples. QuEChERS methods were optimized for extracting PhACs from lettuce and earthworm samples, addressing a literature gap in these less-studied matrices. The quantification of PhACs in soil, lettuce, and earthworm extracts was performed using a single LC-MS/MS method. Following thorough method validation, earthworms and lettuce were exposed to a mixture of 27 pharmaceuticals in a soil environment. The method validation results demonstrated the robustness of these methods for a broad spectrum of PhACs. Specifically, 29 out of 42 PhACs were extracted with an average efficiency > 50% and RSD < 30% from the soil; 40 out of 42 PhACs exhibited average efficiency > 50% and %RSD < 30% from the earthworms, while 39 out of 42 PhACs showed average efficiency > 50% and RSD < 30% from the lettuce. Exposure experiments confirmed the viability of these methods for quantifying a diverse range of PhACs in different environmental compartments. This study presents three thoroughly validated methods for determining more than 40 PhACs in diverse matrices, enabling a comprehensive assessment of PhAC dissemination in the environment.
Zobrazit více v PubMed
Ajibola AS, Tisler S, Zwiener C. Simultaneous determination of multiclass antibiotics in sewage sludge based on QuEChERS extraction and liquid chromatography-tandem mass spectrometry. Anal Methods. 2020;12:576–586. doi: 10.1039/C9AY02188D. DOI
Albero B, Sánchez-Brunete C, García-Valcárcel AI, Pérez RA, Tadeo JL. Ultrasound-assisted extraction of emerging contaminants from environmental samples. TrAC, Trends Anal Chem. 2015;71:110–118. doi: 10.1016/j.trac.2015.03.015. DOI
Albero B, Tadeo JL, Pérez RA. Ultrasound-assisted extraction of organic contaminants. TrAC, Trends Anal Chem. 2019;118:739–750. doi: 10.1016/j.trac.2019.07.007. DOI
Aznar R, Sánchez-Brunete C, Albero B, Rodríguez JA, Tadeo JL. Occurrence and analysis of selected pharmaceutical compounds in soil from Spanish agricultural fields. Environ Sci Pollut Res. 2013;21:4772–4782. doi: 10.1007/s11356-013-2438-7. PubMed DOI
Bair DA, Mukome FND, Popova IE, Ogunyoku TA, Jefferson A, Wang D, Hafner SC, Young TM, Parikh SJ. Sorption of Pharmaceuticals, Heavy Metals, and Herbicides to Biochar in the Presence of Biosolids. J Environ Qual. 2016;45:1998–2006. doi: 10.2134/jeq2016.03.0106. PubMed DOI
Bartrons M, Peñuelas J. Pharmaceuticals and Personal-Care Products in Plants. Trends Plant Sci. 2017;22:194–203. doi: 10.1016/j.tplants.2016.12.010. PubMed DOI
Beek T, Weber F, Bergmann A, Hickmann S, Ebert I, Hein A, Küster A. Pharmaceuticals in the environment—Global occurrences and perspectives. Environ Toxic Chem. 2016;35:823–835. doi: 10.1002/etc.3339. PubMed DOI
Bergé A, Vulliet E. Development of a method for the analysis of hormones and pharmaceuticals in earthworms by quick, easy, cheap, effective, rugged and safe (QuEChERS) extraction followed by liquid chromatography-tandem mass spectrometry (LC-MS/MS) Anal Bioanal Chem. 2015;407:7995–8008. doi: 10.1007/s00216-015-8972-z. PubMed DOI
Bian K, Liu Y, Wang Z, Zhou T, Song X, Zhang F, He L. Determination of multi-class antimicrobial residues in soil by liquid chromatography-tandem mass spectrometry. RSC Adv. 2015;5:27584–27593. doi: 10.1039/C4RA13919D. DOI
Bielińska AB, Kumirska J, Borecka M, Caban M, Paszkiewicz M, Pazdro K, Stepnowski P. Selected analytical challenges in the determination of pharmaceuticals in drinking/marine waters and soil/sediment samples. J Pharm Biomed Anal. 2016;121:271–296. doi: 10.1016/j.jpba.2016.01.016. PubMed DOI
Caldú AA, Diaz-Cruz MS. Development of a QuEChERS-based method for the analysis of pharmaceuticals and personal care products in lettuces grown in field-scale agricultural plots irrigated with reclaimed water. Talanta. 2021;230:122302. doi: 10.1016/j.talanta.2021.122302. PubMed DOI
Carballo EM, González-Barreiro C, Scharf S, Gans O. Environmental monitoring study of selected veterinary antibiotics in animal manure and soils in Austria. Environ Pollut. 2007;148:570–579. doi: 10.1016/j.envpol.2006.11.035. PubMed DOI
Carter LJ, Garman CD, Ryan J, Dowle A, Bergström E, Thomas-Oates J, Boxall ABA. Fate and Uptake of Pharmaceuticals in Soil-Earthworm Systems. Environ Sci Technol. 2014;48:5955–5963. doi: 10.1021/es500567w. PubMed DOI PMC
Carvalho PN, Zhang Y, Lyu T, Arias CA, Bester K, Brix H. Methodologies for the analysis of pesticides and pharmaceuticals in sediments and plant tissue. Anal Methods. 2018;10:3791–3803. doi: 10.1039/c8ay00393a. DOI
Carvalho PN (2020) Constructed Wetlands and Phytoremediation as a Tool for Pharmaceutical Removal. The Handbook of Environmental Chemistry.10.1007/698_2020_624
Celiz MD, Tso J, Aga DS. Pharmaceutical metabolites in the environment: Analytical challenges and ecological risks. Environ Toxic Chem. 2009;28:2473–2484. doi: 10.1897/09-173.1. PubMed DOI
Chen J, He L-X, Cheng Y-X, Ye P, Wu D-L, Fang Z-Q, Li J, Ying G-G. Trace analysis of 28 antibiotics in plant tissues (root, stem, leaf and seed) by optimized QuEChERS pretreatment with UHPLC-MS/MS detection. J Chromatogr B. 2020;1161:122450. doi: 10.1016/j.jchromb.2020.122450. PubMed DOI
Chitescu CL, Oosterink E, de Jong J, Stolker AAM (Linda) Ultrasonic or accelerated solvent extraction followed by U-HPLC-high mass accuracy MS for screening of pharmaceuticals and fungicides in soil and plant samples. Talanta. 2012;88:653–662. doi: 10.1016/j.talanta.2011.11.054. PubMed DOI
Chuang Y-H, Zhang Y, Zhang W, Boyd SA, Li H. Comparison of accelerated solvent extraction and quick, easy, cheap, effective, rugged and safe method for extraction and determination of pharmaceuticals in vegetables. J Chromatogr A. 2015;1404:1–9. doi: 10.1016/j.chroma.2015.05.022. PubMed DOI
Chung HS, Lee Y-J, Rahman MdM, Abd El-Aty AM, Lee HS, Kabir MdH, Kim SW, Park B-J, Kim J-E, Hacımüftüoğlu F, Nahar N, Shin H-C, Shim J-H. Uptake of the veterinary antibiotics chlortetracycline, enrofloxacin, and sulphathiazole from soil by radish. Sci Total Environ. 2017;605–606:322–331. doi: 10.1016/j.scitotenv.2017.06.231. PubMed DOI
Cycoń M, Mrozik A, Piotrowska-Seget Z (2019) Antibiotics in the Soil Environment—Degradation and Their Impact on Microbial Activity and Diversity. Front Microbiol 10. 10.3389/fmicb.2019.00338 PubMed PMC
Deschamps MB, Leang S, Bernet N, Daudin J-J, Nélieu S. Multi-residue analysis of pharmaceuticals in aqueous environmental samples by online solid-phase extraction–ultra-high-performance liquid chromatography-tandem mass spectrometry: Optimisation and matrix effects reduction by quick, easy, cheap, effective, rugged and safe extraction. J Chromatogr A. 2014;1349:11–23. doi: 10.1016/j.chroma.2014.05.006. PubMed DOI
Deschamps BM, Ferhi S, Bernet N et al (2017) Fate and impacts of pharmaceuticals and personal care products after repeated applications of organic waste products in long-term field experiments. Sci Total Environ 607–608:271–280. 10.1016/j.scitotenv.2017.06.240 PubMed
Duarte RMBO, Matos JTV, Senesi N (2018) Organic Pollutants in Soils. Soil Pollut 103–126. 10.1016/B978-0-12-849873-6.00005-4
Emhofer L, Himmelsbach M, Buchberger W, Klampfl CW. High-performance liquid chromatography – mass spectrometry analysis of the parent drugs and their metabolites in extracts from cress (Lepidium sativum) grown hydroponically in water containing four non-steroidal anti-inflammatory drugs. J Chromatogr A. 2017;1491:137–144. doi: 10.1016/j.chroma.2017.02.057. PubMed DOI
European Medicines Agency (2023) Sales of veterinary antimicrobial agents in 31 European countries in 2022: trends from 2010 to 2022 : thirteenth ESVAC report. Publications Office, LU. 10.2809/895656
Ferhi S, Bourdat-Deschamps M, Daudin J-J, Houot S, Nélieu S. Factors influencing the extraction of pharmaceuticals from sewage sludge and soil: an experimental design approach. Anal Bioanal Chem. 2016;408:6153–6168. doi: 10.1007/s00216-016-9725-3. PubMed DOI
Ferrero PG, Borova V, Dasenaki ME, Τhomaidis ΝS. Simultaneous determination of 148 pharmaceuticals and illicit drugs in sewage sludge based on ultrasound-assisted extraction and liquid chromatography–tandem mass spectrometry. Anal Bioanal Chem. 2015;407:4287–4297. doi: 10.1007/s00216-015-8540-6. PubMed DOI
Gaffney VJ, Cardoso VV, Cardoso E, Teixeira AP, Martins J, Benoliel MJ, Almeida CMM. Occurrence and behaviour of pharmaceutical compounds in a Portuguese wastewater treatment plant: Removal efficiency through conventional treatment processes. Environ Sci Pollut Res. 2017;24:14717–14734. doi: 10.1007/s11356-017-9012-7. PubMed DOI
Gao Q, Dong Q, Wu L, Yang Y, Hale L, Qin Z, Xie C, Zhang Q, Van Nostrand JD, Zhou J. Environmental antibiotics drives the genetic functions of resistome dynamics. Environ Int. 2020;135:105398. doi: 10.1016/j.envint.2019.105398. PubMed DOI
Golovko O, Koba O, Kodesova R, Fedorova G, Kumar V, Grabic R. Development of fast and robust multiresidual LC-MS/MS method for determination of pharmaceuticals in soils. Environ Sci Pollut Res. 2016;23:14068–14077. doi: 10.1007/s11356-016-6487-6. PubMed DOI
Gros M, Mas-Pla J, Boy-Roura M, Geli I, Domingo F, Petrović M. Veterinary pharmaceuticals and antibiotics in manure and slurry and their fate in amended agricultural soils: Findings from an experimental field site (Baix Empordà, NE Catalonia) Sci Total Environ. 2019;654:1337–1349. doi: 10.1016/j.scitotenv.2018.11.061. PubMed DOI
Gworek B, Kijeńska M, Wrzosek J, Graniewska M (2021) Pharmaceuticals in the Soil and Plant Environment: a Review. Water Air Soil Pollut 232. 10.1007/s11270-020-04954-8
Hang L, Zhao Y, Liu C, Yu Y, He Y, Xu J, Lu Z. Determine Multiple Classes of Veterinary Antibiotics in Soil: Comparing Dispersive and Solid-Phase Extraction for Sample Cleanup. Chromatographia. 2021;84:833–844. doi: 10.1007/s10337-021-04064-5. DOI
He Z, Wang Y, Xu Y, Liu X. Determination of Antibiotics in Vegetables Using QuEChERS-Based Method and Liquid Chromatography-Quadrupole Linear Ion Trap Mass Spectrometry. Food Anal Methods. 2018;11:2857–2864. doi: 10.1007/s12161-018-1252-8. DOI
Hernandez JCS (2020) Vermiremediation of Pharmaceutical-Contaminated Soils and Organic Amendments. The Handbook of Environmental Chemistry.10.1007/698_2020_625
Ho YB, Zakaria MP, Latif PA, Saari N. Degradation of veterinary antibiotics and hormone during broiler manure composting. Biores Technol. 2013;131:476–484. doi: 10.1016/j.biortech.2012.12.194. PubMed DOI
Hu W, Ma L, Guo C, Sha J, Zhu X, Wang Y. Simultaneous extraction and determination of fluoroquinolones, tetracyclines and sulfonamides antibiotics in soils using optimised solid phase extraction chromatography-tandem mass spectrometry. Int J Environ Anal Chem. 2012;92:698–713. doi: 10.1080/03067319.2010.520122. DOI
Hu S, Zhang Y, Shen G, Zhang H, Yuan Z, Zhang W. Adsorption/desorption behavior and mechanisms of sulfadiazine and sulfamethoxazole in agricultural soil systems. Soil Till Res. 2019;186:233–241. doi: 10.1016/j.still.2018.10.026. DOI
Huang Y, Cheng M, Li W, Wu L, Chen Y, Luo Y, Christie P, Zhang H. Simultaneous extraction of four classes of antibiotics in soil, manure and sewage sludge and analysis by liquid chromatography-tandem mass spectrometry with the isotope-labelled internal standard method. Anal Methods. 2013;5:3721. doi: 10.1039/c3ay40220g. DOI
Huang Q, Zhang J, Xiong S, Peng X, Wei G, Liu L, Sun X, Li L. Development of ultrasound-assisted extraction of commonly used azole antifungals in soils. Anal Methods. 2018;10:5265–5272. doi: 10.1039/c8ay01585f. DOI
Keerthanan S, Jayasinghe C, Biswas JK, Vithanage M. Pharmaceutical and Personal Care Products (PPCPs) in the environment: Plant uptake, translocation, bioaccumulation, and human health risks. Crit Rev Environ Sci Technol. 2020;51:1221–1258. doi: 10.1080/10643389.2020.1753634. DOI
Kim K-R, Owens G, Kwon S-I, So K-H, Lee D-B, Ok YS. Occurrence and Environmental Fate of Veterinary Antibiotics in the Terrestrial Environment. Water Air Soil Pollut. 2010;214:163–174. doi: 10.1007/s11270-010-0412-2. DOI
Kim L, Lee D, Cho H-K, Choi S-D. Review of the QuEChERS method for the analysis of organic pollutants: Persistent organic pollutants, polycyclic aromatic hydrocarbons, and pharmaceuticals. Trends Environ Anal Chem. 2019;22:e00063. doi: 10.1016/j.teac.2019.e00063. DOI
Kinney CA, Furlong ET, Kolpin DW, Burkhardt MR, Zaugg SD, Werner SL, Bossio JP, Benotti MJ. Bioaccumulation of Pharmaceuticals and Other Anthropogenic Waste Indicators in Earthworms from Agricultural Soil Amended With Biosolid or Swine Manure. Environ Sci Technol. 2008;42:1863–1870. doi: 10.1021/es702304c. PubMed DOI
Kodešová R, Klement A, Golovko O, Fér M, Nikodem A, Kočárek M, Grabic R. Root uptake of atenolol, sulfamethoxazole and carbamazepine, and their transformation in three soils and four plants. Environ Sci Pollut Res. 2019;26:9876–9891. doi: 10.1007/s11356-019-04333-9. PubMed DOI
Kruve A, Rebane R, Kipper K, Oldekop M-L, Evard H, Herodes K, Ravio P, Leito I. Tutorial review on validation of liquid chromatography–mass spectrometry methods: Part I. Anal Chim Acta. 2015;870:29–44. doi: 10.1016/j.aca.2015.02.017. PubMed DOI
Kruve A, Rebane R, Kipper K, Oldekop M-L, Evard H, Herodes K, Ravio P, Leito I. Tutorial review on validation of liquid chromatography–mass spectrometry methods: Part II. Anal Chim Acta. 2015;870:8–28. doi: 10.1016/j.aca.2015.02.016. PubMed DOI
Kuppusamy S, Kakarla D, Venkateswarlu K, Megharaj M, Yoon Y-E, Lee YB. Veterinary antibiotics (VAs) contamination as a global agro-ecological issue: A critical view. Agr Ecosyst Environ. 2018;257:47–59. doi: 10.1016/j.agee.2018.01.026. DOI
Lawal A, Wong RCS, Tan GH, Abdulra’uf LB, Alsharif AMA. Recent Modifications and Validation of QuEChERS-dSPE Coupled to LC–MS and GC–MS Instruments for Determination of Pesticide/Agrochemical Residues in Fruits and Vegetables: Review. J Chromatogr Sci. 2018;56:656–669. doi: 10.1093/chromsci/bmy032. PubMed DOI
Li Y, Sallach JB, Zhang W, Boyd SA, Li H. Insight into the distribution of pharmaceuticals in soil-water-plant systems. Water Res. 2019;152:38–46. doi: 10.1016/j.watres.2018.12.039. PubMed DOI
Li Y, Lian J, Wu B, Zou H, Tan SK. Phytoremediation of pharmaceutical-contaminated wastewater: Insights into rhizobacterial dynamics related to pollutant degradation mechanisms during plant life cycle. Chemosphere. 2020;253:126681. doi: 10.1016/j.chemosphere.2020.126681. PubMed DOI
Llompart M, Celeiro M, Dagnac T. Microwave-assisted extraction of pharmaceuticals, personal care products and industrial contaminants in the environment. TrAC, Trends Anal Chem. 2019;116:136–150. doi: 10.1016/j.trac.2019.04.029. DOI
Maia AS, Ribeiro AR, Amorim CL, Barreiro JC, Cass QB, Castro PML, Tiritan ME. Degradation of fluoroquinolone antibiotics and identification of metabolites/transformation products by liquid chromatography–tandem mass spectrometry. J Chromatogr A. 2014;1333:87–98. doi: 10.1016/j.chroma.2014.01.069. PubMed DOI
Manasfi R, Labad F, Montemurro N (2020) Development of Methods for the Determination of PhACs in Soil/Earthworm/Crop System Irrigated with Reclaimed Water. The Handbook of Environmental Chemistry. 10.1007/698_2020_650
Miller EL, Nason SL, Karthikeyan KG, Pedersen JA. Root Uptake of Pharmaceuticals and Personal Care Product Ingredients. Environ Sci Technol. 2016;50:525–541. doi: 10.1021/acs.est.5b01546. PubMed DOI
Mirzaei R, Yunesian M, Nasseri S, Gholami M, Jalilzadeh E, Shoeibi S, Bidshahi HS, Mesdaghinia A (2017) An optimized SPE-LC-MS/MS method for antibiotics residue analysis in ground, surface and treated water samples by response surface methodology- central composite design. J Environ Health Sci Eng 15. 10.1186/s40201-017-0282-2 PubMed PMC
Montemurro N, Postigo C, Lonigro A, Perez S, Barceló D. Development and validation of an analytical method based on liquid chromatography–tandem mass spectrometry detection for the simultaneous determination of 13 relevant wastewater-derived contaminants in lettuce. Anal Bioanal Chem. 2017;409:5375–5387. doi: 10.1007/s00216-017-0363-1. PubMed DOI
Montemurro N, Joedicke J, Pérez S. Development and application of a QuEChERS method with liquid chromatography-quadrupole time of flight-mass spectrometry for the determination of 50 wastewater-borne pollutants in earthworms exposed through treated wastewater. Chemosphere. 2021;263:128222. doi: 10.1016/j.chemosphere.2020.128222. PubMed DOI
Mullen RA, Wigginton KR, Noe-Hays A, Nace K, Love NG, Bott CB, Aga DS. Optimizing extraction and analysis of pharmaceuticals in human urine, struvite, food crops, soil, and lysimeter water by liquid chromatography-tandem mass spectrometry. Anal Methods. 2017;9:5952–5962. doi: 10.1039/C7AY01801K. DOI
Pan M, Chu LM. Fate of antibiotics in soil and their uptake by edible crops. Sci Total Environ. 2017;599–600:500–512. doi: 10.1016/j.scitotenv.2017.04.214. PubMed DOI
Pereira LC, Souza AO, Bernardes MFF, Pazin M, Tasso MJ, Pereira PH, Dorta DJ. A perspective on the potential risks of emerging contaminants to human and environmental health. Environ Sci Pollut Res. 2015;22:13800–13823. doi: 10.1007/s11356-015-4896-6. PubMed DOI
Pino MR, Muñiz S, Val J, Navarro E. Phytotoxicity of 15 common pharmaceuticals on the germination of Lactuca sativa and photosynthesis of Chlamydomonas reinhardtii. Environ Sci Pollut Res. 2016;23:22530–22541. doi: 10.1007/s11356-016-7446-y. PubMed DOI
Rakonjac N, Seatm S, Wipfler L, Roex E, Kros H. Emission estimation and prioritization of veterinary pharmaceuticals in manure slurries applied to soil. Sci Total Environ. 2022;815:152938. doi: 10.1016/j.scitotenv.2022.152938. PubMed DOI
Riemenschneider C, Al-Raggad M, Moeder M, Seiwert B, Salameh E, Reemtsma T. Pharmaceuticals, Their Metabolites, and Other Polar Pollutants in Field-Grown Vegetables Irrigated with Treated Municipal Wastewater. J Agric Food Chem. 2016;64:5784–5792. doi: 10.1021/acs.jafc.6b01696. PubMed DOI
Riva F, Zuccato E, Pacciani C, Colombo A, Castiglioni S. A multi-residue analytical method for extraction and analysis of pharmaceuticals and other selected emerging contaminants in sewage sludge. Anal Methods. 2021;13:526–535. doi: 10.1039/D0AY02027C. PubMed DOI
Rodrigues JA, Silva S, Cardoso VV, Benoliel MJ, Almeida CMM. Different approaches for estimation of the expanded uncertainty of an analytical method developed for determining pharmaceutical active compounds in wastewater using solid-phase extraction and a liquid chromatography coupled with tandem mass spectrometry method. Anal Methods. 2023;15:109–123. doi: 10.1039/d2ay01676a. PubMed DOI
Safont DF, Gracia-Marín E, Ibáñez M, Pitarch E, Hernández F. Analytical key issues and challenges in the LC-MS/MS determination of antibiotics in wastewater. Anal Chim Acta. 2023;1239:340739. doi: 10.1016/j.aca.2022.340739. PubMed DOI
Sallach JB, Snow D, Hodges L, Li X, Bartelt-Hunt S. Development and comparison of four methods for the extraction of antibiotics from a vegetative matrix. Environ Toxic Chem. 2015;35:889–897. doi: 10.1002/etc.3214. PubMed DOI
Sanford JC, Mackie RI, Koike S, Krapac IG, Lin Y, Yannarell AC, Maxwell S, Aminov RI. Fate and Transport of Antibiotic Residues and Antibiotic Resistance Genes following Land Application of Manure Waste. J Environ Qual. 2009;38:1086–1108. doi: 10.2134/jeq2008.0128. PubMed DOI
Silva JJ, Silva BF, Stradiotto NR, Petrovic M, Gago-Ferrero P, Gros M. Pressurized Liquid Extraction (PLE) and QuEChERS evaluation for the analysis of antibiotics in agricultural soils. MethodsX. 2020;7:101171. doi: 10.1016/j.mex.2020.101171. PubMed DOI PMC
Solliec M, Roy-Lachapelle A, Gasser M-O, Coté C, Généreux M, Sauvé S. Fractionation and analysis of veterinary antibiotics and their related degradation products in agricultural soils and drainage waters following swine manure amendment. Sci Total Environ. 2016;543:524–535. doi: 10.1016/j.scitotenv.2015.11.061. PubMed DOI
Song W, Guo M (2014) Residual Veterinary Pharmaceuticals in Animal Manures and Their Environmental Behaviors in Soils. Applied Manure and Nutrient Chemistry for Sustainable Agriculture and Environment 23–52. 10.1007/978-94-017-8807-6_2
Souza MP, Rizzetti TM, Francesquett JZ, Prestes OD, Zanella R. Bar adsorptive microextraction (BAμE) with a polymeric sorbent for the determination of emerging contaminants in water samples by ultra-high performance liquid chromatography with tandem mass spectrometry. Anal Methods. 2018;10:697–705. doi: 10.1039/C7AY02792C. DOI
Stuchlíková Raisová L, Podlipná R, Szotáková B, Syslová E, Skálová L. Evaluation of drug uptake and deactivation in plant: Fate of albendazole in ribwort plantain (Plantago laceolata) cells and regenerants. Ecotoxicol Environ Saf. 2017;141:37–42. doi: 10.1016/j.ecoenv.2017.03.014. PubMed DOI
Sun J, Zeng Q, Tsang DCW, Zhu LZ, Li XD. Antibiotics in the agricultural soils from the Yangtze River Delta, China. Chemosphere. 2017;189:301–308. doi: 10.1016/j.chemosphere.2017.09.040. PubMed DOI
Tadić Đ, Gramblicka M, Mistrik R, Bayona JM. Systematic identification of trimethoprim metabolites in lettuce. Anal Bioanal Chem. 2022;414:3121–3135. doi: 10.1007/s00216-022-03943-6. PubMed DOI PMC
Tao Y, Xing Y, Jing J, Yu P, He M, Zhang J, Chen L, Jia C, Zhao E. Insight into the uptake, accumulation, and metabolism of the fungicide phenamacril in lettuce (Lactuca sativa L.) and radish (Raphanus sativus L.) Environ Pollut. 2022;304:119240. doi: 10.1016/j.envpol.2022.119240. PubMed DOI
Tetzner NF, Maniero MG, Rodrigues-Silva C, Rath S. On-line solid phase extraction-ultra high performance liquid chromatography-tandem mass spectrometry as a powerful technique for the determination of sulfonamide residues in soils. J Chromatogr A. 2016;1452:89–97. doi: 10.1016/j.chroma.2016.05.034. PubMed DOI
Tian R, Zhang R, Uddin M, Qiao X, Chen J, Gu G. Uptake and metabolism of clarithromycin and sulfadiazine in lettuce. Environ Pollut. 2019;247:1134–1142. doi: 10.1016/j.envpol.2019.02.009. PubMed DOI
Turiel E, Martín-Esteban A, Tadeo JL. Multiresidue analysis of quinolones and fluoroquinolones in soil by ultrasonic-assisted extraction in small columns and HPLC-UV. Anal Chim Acta. 2006;562:30–35. doi: 10.1016/j.aca.2006.01.054. DOI
Vazquez-Roig P, Segarra R, Blasco C, Andreu V, Picó Y. Determination of pharmaceuticals in soils and sediments by pressurized liquid extraction and liquid chromatography tandem mass spectrometry. J Chromatogr A. 2010;1217:2471–2483. doi: 10.1016/j.chroma.2009.11.033. PubMed DOI
Xu D, Xiao Y, Pan H, Mei Y. Toxic effects of tetracycline and its degradation products on freshwater green algae. Ecotoxicol Environ Saf. 2019;174:43–47. doi: 10.1016/j.ecoenv.2019.02.063. PubMed DOI
Xu Y, Yu X, Xu B, Peng D, Guo X. Sorption of pharmaceuticals and personal care products on soil and soil components: Influencing factors and mechanisms. Sci Total Environ. 2021;753:141891. doi: 10.1016/j.scitotenv.2020.141891. PubMed DOI
Yu Z, Yediler A, Yang M, Schulte-Hostede S. Leaching behavior of enrofloxacin in three different soils and the influence of a surfactant on its mobility. J Environ Sci. 2012;24:435–439. doi: 10.1016/S1001-0742(11)60771-7. PubMed DOI
Yu X, Liu H, Pu C, Chen J, Sun Y, Hu L. Determination of multiple antibiotics in leafy vegetables using QuEChERS–UHPLC–MS/MS. J Sep Sci. 2017;41:713–722. doi: 10.1002/jssc.201700798. PubMed DOI
Zhang Z, Zhao J, Yu C, Dong S, Zhang D, Yu R, Wang C, Liu Y. Evaluation of aerobic co-composting of penicillin fermentation fungi residue with pig manure on penicillin degradation, microbial population dynamics and composting maturity. Biores Technol. 2015;198:403–409. doi: 10.1016/j.biortech.2015.09.005. PubMed DOI
Zhang X, Zhao H, Du J, Qu Y, Shen C, Tan F, Chen J, Quan X. Occurrence, removal, and risk assessment of antibiotics in 12 wastewater treatment plants from Dalian, China. Environ Sci Pollut Res. 2017;24:16478–16487. doi: 10.1007/s11356-017-9296-7. PubMed DOI
Zhang Y, Lin L, Li Y, Zeng Q, Guo S, Nkinahamira F, Yu C-P, Sun Q. Determination of 38 pharmaceuticals and personal care products in water by lyophilization combined with liquid chromatography-tandem mass spectrometry. Anal Methods. 2021;13:299–310. doi: 10.1039/D0AY02022B. PubMed DOI