Effect of Digestate Modified with Amendments on Soil Health and Plant Biomass under Varying Experimental Durations
Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic
Document type Journal Article
Grant support
TH04030132
Technology Agency of the Czech Republic
TH04030142
Technology Agency of the Czech Republic
MZE-RO1218
Ministry of Agriculture of the Czech Republic
MZE-RO1722
Ministry of Agriculture of the Czech Republic
PubMed
36770034
PubMed Central
PMC9920836
DOI
10.3390/ma16031027
PII: ma16031027
Knihovny.cz E-resources
- Keywords
- biochar, elemental sulphur, soil enzymatic activity, soil macronutrients,
- Publication type
- Journal Article MeSH
A digestate with amendments provides plants with available nutrients and improves the microbiological properties of treated soil. Modification of a digestate through the addition of a biochar and sulphur source is less well-known. This pot experiment aimed at comparing the short- and long-time fertilization effects of a digestate enriched with biochar, with elemental sulphur, or with a combination of both on soil health and plant biomass. The experiment was carried out with maize, cultivated twice (1st-12th week = pre-cultivation; re-sowing after shoot harvest, 13th-24th = main cultivation) in soil amended with prepared digestate. The digestate used in pre-cultivation was incubated untreated (D) and was then treated with biochar (D + B), with elemental sulphur at a low (LS) and high (HS) dose, or with a combination of both (D + B + LS and D + B + HS). An additional unamended digestate (D) was added to each soil variant before the main cultivation. The application of digestate with a high dose of elemental sulphur and biochar mediated the most significant differences in the soil. The increase (compared to the unamended soil) was of short-term type (+11% and +6% increased total nitrogen and carbon after 12 weeks), then of long-term type (+54% and +30% increased sulphur and arylsulfatase activity after 24 weeks), and later emerged in the 13th to the 24th week of the experiment (+57% and +32% non-inhibited urease, increased N-acetyl-β-D-glucosaminidase and phosphatase). No significant differences in the effect of the applied amendments on dry aboveground plant biomass were observed.
Agricultural Research Ltd Zahradni 400 1 664 41 Troubsko Czech Republic
Agrovyzkum Rapotin Ltd Vyzkumniku 267 788 13 Rapotin Czech Republic
See more in PubMed
Karpenstein-Machan M. Sustainable cultivation concepts for domestic energy production from biomass. Crit. Rev. Plant Sci. 2001;20:1–14. doi: 10.1080/20013591099164. DOI
Arthurson V. Closing the Global Energy and Nutrient Cycles through Application of Biogas Residue to Agricultural Land–Potential Benefits and Drawback. Energies. 2009;2:226–242. doi: 10.3390/en20200226. DOI
Clemens J., Trimborn M., Weiland P., Amon B. Mitigation of greenhouse gas emissions by anaerobic digestion of cattle slurry. Agric. Ecosyst. Environ. 2006;112:171–177. doi: 10.1016/j.agee.2005.08.016. DOI
Hjelmar O. Disposal strategies for municipal solid waste incineration residues. J. Hazard. Mater. 1996;47:345–368. doi: 10.1016/0304-3894(95)00111-5. DOI
Börjesson G., Samuelsson J., Chanton J., Adolfsson R., Galle B., Svensson B.H. A national landfill methane budget for Sweden based on field measurements, and an evaluation of IPCC models. Tellus B Chem. Phys. Meteorol. 2009;61:424–435. doi: 10.1111/j.1600-0889.2008.00409.x. DOI
Båth B., Rämert B. Organic Household Wastes as a Nitrogen Source in Leek Production. Acta Agric. Scand. Sect. B Soil Plant Sci. 1999;49:201–208. doi: 10.1080/090647100750001569. DOI
Nyberg K., Sundh I., Johansson M., Schnürer A. Presence of potential ammonia oxidation (PAO) inhibiting substances in anaerobic digestion residues. Appl. Soil Ecol. 2004;26:107–112. doi: 10.1016/j.apsoil.2003.12.002. DOI
Rivard C.J., Rodriguez J.B., Nagle N.J., Self J.R., Kay B.D., Soltanpour P.N., Nieves R.A. Anaerobic digestion of municipal solid waste. Appl. Biochem. Biotechnol. 1995;51–52:125–135. doi: 10.1007/BF02933417. DOI
Wang Y., Shen F., Liu R., Wu L. Effects of anaerobic fermentation residue of biogas production on the yield and quality of Chinese cabbage and nutrient accumulations in soil. Int. J. Glob. Energy Issues. 2008;29:284. doi: 10.1504/IJGEI.2008.018009. DOI
Adediran J.A., De Baets N., Mnkeni P.N.S., Kiekens L., Muyima N.Y.O., Thys A. Organic Waste Materials for Soil Fertility Improvement in the Border Region of the Eastern Cape, South Africa. Biol. Agric. Hortic. 2003;20:283–300. doi: 10.1080/01448765.2003.9754974. DOI
Gryń G., Paluszak Z., Olszewska H., Keutgen A.J. Chemical and microbiological properties of luvisol after addition of post-fermentation residue. J. Elem. 2019;25:701–716. doi: 10.5601/jelem.2019.24.3.1872. DOI
Wang L. Anaerobic Digestion of Organic Wastes. CRC Press; Boca Raton, FL, USA: 2014. pp. 415–430.
Davis J., Haglund C. Life Cycle Inventory (LCI) of Fertiliser Production: Fertiliser Products Used in Sweden and Western Europe. SIK Institutet för livsmedel och bioteknik; Göteborg, Sweden: 1999.
Patyk A. Balance of energy consumption and emissions of fertilizer production and supply; Proceedings of the Reprints from the International Conference of Life Cycle Assessment in Agriculture, Food and Non-Food Agro-Industry and Forestry: Achievements and Prospects; Brussels, Belgium. 4–5 April 1996; pp. 4–5.
Kongshaug G. Energy Consumption and Greenhouse Gas Emissions in Fertilizer Production; Proceedings of the Interna-tional Fertilizer Industry Association IFA Technical Conference; Marrakech, Morocco. 28 September–1 October 1998; p. 18.
Pawlett M., Owen A., Tibbett M. Amenity grassland quality following anaerobic digestate application. Grassl. Sci. 2018;64:185–189. doi: 10.1111/grs.12202. DOI
Makádi M., Tomócsik A., Orosz V. Digestate: A new nutrient source–review. Biogas. 2012;14:295–312.
Johansen A., Carter M.S., Jensen E.S., Hauggard-Nielsen H., Ambus P. Effects of digestate from anaerobically digested cattle slurry and plant materials on soil microbial community and emission of CO2 and N2O. Appl. Soil Ecol. 2013;63:36–44. doi: 10.1016/j.apsoil.2012.09.003. DOI
Barłóg P., Hlisnikovský L., Kunzová E. Effect of Digestate on Soil Organic Carbon and Plant-Available Nutrient Content Compared to Cattle Slurry and Mineral Fertilization. Agronomy. 2020;10:379. doi: 10.3390/agronomy10030379. DOI
Slepetiene A., Kochiieru M., Jurgutis L., Mankeviciene A., Skersiene A., Belova O. The Effect of Anaerobic Digestate on the Soil Organic Carbon and Humified Carbon Fractions in Different Land-Use Systems in Lithuania. Land. 2022;11:133. doi: 10.3390/land11010133. DOI
Chen R., Blagodatskaya E., Senbayram M., Blagodatsky S., Myachina O., Dittert K., Kuzyakov Y. Decomposition of biogas residues in soil and their effects on microbial growth kinetics and enzyme activities. Biomass Bioenergy. 2012;45:221–229. doi: 10.1016/j.biombioe.2012.06.014. DOI
Stumpe B., Werner S., Jung R., Heinze S., Jüschke E., Strippel C., Marschner B. Organic carbon dynamics and enzyme activities in agricultural soils amended with biogas slurry, liquid manure and sewage sludge. Agric. Sci. 2012;03:104–113. doi: 10.4236/as.2012.31014. DOI
Thomsen I.K., Olesen J.E., Møller H.B., Sørensen P., Christensen B.T. Carbon dynamics and retention in soil after anaerobic digestion of dairy cattle feed and faeces. Soil Biol. Biochem. 2013;58:82–87. doi: 10.1016/j.soilbio.2012.11.006. DOI
Spagnolo S., Tinello A., Cavinato C., Zabeo A., Semenzin E. Sustainability assessment of two digestate treatments: A comparative life cycle assessment. Environ. Eng. Manag. J. 2019;18:2193–2202.
Möller K., Stinner W. Effects of different manuring systems with and without biogas digestion on soil mineral nitrogen content and on gaseous nitrogen losses (ammonia, nitrous oxides) Eur. J. Agron. 2009;30:1–16. doi: 10.1016/j.eja.2008.06.003. DOI
Yaseen M., Ahmad A., Naveed M., Ali M.A., Shah S.S.H., Hasnain M., Ali H.M., Siddiqui M.H., Salem M.Z.M., Mustafa A. Subsurface-Applied Coated Nitrogen Fertilizer Enhanced Wheat Production by Improving Nutrient-Use Efficiency with Less Ammonia Volatilization. Agronomy. 2021;11:2396. doi: 10.3390/agronomy11122396. DOI
Martin S.L., Clarke M.L., Othman M., Ramsden S.J., West H.M. Biochar-mediated reductions in greenhouse gas emissions from soil amended with anaerobic digestates. Biomass Bioenergy. 2015;79:39–49. doi: 10.1016/j.biombioe.2015.04.030. DOI
Dicke C., Andert J., Ammon C., Kern J., Meyer-Aurich A., Kaupenjohann M. Effects of different biochars and digestate on N2O fluxes under field conditions. Sci. Total. Environ. 2015;524:310–318. doi: 10.1016/j.scitotenv.2015.04.005. PubMed DOI
Zhang B., Yin R., Wei Q., Qin S., Peng Y., Zhang B. Effects of Combined Applications of Biogas Slurry and Biochar on Phosphorus Leaching and Fractionations in Lateritic Soil. Sustainability. 2022;14:7924. doi: 10.3390/su14137924. DOI
Elbashier M.M.A., Xiaohou S., Ali A.A.S., Mohmmed A. Effect of Digestate and Biochar Amendments on Photosynthesis Rate, Growth Parameters, Water Use Efficiency and Yield of Chinese Melon (Cucumis melo L.) under Saline Irrigation. Agronomy. 2018;8:22. doi: 10.3390/agronomy8020022. DOI
Atkinson C.J., Fitzgerald J.D., Hipps N.A. Potential mechanisms for achieving agricultural benefits from biochar application to temperate soils: A review. Plant Soil. 2010;337:1–18. doi: 10.1007/s11104-010-0464-5. DOI
Mousavi S.M., Srivastava A.K., Cheraghi M. Soil health and crop response of biochar: An updated analysis. Arch. Agron. Soil Sci. 2022:1–26. doi: 10.1080/03650340.2022.2054998. DOI
Wang J., Xiong Z., Kuzyakov Y. Biochar stability in soil: Meta-analysis of decomposition and priming effects. GCB Bioenergy. 2015;8:512–523. doi: 10.1111/gcbb.12266. DOI
Liao N., Li Q., Zhang W., Zhou G., Ma L., Min W., Ye J., Hou Z. Effects of biochar on soil microbial community composition and activity in drip-irrigated desert soil. Eur. J. Soil Biol. 2016;72:27–34. doi: 10.1016/j.ejsobi.2015.12.008. DOI
Brtnicky M., Hammerschmiedt T., Elbl J., Kintl A., Skulcova L., Radziemska M., Latal O., Baltazar T., Kobzova E., Holatko J. The Potential of Biochar Made from Agricultural Residues to Increase Soil Fertility and Microbial Activity: Impacts on Soils with Varying Sand Content. Agronomy. 2021;11:1174. doi: 10.3390/agronomy11061174. DOI
Peng Y., Sun Y., Fan B., Zhang S., Bolan N.S., Chen Q., Tsang D.C. Fe/Al (hydr)oxides engineered biochar for reducing phosphorus leaching from a fertile calcareous soil. J. Clean. Prod. 2021;279:123877. doi: 10.1016/j.jclepro.2020.123877. DOI
Peng Y., Zhang B., Guan C.-Y., Jiang X., Tan J., Li X. Identifying biotic and abiotic processes of reversing biochar-induced soil phosphorus leaching through biochar modification with MgAl layered (hydr)oxides. Sci. Total. Environ. 2022;843:157037. doi: 10.1016/j.scitotenv.2022.157037. PubMed DOI
Scherer H.W. Sulfur in soils. J. Plant Nutr. Soil Sci. 2009;172:326–335. doi: 10.1002/jpln.200900037. DOI
Yang Z., Haneklaus S., Singh B.R., Schnug E. Effect of Repeated Applications of Elemental Sulfur on Microbial Population, Sulfate Concentration, and pH in Soils. Commun. Soil Sci. Plant Anal. 2007;39:124–140. doi: 10.1080/00103620701759079. DOI
Malik K.M., Khan K.S., Billah M., Akhtar M.S., Rukh S., Alam S., Munir A., Aulakh A.M., Rahim M., Qaisrani M.M., et al. Organic Amendments and Elemental Sulfur Stimulate Microbial Biomass and Sulfur Oxidation in Alkaline Subtropical Soils. Agronomy. 2021;11:2514. doi: 10.3390/agronomy11122514. DOI
Bouranis D.L., Venieraki A., Chorianopoulou S.N., Katinakis P. Impact of Elemental Sulfur on the Rhizospheric Bacteria of Durum Wheat Crop Cultivated on a Calcareous Soil. Plants. 2019;8:379. doi: 10.3390/plants8100379. PubMed DOI PMC
Hu Z.Y., Zhao F.-J., McGrath S.P. Sulphur fractionation in calcareous soils and bioavailability to plants. Plant Soil. 2005;268:103–109. doi: 10.1007/s11104-004-0229-0. DOI
Wainwright M., Nevell W., Grayston S.J. Effects of organic matter on sulphur oxidation in soil and influence of sulphur oxidation on soil nitrification. Plant Soil. 1986;96:369–376. doi: 10.1007/BF02375141. DOI
Morales-Polo C., del Mar Cledera-Castro M., Soria B.Y.M. Reviewing the Anaerobic Digestion of Food Waste: From Waste Generation and Anaerobic Process to Its Perspectives. Appl. Sci. 2018;8:1804–1838. doi: 10.3390/app8101804. DOI
International Organization for Standardization; Geneva, Switzerland: 2009. Fertilizers-Determination of Nitric and Ammoniacal Nitrogen according to Devarda.
International Organization for Standardi-zation; Geneva, Switzerland: 2000. Soil Quality—Determination of Total Sulfur by Dry Combustion.
Rotthauwe J.H., Witzel K.P., Liesack W. The ammonia monooxygenase structural gene amoA as a functional marker: Molecular fine-scale analysis of natural ammonia-oxidizing populations. Appl. Environ. Microbiol. 1997;63:4704–4712. doi: 10.1128/aem.63.12.4704-4712.1997. PubMed DOI PMC
Ben-Dov E., Brenner A., Kushmaro A. Quantification of Sulfate-reducing Bacteria in Industrial Wastewater, by Real-time Polymerase Chain Reaction (PCR) Using dsrA and apsA Genes. Microb. Ecol. 2007;54:439–451. doi: 10.1007/s00248-007-9233-2. PubMed DOI
Kandeler E., Deiglmayr K., Tscherko D., Bru D., Philippot L. Abundance of narG, nirS, nirK, and nosZ Genes of Denitrifying Bacteria during Primary Successions of a Glacier Foreland. Appl. Environ. Microbiol. 2006;72:5957–5962. doi: 10.1128/AEM.00439-06. PubMed DOI PMC
Amann R.I., Ludwig W., Schleifer K.H. Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol. Rev. 1995;59:143–169. doi: 10.1128/mr.59.1.143-169.1995. PubMed DOI PMC
Hammerschmiedt T., Holatko J., Sudoma M., Kintl A., Vopravil J., Ryant P., Skarpa P., Radziemska M., Latal O., Brtnicky M. Biochar and Sulphur Enriched Digestate: Utilization of Agriculture Associated Waste Products for Improved Soil Carbon and Nitrogen Content, Microbial Activity, and Plant Growth. Agronomy. 2021;11:2041. doi: 10.3390/agronomy11102041. DOI
International Organization for Standardization; Geneva, Switzerland: 2005. Soil Quality-Determination of pH.
International Organization for Standardization; Geneva, Switzerland: 2018. Soil Quality—Measurement of Enzyme Activity Patterns in Soil Samples Using Colorimetric Substrates in Micro-Well Plates.
R Core Team . R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing; Vienna, Austria: 2020.
Hinkle D.E., Wiersma W., Jurs S.G. Applied Statistics for the Behavioral Sciences. 5th ed. Houghton Mifflin College Division; Boston, MA, USA: 2003.
Karimi M., Aminuddin, Yusop M., Radziah M. Effect of Elemental Sulphur Timing and Application Rates on Soil P Release and Concentration in Maize. J. Trop. Agric. Sci. 2016;39:235–248.
Kulczycki G. The effect of elemental sulfur fertilization on plant yields and soil properties. Adv. Agron. 2021;167:105–181. doi: 10.1016/bs.agron.2020.12.003. DOI
Rezaee M., Gitipour S., Sarrafzadeh M.H. Evaluation of phosphate and ammonium adsorption-desorption of slow pyrolyzed wood biochar. Environ. Eng. Manag. J. 2021;20:217–227. doi: 10.30638/eemj.2021.022. DOI
Wang B., Lehmann J., Hanley K., Hestrin R., Enders A. Adsorption and desorption of ammonium by maple wood biochar as a function of oxidation and pH. Chemosphere. 2015;138:120–126. doi: 10.1016/j.chemosphere.2015.05.062. PubMed DOI
Soaud A.A., Saleh M.E., El-Tarabily K.A., Sofian-Azirun M., Rahman M.M. Effect of elemental sulfur application on am-monia volatilization from surface applied urea fertilizer to calcareous sandy soils. Aust. J. Crop. Sci. 2011;5:611–619.
Gupta V.V.S.R., Lawrence J.R., Germida J.J. Impact of elemental sulfur fertilization on agricultural soils. I. Effects on microbial biomass and enzyme activities. Can. J. Soil Sci. 1988;68:463–473. doi: 10.4141/cjss88-045. DOI
McCarty G.W., Bremner J.M., Krogmeier M.J. Evaluation of ammonium thiosulfate as a soil urease inhibitor. Fertil. Res. 1990;24:135–139. doi: 10.1007/BF01073581. DOI
Suzuki I., Lee D., Mackay B., Harahuc L., Oh J.K. Effect of Various Ions, pH, and Osmotic Pressure on Oxidation of Elemental Sulfur by Thiobacillus thiooxidans. Appl. Environ. Microbiol. 1999;65:5163–5168. doi: 10.1128/AEM.65.11.5163-5168.1999. PubMed DOI PMC
Akhtar M.S., Babel S., Yadav B.K., Yadav R.S., Panwar J. Potentiality of Thiobacillus in Agricultural System. Adv. Sci. Eng. Med. 2012;4:77–80. doi: 10.1166/asem.2012.1123. DOI
Xu X., Cao X., Zhao L., Sun T. Comparison of sewage sludge- and pig manure-derived biochars for hydrogen sulfide removal. Chemosphere. 2014;111:296–303. doi: 10.1016/j.chemosphere.2014.04.014. PubMed DOI
Kang X.H., Zhong J.K., Zhao B.W., Chang G.H., Wang L.G., Zhang J.Y. Effect of swine manure biochar on the adsorption of sulfur in light sierozem. Fresen. Environ. Bull. 2016;25:4478–4486.
Allison S.D., LeBauer D.S., Ofrecio M.R., Reyes R., Ta A.-M., Tran T.M. Low levels of nitrogen addition stimulate decomposition by boreal forest fungi. Soil Biol. Biochem. 2009;41:293–302. doi: 10.1016/j.soilbio.2008.10.032. DOI
Veresoglou S.D., Chen B., Rillig M.C. Arbuscular mycorrhiza and soil nitrogen cycling. Soil Biol. Biochem. 2012;46:53–62. doi: 10.1016/j.soilbio.2011.11.018. DOI
Duffková R., Fučík P., Jurkovská L., Janoušková M. Experimental evaluation of the potential of arbuscular mycorrhiza to modify nutrient leaching in three arable soils located on one slope. Appl. Soil Ecol. 2019;143:116–125. doi: 10.1016/j.apsoil.2019.06.001. DOI
Keyes S., Veelen A., Fletcher D.M., Scotson C., Koebernick N., Petroselli C., Williams K., Ruiz S., Cooper L., Mayon R., et al. Multimodal correlative imaging and modelling of phosphorus uptake from soil by hyphae of mycorrhizal fungi. N. Phytol. 2022;234:688–703. doi: 10.1111/nph.17980. PubMed DOI PMC
Lošák T., Hlušek J., Válka T., Elbl J., Vítěz T., Bělíková H., Von Bennewitz E. The effect of fertilisation with digestate on kohlrabi yields and quality. Plant Soil Environ. 2016;62:274–278. doi: 10.17221/16/2016-PSE. DOI
Gomez-Saez G.V., Dittmar T., Holtappels M., Pohlabeln A.M., Lichtschlag A., Schnetger B., Boetius A., Niggemann J. Sulfurization of dissolved organic matter in the anoxic water column of the Black Sea. Sci. Adv. 2021;7:eabf6199. doi: 10.1126/sciadv.abf6199. PubMed DOI PMC
Chen Q., Tang K., Chen X., Jiao N. Microbial sulfurization stimulates carbon sequestration in marine oxygen minimum zones. Sci. Bull. 2022;67:895–898. doi: 10.1016/j.scib.2022.01.028. PubMed DOI
Ma Q., Luo Y., Wen Y., Hill P.W., Chadwick D.R., Wu L., Jones D.L. Carbon and sulphur tracing from soil organic sulphur in plants and soil microorganisms. Soil Biol. Biochem. 2020;150:107971. doi: 10.1016/j.soilbio.2020.107971. DOI
Ye R., McCray J.M., Wright A.L. Microbial Response of a Calcareous Histosol to Sulfur Amendment. Soil Sci. 2011;176:479–486. doi: 10.1097/SS.0b013e31822769e7. DOI
Chapman S.J. Carbon substrate mineralization and sulphur limitation. Soil Biol. Biochem. 1997;29:115–122. doi: 10.1016/S0038-0717(96)00302-1. DOI
Giweta M., Dyck M.F., Malhi S.S., Puurveen D., Robertson J.A. Long-term S-fertilization increases carbon sequestration in a sulfur-deficient soil. Can. J. Soil Sci. 2014;94:295–301. doi: 10.4141/cjss2013-022. DOI
Turan M.A., Taban S., Katkat A.V., Kucukyumuk Z. The evaluation of the elemental sulfur and gypsum effect on soil pH, EC, SO4-S and available Mn content. J. Food Agric. Environ. 2013;11:572–575.
Yuan J.-H., Xu R.-K. The amelioration effects of low temperature biochar generated from nine crop residues on an acidic Ultisol. Soil Use Manag. 2011;27:110–115. doi: 10.1111/j.1475-2743.2010.00317.x. DOI
Shah T., Khan S., Shah Z. Soil respiration, pH and EC as influenced by biochar. Soil Environ. 2017;36:77–83. doi: 10.25252/SE/17/51184. DOI