Assessing earthworm exposure to a multi-pharmaceutical mixture in soil: unveiling insights through LC-MS and MALDI-MS analyses, and impact of biochar on pharmaceutical bioavailability

. 2024 Jul ; 31 (35) : 48351-48368. [epub] 20240719

Jazyk angličtina Země Německo Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid39028457

Grantová podpora
FCH-S-24-8591 Ministerstvo Školství, Mládeže a Tělovýchovy
Lab4you student program 2022 Shimadzu Europa GmbH
MZE-RO0523 Ministerstvo Zemědělství

Odkazy

PubMed 39028457
PubMed Central PMC11297825
DOI 10.1007/s11356-024-34389-1
PII: 10.1007/s11356-024-34389-1
Knihovny.cz E-zdroje

In the European circular economy, agricultural practices introduce pharmaceutical (PhAC) residues into the terrestrial environment, posing a potential risk to earthworms. This study aimed to assess earthworm bioaccumulation factors (BAFs), the ecotoxicological effects of PhACs, the impact of biochar on PhAC bioavailability to earthworms, and their persistence in soil and investigate earthworm uptake mechanisms along with the spatial distribution of PhACs. Therefore, earthworms were exposed to contaminated soil for 21 days. The results revealed that BAFs ranged from 0.0216 to 0.329, with no significant ecotoxicological effects on earthworm weight or mortality (p > 0.05). Biochar significantly influenced the uptake of 14 PhACs on the first day (p < 0.05), with diminishing effects over time, and affected significantly the soil-degradation kinetics of 16 PhACs. Moreover, MALDI-MS analysis revealed that PhAC uptake occurs through both the dermal and oral pathways, as pharmaceuticals were distributed throughout the entire earthworm tissue without specific localization. In conclusion, this study suggests ineffective PhAC accumulation in earthworms, highlights the influence of biochar on PhAC degradation rates in soil, and suggests that uptake can occur through both earthworm skin and oral ingestion.

Zobrazit více v PubMed

Ajibola AS, Tisler S, Zwiener C (2020) Simultaneous determination of multiclass antibiotics in sewage sludge based on QuEChERS extraction and liquid chromatography-tandem mass spectrometry. Anal Methods 12(4):576–586. 10.1039/C9AY02188D10.1039/C9AY02188D DOI

Ammar E, Maury H, Morin L, Sghir A (2020) Environmental, economic, and ethical assessment of the treated wastewater and sewage sludge valorization in agriculture. The Handbook of Environmental Chemistry pp 49–78. 10.1007/698_2020_606

Annangudi SP, Myung K, Avila Adame C, Gilbert JR (2015) MALDI-MS imaging analysis of fungicide residue distributions on wheat leaf surfaces. Environ Sci Technol 49(9):5579–5583. 10.1021/es506334y 10.1021/es506334y PubMed DOI

Ashworth DJ, Ibekwe AM, Men Y, Ferreira JFS (2023) Dissemination of antibiotics through the wastewater–soil–plant–earthworm continuum. Sci Total Environ 858:159841. 10.1016/j.scitotenv.2022.159841 10.1016/j.scitotenv.2022.159841 PubMed DOI

Bao Y, Li Y, Pan C (2018) Effects of the removal of soil extractable oxytetracycline fractions on its bioaccumulation in earthworm and horsebean. Water Air Soil Pollut 229(3):79. 10.1007/s11270-018-3742-010.1007/s11270-018-3742-0 DOI

Bartrons M, Peñuelas J (2017) Pharmaceuticals and personal-care products in plants. Trends Plant Sci 22(3):194–203. 10.1016/j.tplants.2016.12.010 10.1016/j.tplants.2016.12.010 PubMed DOI

Bean TG, Arnold KE, Lane J, Pietravalle S, Boxall ABA (2016) An in vitro method for determining the bioaccessibility of pharmaceuticals in wildlife. Environ Toxicol Chem 35(9):2349–2357. 10.1002/etc.3406 10.1002/etc.3406 PubMed DOI

Berendsen BJA, Roelofs G, van Zanten B, Driessen-van Lankveld WDM, Pikkemaat MG, Bongers IEA, de Lange E (2021) A strategy to determine the fate of active chemical compounds in soil; applied to antimicrobially active substances. Chemosphere 279:130495. 10.1016/j.chemosphere.2021.130495 10.1016/j.chemosphere.2021.130495 PubMed DOI

Bergé A, Vulliet E (2015) Development of a method for the analysis of hormones and pharmaceuticals in earthworms by quick, easy, cheap, effective, rugged and safe (QuEChERS) extraction followed by liquid chromatography-tandem mass spectrometry (LC-MS/MS). Anal Bioanal Chem 407(26):7995–8008. 10.1007/s00216-015-8972-z 10.1007/s00216-015-8972-z PubMed DOI

Boskamp MS, Soltwisch J (2020) Charge distribution between different classes of glycerophospolipids in MALDI-MS imaging. Anal Chem 92(7):5222–5230. 10.1021/acs.analchem.9b05761 10.1021/acs.analchem.9b05761 PubMed DOI

Bruker Daltonics (2018) FlexImaging 5.0 workflows manual. https://www.cmu.edu/chemistry/facilities/cma/pdfs/fleximaging_user_manual_workflows.pdf

Carter LJ, Garman CD, Ryan J, Dowle A, Bergström E, Thomas-Oates J, Boxall ABA (2014a) Fate and uptake of pharmaceuticals in soil–earthworm systems. Environ Sci Technol 48(10):5955–5963. 10.1021/es500567w 10.1021/es500567w PubMed DOI PMC

Carter LJ, Harris E, Williams M, Ryan JJ, Kookana RS, Boxall ABA (2014b) Fate and uptake of pharmaceuticals in soil–plant systems. J Agric Food Chem 62(4):816–825. 10.1021/jf404282y 10.1021/jf404282y PubMed DOI PMC

Carter LJ, Ryan JJ, Boxall ABA (2016a) Does uptake of pharmaceuticals vary across earthworm species? Bull Environ Contam Toxicol 97(3):316–322. 10.1007/s00128-016-1875-7 10.1007/s00128-016-1875-7 PubMed DOI PMC

Carter LJ, Ryan JJ, Boxall ABA (2016b) Effects of soil properties on the uptake of pharmaceuticals into earthworms. Environ Pollut 213:922–931. 10.1016/j.envpol.2016.03.044 10.1016/j.envpol.2016.03.044 PubMed DOI PMC

Chen X, Ma X, Pan Y, Ji R, Gu X, Luo S, Bao L, Gu X (2020) Dissipation, transformation and accumulation of triclosan in soil-earthworm system and effects of biosolids application. Sci Total Environ 712:136563. 10.1016/j.scitotenv.2020.136563 10.1016/j.scitotenv.2020.136563 PubMed DOI

Chen Y, Feng X, Liu X, Zhang L, Mao L, Zhu L, Zheng Y (2023) Bioavailability assessment of difenoconazole to earthworms (Eisenia fetida) in soil by oleic acid-embedded cellulose acetate membrane. Sci Total Environ 905:167276. 10.1016/j.scitotenv.2023.167276 10.1016/j.scitotenv.2023.167276 PubMed DOI

Cycoń M, Mrozik A, Piotrowska-Seget Z (2019) Antibiotics in the soil environment—degradation and their impact on microbial activity and diversity. Front Microbiol 10. 10.3389/fmicb.2019.00338 PubMed PMC

Davis RB, Hoang JA, Rizzo SM, Hassan D, Potter BJ, Tucker KR (2020) Quantitation and localization of beta-blockers and SSRIs accumulation in fathead minnows by complementary mass spectrometry analyses. Sci Total Environ 741:140331. 10.1016/j.scitotenv.2020.140331 10.1016/j.scitotenv.2020.140331 PubMed DOI

Diez-Ortiz M, Lahive E, Kille P, Powell K, Morgan AJ, Jurkschat K, Van Gestel CAM, Mosselmans JFW, Svendsen C, Spurgeon DJ (2015) Uptake routes and toxicokinetics of silver nanoparticles and silver ions in the earthworm Lumbricus rubellus. Environ Toxicol Chem 34(10):2263–2270. 10.1002/etc.3036 10.1002/etc.3036 PubMed DOI

Dong L, Gao J, Xie X, Zhou Q (2012) DNA damage and biochemical toxicity of antibiotics in soil on the earthworm Eisenia fetida. Chemosphere 89(1):44–51. 10.1016/j.chemosphere.2012.04.010 10.1016/j.chemosphere.2012.04.010 PubMed DOI

European Medicines Agency (2021) Sales of veterinary antimicrobial agents in 31 European countries in 2019 and 2020 – Trends from 2010 to 2020 – Eleventh ESVAC report, Publications Office of the European Union. 10.2809/636389

Gallego S, Martin-Laurent F (2020) Impact of PhACs on Soil Microorganisms. In: Pérez Solsona S, Montemurro N, Chiron S, Barceló D (eds) Interaction and fate of pharmaceuticals in soil-crop systems. The Handbook of Environmental Chemistry, vol 103. Springer, Cham. 10.1007/698_2020_616

Gao L, Shi Y, Li W, Liu J, Cai Y (2015) Occurrence and distribution of antibiotics in urban soil in Beijing and Shanghai China. Environ Sci Pollut Res 22(15):11360–11371. 10.1007/s11356-015-4230-310.1007/s11356-015-4230-3 PubMed DOI

García-Delgado C, Delgado-Moreno L, Toro M, Puñal M, Martín-Trueba M, Eymar E, Ruíz AI (2023) The role of biochar and green compost amendments in the adsorption, leaching, and degradation of sulfamethoxazole in basic soil. Chemosphere 344:140364. 10.1016/j.chemosphere.2023.140364 10.1016/j.chemosphere.2023.140364 PubMed DOI

Garg P, Kaushik G, Nagar JK, Singhal P (2019) Role of earthworms in managing soil contamination. Handbook of environmental materials management. Springer International Publishing, Cham, pp 1859–1877

González-Alcaraz MN et al (2020) Bioaccumulation and Toxicity of Organic Chemicals in Terrestrial Invertebrates. In: Ortega-Calvo JJ, Parsons JR (eds) Bioavailability of organic chemicals in soil and sediment. The Handbook of Environmental Chemistry, vol 100. Springer, Cham. 10.1007/698_2020_511

Grasserová A, Pacheco NIN, Semerád J, Filipová A, Innemanová P, Hanč A, Procházková P, Cajthaml T (2024) New insights into vermiremediation of sewage sludge: the effect of earthworms on micropollutants and vice versa. Waste Manage 174:496–508. 10.1016/j.wasman.2023.12.01610.1016/j.wasman.2023.12.016 PubMed DOI

Gros M, Mas-Pla J, Boy-Roura M, Geli I, Domingo F, Petrović M (2019) Veterinary pharmaceuticals and antibiotics in manure and slurry and their fate in amended agricultural soils: findings from an experimental field site (Baix Empordà, NE Catalonia). Sci Total Environ 654:1337–1349. 10.1016/j.scitotenv.2018.11.061 10.1016/j.scitotenv.2018.11.061 PubMed DOI

Guo Y, Xiao X, Zhao Y, Liu J, Zhou J, Sun B, Liang Y (2022) Antibiotic resistance genes in manure-amended paddy soils across eastern China: occurrence and influencing factors. Front Environ Sci Eng 16(7):91. 10.1007/s11783-021-1499-y10.1007/s11783-021-1499-y DOI

Gworek B, Kijeńska M, Wrzosek J, Graniewska M (2021) Pharmaceuticals in the soil and plant environment: a review. Water Air Soil Pollut 232(4):145. 10.1007/s11270-020-04954-810.1007/s11270-020-04954-8 DOI

Hashmi MZ, Mahmood A, Kattel DB, Khan S, Hasnain A, Ahmed Z (2017) Antibiotics and Antibiotic Resistance Genes (ARGs) in soil: occurrence, fate, and effects. In: Hashmi M, Kumar V, Varma A (eds) Xenobiotics in the soil environment. Soil Biology, vol 49. Springer, Cham. 10.1007/978-3-319-47744-2_4

Hillis DG, Fletcher J, Solomon KR, Sibley PK (2011) Effects of ten antibiotics on seed germination and root elongation in three plant species. Arch Environ Contam Toxicol 60(2):220–232. 10.1007/s00244-010-9624-0 10.1007/s00244-010-9624-0 PubMed DOI

Holatko J, Brtnicky M, Mustafa A, Kintl A, Skarpa P, Ryant P, Baltazar T, Malicek O, Latal O, Hammerschmiedt T (2023) Effect of digestate modified with amendments on soil health and plant biomass under varying experimental durations. Materials 16(3):1027. 10.3390/ma16031027 10.3390/ma16031027 PubMed DOI PMC

Hu Q, Jung J, Chen D, Leong K, Song S, Li F, Mohan BC, Yao Z, Prabhakar AK, Lin XH, Lim EY, Zhang L, Souradeep G, Ok YS, Kua HW, Li SFY, Tan HTW, Dai Y, Tong YW, Peng Y, Joseph S, Wang C-H (2021) Biochar industry to circular economy. Sci Total Environ 757:143820. 10.1016/j.scitotenv.2020.143820 10.1016/j.scitotenv.2020.143820 PubMed DOI

Hu T, Zhang J, Xu X, Wang X, Yang C, Song C, Wang S, Zhao S (2023) Bioaccumulation and trophic transfer of antibiotics in the aquatic and terrestrial food webs of the Yellow River Delta. Chemosphere 323:138211. 10.1016/j.chemosphere.2023.138211 10.1016/j.chemosphere.2023.138211 PubMed DOI

Hurtado C, Cañameras N, Domínguez C, Price GW, Comas J, Bayona JM (2017) Effect of soil biochar concentration on the mitigation of emerging organic contaminant uptake in lettuce. J Hazard Mater 323:386–393. 10.1016/j.jhazmat.2016.04.046 10.1016/j.jhazmat.2016.04.046 PubMed DOI

Jarošová R, Ondráčková P, Patočka Z, Sládek Z (2021) Comparison of cryoprotective methods for histological examination of rat and porcine lung tissue. Acta Vet Brno 90(2):225–231. 10.2754/avb20219002022510.2754/avb202190020225 DOI

Jesus Gaffney V, Cardoso VV, Cardoso E, Teixeira AP, Martins J, Benoliel MJ, Almeida CMM (2017) Occurrence and behaviour of pharmaceutical compounds in a Portuguese wastewater treatment plant: removal efficiency through conventional treatment processes. Environ Sci Pollut Res 24(17):14717–14734. 10.1007/s11356-017-9012-710.1007/s11356-017-9012-7 PubMed DOI

Kesari KK, Soni R, Jamal QMS, Tripathi P, Lal JA, Jha NK, Siddiqui MH, Kumar P, Tripathi V, Ruokolainen J (2021) Wastewater treatment and reuse: a review of its applications and health implications. Water Air Soil Pollut 232(5):208. 10.1007/s11270-021-05154-810.1007/s11270-021-05154-8 DOI

Khan MB, Cui X, Jilani G, Lazzat U, Zehra A, Hamid Y, Hussain B, Tang L, Yang X, He Z (2019) Eisenia fetida and biochar synergistically alleviate the heavy metals content during valorization of biosolids via enhancing vermicompost quality. Sci Total Environ 684:597–609. 10.1016/j.scitotenv.2019.05.370 10.1016/j.scitotenv.2019.05.370 PubMed DOI

Khare S, Shikha (2023) Occurrence and fate of antibiotics in manure. Manure Technology and Sustainable Development pp 197–210. 10.1007/978-981-19-4120-7_8

Kinney CA, Furlong ET, Kolpin DW, Burkhardt MR, Zaugg SD, Werner SL, Bossio JP, Benotti MJ (2008) Bioaccumulation of pharmaceuticals and other anthropogenic waste indicators in earthworms from agricultural soil amended with biosolid or swine manure. Environ Sci Technol 42(6):1863–1870. 10.1021/es702304c 10.1021/es702304c PubMed DOI

Kodešová R, Klement A, Golovko O, Fér M, Nikodem A, Kočárek M, Grabic R (2019) Root uptake of atenolol, sulfamethoxazole and carbamazepine, and their transformation in three soils and four plants. Environ Sci Pollut Res 26(10):9876–9891. 10.1007/s11356-019-04333-910.1007/s11356-019-04333-9 PubMed DOI

Kubicki M, Giannakopoulos G, Lamshöft M, Dittgen J (2022) Spatially resolved investigation of herbicide–safener interaction in maize ( Zea mays L.) by MALDI-imaging mass spectrometry. J Agric Food Chem 70(21):6368–6376. 10.1021/acs.jafc.2c00768 PubMed

Lagarrigue M, Caprioli RM, Pineau C (2016) Potential of MALDI imaging for the toxicological evaluation of environmental pollutants. J Proteomics 144:133–139. 10.1016/j.jprot.2016.05.008 10.1016/j.jprot.2016.05.008 PubMed DOI PMC

Li Y, Hu Y, Ai X, Qiu J, Wang X (2015) Acute and sub-acute effects of enrofloxacin on the earthworm species Eisenia fetida in an artificial soil substrate. Eur J Soil Biol 66:19–23. 10.1016/j.ejsobi.2014.11.00410.1016/j.ejsobi.2014.11.004 DOI

Li Y, Tang H, Hu Y, Wang X, Ai X, Tang L, Matthew C, Cavanagh J, Qiu J (2016) Enrofloxacin at environmentally relevant concentrations enhances uptake and toxicity of cadmium in the earthworm Eisenia fetida in farm soils. J Hazard Mater 308:312–320. 10.1016/j.jhazmat.2016.01.057 10.1016/j.jhazmat.2016.01.057 PubMed DOI

Li Y, He J, Qi H, Li H, Boyd SA, Zhang W (2020) Impact of biochar amendment on the uptake, fate and bioavailability of pharmaceuticals in soil-radish systems. J Hazard Mater 398:122852. 10.1016/j.jhazmat.2020.122852 10.1016/j.jhazmat.2020.122852 PubMed DOI

Lin D, Zhou Q, Xu Y, Chen C, Li Y (2012) Physiological and molecular responses of the earthworm (Eisenia fetida) to soil chlortetracycline contamination. Environ Pollut 171:46–51. 10.1016/j.envpol.2012.07.020 10.1016/j.envpol.2012.07.020 PubMed DOI

Lin Z, Zhen Z, Luo S, Ren L, Chen Y, Wu W, Zhang W, Liang Y-Q, Song Z, Li Y, Zhang D (2021) Effects of two ecological earthworm species on tetracycline degradation performance, pathway and bacterial community structure in laterite soil. J Hazard Mater 412:125212. 10.1016/j.jhazmat.2021.125212 10.1016/j.jhazmat.2021.125212 PubMed DOI

Lin Q, Tan X, Almatrafi E, Yang Y, Wang W, Luo H, Qin F, Zhou C, Zeng G, Zhang C (2022) Effects of biochar-based materials on the bioavailability of soil organic pollutants and their biological impacts. Sci Total Environ 826:153956. 10.1016/j.scitotenv.2022.153956 10.1016/j.scitotenv.2022.153956 PubMed DOI

Ma X, Zhang H, Wang Z, Yao Z, Chen J, Chen J (2014) Bioaccumulation and trophic transfer of short chain chlorinated paraffins in a marine food web from Liaodong Bay North China. Environ Sci Technol 48(10):5964–5971. 10.1021/es500940p 10.1021/es500940p PubMed DOI

Majumder S, Sharma P, Singh SP, Nadda AK, Sahoo PK, Xia C, Sharma S, Ganguly R, Lam SS, Kim KH (2023) Engineered biochar for the effective sorption and remediation of emerging pollutants in the environment. J Environ Chem Eng 11(2):109590. 10.1016/j.jece.2023.10959010.1016/j.jece.2023.109590 DOI

Mazzella N, Debenest T, Delmas F (2008) Comparison between the polar organic chemical integrative sampler and the solid-phase extraction for estimating herbicide time-weighted average concentrations during a microcosm experiment. Chemosphere 73(4):545–550. 10.1016/j.chemosphere.2008.06.009 10.1016/j.chemosphere.2008.06.009 PubMed DOI

Michelini L, La Rocca N, Rascio N, Ghisi R (2013) Structural and functional alterations induced by two sulfonamide antibiotics on barley plants. Plant Physiol Biochem 67:55–62. 10.1016/j.plaphy.2013.02.027 10.1016/j.plaphy.2013.02.027 PubMed DOI

Monteiro SC, Boxall ABA (2010) Occurrence and fate of human pharmaceuticals in the environment. Reviews of Environmental Contamination and Toxicology pp 53–154. 10.1007/978-1-4419-1157-5_2 PubMed

Montemurro N, Joedicke J, Pérez S (2021) Development and application of a QuEChERS method with liquid chromatography-quadrupole time of flight-mass spectrometry for the determination of 50 wastewater-borne pollutants in earthworms exposed through treated wastewater. Chemosphere 263:128222. 10.1016/j.chemosphere.2020.128222 10.1016/j.chemosphere.2020.128222 PubMed DOI

Mravcová L, Amrichová A, Navrkalová J, Hamplová M, Sedlář M, Gargošová HZ, Fučík J (2024) Optimization and validation of multiresidual extraction methods for pharmaceuticals in soil, lettuce, and earthworms. Environ Sci Pollut Res. 10.1007/s11356-024-33492-710.1007/s11356-024-33492-7 PubMed DOI PMC

Murray CJL, Ikuta KS, Sharara F, Swetschinski L, Robles Aguilar G, Gray A, Han C, Bisignano C, Rao P, Wool E, Johnson SC, Browne AJ, Chipeta MG, Fell F, Hackett S, Haines-Woodhouse G, Kashef Hamadani BH, Kumaran EAP, McManigal B, Achalapong S, Agarwal R, Akech S, Albertson S, Amuasi J, Andrews J, Aravkin A, Ashley E, Babin F-X, Bailey F, Baker S, Basnyat B, Bekker A, Bender R, Berkley JA, Bethou A, Bielicki J, Boonkasidecha S, Bukosia J, Carvalheiro C, Castañeda-Orjuela C, Chansamouth V, Chaurasia S, Chiurchiù S, Chowdhury F, Clotaire Donatien R, Cook AJ, Cooper B, Cressey TR, Criollo-Mora E, Cunningham M, Darboe S, Day NPJ, De Luca M, Dokova K, Dramowski A, Dunachie SJ, Duong Bich T, Eckmanns T, Eibach D, Emami A, Feasey N, Fisher-Pearson N, Forrest K, Garcia C, Garrett D, Gastmeier P, Giref AZ, Greer RC, Gupta V, Haller S, Haselbeck A, Hay SI, Holm M, Hopkins S, Hsia Y, Iregbu KC, Jacobs J, Jarovsky D, Javanmardi F, Jenney AWJ, Khorana M, Khusuwan S, Kissoon N, Kobeissi E, Kostyanev T, Krapp F, Krumkamp R, Kumar A, Kyu HH, Lim C, Lim K, Limmathurotsakul D, Loftus MJ, Lunn M, Ma J, Manoharan A, Marks F, May J, Mayxay M, Mturi N, Munera-Huertas T, Musicha P, Musila LA, Mussi-Pinhata MM, Naidu RN, Nakamura T, Nanavati R, Nangia S, Newton P, Ngoun C, Novotney A, Nwakanma D, Obiero CW, Ochoa TJ, Olivas-Martinez A, Olliaro P, Ooko E, Ortiz-Brizuela E, Ounchanum P, Pak GD, Paredes JL, Peleg AY, Perrone C, Phe T, Phommasone K, Plakkal N, Ponce-de-Leon A, Raad M, Ramdin T, Rattanavong S, Riddell A, Roberts T, Robotham JV, Roca A, Rosenthal VD, Rudd KE, Russell N, Sader HS, Saengchan W, Schnall J, Scott JAG, Seekaew S, Sharland M, Shivamallappa M, Sifuentes-Osornio J, Simpson AJ, Steenkeste N, Stewardson AJ, Stoeva T, Tasak N, Thaiprakong A, Thwaites G, Tigoi C, Turner C, Turner P, van Doorn HR, Velaphi S, Vongpradith A, Vongsouvath M, Vu H, Walsh T, Walson JL, Waner S, Wangrangsimakul T, Wannapinij P, Wozniak T, Young Sharma TEMW, Yu KC, Zheng P, Sartorius B, Lopez AD, Stergachis A, Moore C, Dolecek C, Naghavi M (2022) Global burden of bacterial antimicrobial resistance in 2019: a systematic analysis. The Lancet 399(10325):629–655. 10.1016/S0140-6736(21)02724-010.1016/S0140-6736(21)02724-0 PubMed DOI PMC

Obimakinde S, Fatoki O, Opeolu B, Olatunji O (2017) Veterinary pharmaceuticals in aqueous systems and associated effects: an update. Environ Sci Pollut Res 24(4):3274–3297. 10.1007/s11356-016-7757-z10.1007/s11356-016-7757-z PubMed DOI

OECD (2010) Test No. 317: Bioaccumulation in terrestrial oligochaetes. OECD guidelines for the testing of chemicals, Section 3. OECD Publishing, Paris. 10.1787/9789264090934-en

Pan M, Chu LM (2016) Adsorption and degradation of five selected antibiotics in agricultural soil. Sci Total Environ 545–546:48–56. 10.1016/j.scitotenv.2015.12.04010.1016/j.scitotenv.2015.12.040 PubMed DOI

Pan M, Chu LM (2017) Fate of antibiotics in soil and their uptake by edible crops. Sci Total Environ 599–600:500–512. 10.1016/j.scitotenv.2017.04.21410.1016/j.scitotenv.2017.04.214 PubMed DOI

Patel AK, Katiyar R, Chen C-W, Singhania RR, Awasthi MK, Bhatia S, Bhaskar T, Dong C-D (2022) Antibiotic bioremediation by new generation biochar: recent updates. Bioresour Technol 358:127384. 10.1016/j.biortech.2022.127384 10.1016/j.biortech.2022.127384 PubMed DOI

Pikkemaat MG, Yassin H, Fels-Klerx HJ, Berendsen BJA (2016) Antibiotic residues and resistance in the environment. RIKILT-report, no. 2016.009, RIKILT, Wageningen. 10.18174/388253

Pino MR, Val J, Mainar AM, Zuriaga E, Español C, Langa E (2015) Acute toxicological effects on the earthworm Eisenia fetida of 18 common pharmaceuticals in artificial soil. Sci Total Environ 518–519:225–237. 10.1016/j.scitotenv.2015.02.08010.1016/j.scitotenv.2015.02.080 PubMed DOI

Riemenschneider C, Seiwert B, Moeder M, Schwarz D, Reemtsma T (2017) Extensive transformation of the pharmaceutical carbamazepine following uptake into intact tomato plants. Environ Sci Technol 51(11):6100–6109. 10.1021/acs.est.6b06485 10.1021/acs.est.6b06485 PubMed DOI

Riva F, Zuccato E, Pacciani C, Colombo A, Castiglioni S (2021) A multi-residue analytical method for extraction and analysis of pharmaceuticals and other selected emerging contaminants in sewage sludge. Anal Methods 13(4):526–535. 10.1039/D0AY02027C 10.1039/D0AY02027C PubMed DOI

Rivier P-A, Havranek I, Coutris C, Norli HR, Joner EJ (2019) Transfer of organic pollutants from sewage sludge to earthworms and barley under field conditions. Chemosphere 222:954–960. 10.1016/j.chemosphere.2019.02.01010.1016/j.chemosphere.2019.02.010 DOI

Rodriguez-Campos J, Dendooven L, Alvarez-Bernal D, Contreras-Ramos SM (2014) Potential of earthworms to accelerate removal of organic contaminants from soil: a review. Appl Soil Ecol 79:10–25. 10.1016/j.apsoil.2014.02.01010.1016/j.apsoil.2014.02.010 DOI

Roubalová R, Prochazkova P, Dvořák J, Škanta F, Bilej M (2015) The role of earthworm defense mechanisms in ecotoxicity studies. Invertebr Surviv J 12:203–213

Rzagalinski I, Volmer DA (2017) Quantification of low molecular weight compounds by MALDI imaging mass spectrometry – a tutorial review. Biochimica et Biophysica Acta (BBA) - Proteins and Proteomics 1865(7):726–739. 10.1016/j.bbapap.2016.12.011 PubMed

Sauvêtre A, Eichhorn P, Pérez S (2020) Metabolism of pharmaceuticals in plants and their associated microbiota. The Handbook of Environmental Chemistry pp 221–264. 10.1007/698_2020_607

Schmidt T, Kimmel S, Hoeger S, Lemic D, Bazok R, Viric Gasparic H (2022) Plant protection products in agricultural fields – residues in earthworms and assessment of potentially toxic effects to the environment. J Central Eur Agric 23(3):604–614. 10.5513/JCEA01/23.3.362510.5513/JCEA01/23.3.3625 DOI

Sidhu H, O’Connor G, Ogram A, Kumar K (2019) Bioavailability of biosolids-borne ciprofloxacin and azithromycin to terrestrial organisms: microbial toxicity and earthworm responses. Sci Total Environ 650:18–26. 10.1016/j.scitotenv.2018.09.004 10.1016/j.scitotenv.2018.09.004 PubMed DOI

Song W, Guo M (2014) Residual veterinary pharmaceuticals in animal manures and their environmental behaviors in soils. Applied manure and nutrient chemistry for sustainable agriculture and environment. Springer, Netherlands, pp 23–52

Song J, Li T, Zheng Z, Fu W, Long Z, Shi N, Han Y, Zhang L, Yu Y, Fang H (2022) Carbendazim shapes microbiome and enhances resistome in the earthworm gut. Microbiome 10(1):63. 10.1186/s40168-022-01261-8 10.1186/s40168-022-01261-8 PubMed DOI PMC

Souza MP, Rizzetti TM, Francesquett JZ, Prestes OD, Zanella R (2018) Bar adsorptive microextraction (BAμE) with a polymeric sorbent for the determination of emerging contaminants in water samples by ultra-high performance liquid chromatography with tandem mass spectrometry. Anal Methods 10(7):697–705. 10.1039/C7AY02792C10.1039/C7AY02792C DOI

Sun Y, Lyu H, Cheng Z, Wang Y, Tang J (2022) Insight into the mechanisms of ball-milled biochar addition on soil tetracycline degradation enhancement: physicochemical properties and microbial community structure. Chemosphere 291:132691. 10.1016/j.chemosphere.2021.132691 10.1016/j.chemosphere.2021.132691 PubMed DOI

Tanoue R, Sato Y, Motoyama M, Nakagawa S, Shinohara R, Nomiyama K (2012) Plant uptake of pharmaceutical chemicals detected in recycled organic manure and reclaimed wastewater. J Agric Food Chem 60(41):10203–10211. 10.1021/jf303142t 10.1021/jf303142t PubMed DOI

Togola A, Budzinski H (2007) Development of polar organic integrative samplers for analysis of pharmaceuticals in aquatic systems. Anal Chem 79(17):6734–6741. 10.1021/ac070559i 10.1021/ac070559i PubMed DOI

Valdez-Carrillo M, Abrell L, Ramírez-Hernández J, Reyes-López JA, Carreón-Diazconti C (2020) Pharmaceuticals as emerging contaminants in the aquatic environment of Latin America: a review. Environ Sci Pollut Res 27(36):44863–44891. 10.1007/s11356-020-10842-910.1007/s11356-020-10842-9 PubMed DOI

Villette C, Maurer L, Wanko A, Heintz D (2019) Xenobiotics metabolization in Salix alba leaves uncovered by mass spectrometry imaging. Metabolomics 15(9):122. 10.1007/s11306-019-1572-8 10.1007/s11306-019-1572-8 PubMed DOI

Wan K, Jiang X, Tang X, Xiao L, Chen Y, Huang C, Zhu F, Wang F, Xu H (2022) Study on absorption, distribution, metabolism, and excretion properties of novel insecticidal GABA receptor antagonist, pyraquinil, in diamondback moth combining MALDI mass spectrometry imaging and high-resolution mass spectrometry. J Agric Food Chem 70(20):6072–6083. 10.1021/acs.jafc.2c00468 10.1021/acs.jafc.2c00468 PubMed DOI

Wang C, Rong H, Liu H, Wang X, Gao Y, Deng R, Liu R, Liu Y, Zhang D (2018) Detoxification mechanisms, defense responses, and toxicity threshold in the earthworm Eisenia foetida exposed to ciprofloxacin-polluted soils. Sci Total Environ 612:442–449. 10.1016/j.scitotenv.2017.08.120 10.1016/j.scitotenv.2017.08.120 PubMed DOI

Wang J, Odinga ES, Zhang W, Zhou X, Yang B, Waigi MG, Gao Y (2019) Polyaromatic hydrocarbons in biochars and human health risks of food crops grown in biochar-amended soils: a synthesis study. Environ Int 130:104899. 10.1016/j.envint.2019.06.009 10.1016/j.envint.2019.06.009 PubMed DOI

Wei R, Ge F, Zhang L, Hou X, Cao Y, Gong L, Chen M, Wang R, Bao E (2016) Occurrence of 13 veterinary drugs in animal manure-amended soils in Eastern China. Chemosphere 144:2377–2383. 10.1016/j.chemosphere.2015.10.126 10.1016/j.chemosphere.2015.10.126 PubMed DOI

Wen B, Huang R, Wang P, Zhou Y, Shan X, Zhang S (2011) Effect of complexation on the accumulation and elimination kinetics of cadmium and ciprofloxacin in the earthworm Eisenia fetida. Environ Sci Technol 45(10):4339–4345. 10.1021/es104034g 10.1021/es104034g PubMed DOI

Williams M, Martin S, Kookana RS (2015) Sorption and plant uptake of pharmaceuticals from an artificially contaminated soil amended with biochars. Plant Soil 395(1–2):75–86. 10.1007/s11104-015-2421-910.1007/s11104-015-2421-9 DOI

Wu W, Ma M, Hu Y, Yu W, Liu H, Bao Z (2021) The fate and impacts of pharmaceuticals and personal care products and microbes in agricultural soils with long term irrigation with reclaimed water. Agric Water Manag 251:106862. 10.1016/j.agwat.2021.10686210.1016/j.agwat.2021.106862 DOI

Xiang L, Wang F, Bian Y, Harindintwali JD, Wang Z, Wang Y, Dong J, Chen H, Schaeffer A, Jiang X, Cai Z (2022) Visualizing the distribution of phthalate esters and plant metabolites in carrot by matrix-assisted laser desorption/ionization imaging mass spectrometry. J Agric Food Chem 70(48):15311–15320. 10.1021/acs.jafc.2c06995 10.1021/acs.jafc.2c06995 PubMed DOI

Xu J, Wu L, Chang AC (2009) Degradation and adsorption of selected pharmaceuticals and personal care products (PPCPs) in agricultural soils. Chemosphere 77(10):1299–1305. 10.1016/j.chemosphere.2009.09.063 10.1016/j.chemosphere.2009.09.063 PubMed DOI

Yang X, Li Y, Wang X (2020) Effects of ciprofloxacin exposure on the earthworm Eisenia fetida. Environ Pollut 262:114287. 10.1016/j.envpol.2020.114287 10.1016/j.envpol.2020.114287 PubMed DOI

Yang S, Lu C, Qin C, Lu C, Pan Z, Zhao L, Bai M, Li X, Sun Y, Weng L, Li Y (2023) Mitigation effects and microbial mechanism of two ecological earthworms on the uptake of chlortetracycline and antibiotic resistance genes in lettuce. Sci Total Environ 885:163907. 10.1016/j.scitotenv.2023.163907 10.1016/j.scitotenv.2023.163907 PubMed DOI

Zhang T, Wu B, Sun N, Ye Y, Chen H (2013) Sorption and degradation of wastewater-associated pharmaceuticals and personal care products in agricultural soils and sediment. Water Sci Technol 68(5):991–998. 10.2166/wst.2013.326 10.2166/wst.2013.326 PubMed DOI

Zhang R, Zhang R, Li J, Cheng Z, Luo C, Wang Y, Yu K, Zhang G (2017) Occurrence and distribution of antibiotics in multiple environmental media of the East River (Dongjiang) catchment, South China. Environ Sci Pollut Res 24(10):9690–9701. 10.1007/s11356-017-8664-710.1007/s11356-017-8664-7 PubMed DOI

Zhang Y, Song K, Zhang J, Xu X, Ye G, Cao H, Chen M, Cai S, Cao X, Zheng X, Lv W (2022) Removal of sulfamethoxazole and antibiotic resistance genes in paddy soil by earthworms (Pheretima guillelmi): intestinal detoxification and stimulation of indigenous soil bacteria. Sci Total Environ 851:158075. 10.1016/j.scitotenv.2022.158075 10.1016/j.scitotenv.2022.158075 PubMed DOI

Zhao L, Dong YH, Wang H (2010) Residues of veterinary antibiotics in manures from feedlot livestock in eight provinces of China. Sci Total Environ 408(5):1069–1075. 10.1016/j.scitotenv.2009.11.014 10.1016/j.scitotenv.2009.11.014 PubMed DOI

Zhao F, Yang L, Chen L, Li S, Sun L (2018) Co-contamination of antibiotics and metals in peri-urban agricultural soils and source identification. Environ Sci Pollut Res 25(34):34063–34075. 10.1007/s11356-018-3350-y10.1007/s11356-018-3350-y PubMed DOI

Zhu M, Chen J, Peijnenburg WJGM, Xie H, Wang Z, Zhang S (2023) Controlling factors and toxicokinetic modeling of antibiotics bioaccumulation in aquatic organisms: a review. Crit Rev Environ Sci Technol 53(15):1431–1451. 10.1080/10643389.2022.214203310.1080/10643389.2022.2142033 DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...