• This record comes from PubMed

Effect of Digestate Modified with Amendments on Soil Health and Plant Biomass under Varying Experimental Durations

. 2023 Jan 23 ; 16 (3) : . [epub] 20230123

Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic

Document type Journal Article

Grant support
TH04030132 Technology Agency of the Czech Republic
TH04030142 Technology Agency of the Czech Republic
MZE-RO1218 Ministry of Agriculture of the Czech Republic
MZE-RO1722 Ministry of Agriculture of the Czech Republic

A digestate with amendments provides plants with available nutrients and improves the microbiological properties of treated soil. Modification of a digestate through the addition of a biochar and sulphur source is less well-known. This pot experiment aimed at comparing the short- and long-time fertilization effects of a digestate enriched with biochar, with elemental sulphur, or with a combination of both on soil health and plant biomass. The experiment was carried out with maize, cultivated twice (1st-12th week = pre-cultivation; re-sowing after shoot harvest, 13th-24th = main cultivation) in soil amended with prepared digestate. The digestate used in pre-cultivation was incubated untreated (D) and was then treated with biochar (D + B), with elemental sulphur at a low (LS) and high (HS) dose, or with a combination of both (D + B + LS and D + B + HS). An additional unamended digestate (D) was added to each soil variant before the main cultivation. The application of digestate with a high dose of elemental sulphur and biochar mediated the most significant differences in the soil. The increase (compared to the unamended soil) was of short-term type (+11% and +6% increased total nitrogen and carbon after 12 weeks), then of long-term type (+54% and +30% increased sulphur and arylsulfatase activity after 24 weeks), and later emerged in the 13th to the 24th week of the experiment (+57% and +32% non-inhibited urease, increased N-acetyl-β-D-glucosaminidase and phosphatase). No significant differences in the effect of the applied amendments on dry aboveground plant biomass were observed.

See more in PubMed

Karpenstein-Machan M. Sustainable cultivation concepts for domestic energy production from biomass. Crit. Rev. Plant Sci. 2001;20:1–14. doi: 10.1080/20013591099164. DOI

Arthurson V. Closing the Global Energy and Nutrient Cycles through Application of Biogas Residue to Agricultural Land–Potential Benefits and Drawback. Energies. 2009;2:226–242. doi: 10.3390/en20200226. DOI

Clemens J., Trimborn M., Weiland P., Amon B. Mitigation of greenhouse gas emissions by anaerobic digestion of cattle slurry. Agric. Ecosyst. Environ. 2006;112:171–177. doi: 10.1016/j.agee.2005.08.016. DOI

Hjelmar O. Disposal strategies for municipal solid waste incineration residues. J. Hazard. Mater. 1996;47:345–368. doi: 10.1016/0304-3894(95)00111-5. DOI

Börjesson G., Samuelsson J., Chanton J., Adolfsson R., Galle B., Svensson B.H. A national landfill methane budget for Sweden based on field measurements, and an evaluation of IPCC models. Tellus B Chem. Phys. Meteorol. 2009;61:424–435. doi: 10.1111/j.1600-0889.2008.00409.x. DOI

Båth B., Rämert B. Organic Household Wastes as a Nitrogen Source in Leek Production. Acta Agric. Scand. Sect. B Soil Plant Sci. 1999;49:201–208. doi: 10.1080/090647100750001569. DOI

Nyberg K., Sundh I., Johansson M., Schnürer A. Presence of potential ammonia oxidation (PAO) inhibiting substances in anaerobic digestion residues. Appl. Soil Ecol. 2004;26:107–112. doi: 10.1016/j.apsoil.2003.12.002. DOI

Rivard C.J., Rodriguez J.B., Nagle N.J., Self J.R., Kay B.D., Soltanpour P.N., Nieves R.A. Anaerobic digestion of municipal solid waste. Appl. Biochem. Biotechnol. 1995;51–52:125–135. doi: 10.1007/BF02933417. DOI

Wang Y., Shen F., Liu R., Wu L. Effects of anaerobic fermentation residue of biogas production on the yield and quality of Chinese cabbage and nutrient accumulations in soil. Int. J. Glob. Energy Issues. 2008;29:284. doi: 10.1504/IJGEI.2008.018009. DOI

Adediran J.A., De Baets N., Mnkeni P.N.S., Kiekens L., Muyima N.Y.O., Thys A. Organic Waste Materials for Soil Fertility Improvement in the Border Region of the Eastern Cape, South Africa. Biol. Agric. Hortic. 2003;20:283–300. doi: 10.1080/01448765.2003.9754974. DOI

Gryń G., Paluszak Z., Olszewska H., Keutgen A.J. Chemical and microbiological properties of luvisol after addition of post-fermentation residue. J. Elem. 2019;25:701–716. doi: 10.5601/jelem.2019.24.3.1872. DOI

Wang L. Anaerobic Digestion of Organic Wastes. CRC Press; Boca Raton, FL, USA: 2014. pp. 415–430.

Davis J., Haglund C. Life Cycle Inventory (LCI) of Fertiliser Production: Fertiliser Products Used in Sweden and Western Europe. SIK Institutet för livsmedel och bioteknik; Göteborg, Sweden: 1999.

Patyk A. Balance of energy consumption and emissions of fertilizer production and supply; Proceedings of the Reprints from the International Conference of Life Cycle Assessment in Agriculture, Food and Non-Food Agro-Industry and Forestry: Achievements and Prospects; Brussels, Belgium. 4–5 April 1996; pp. 4–5.

Kongshaug G. Energy Consumption and Greenhouse Gas Emissions in Fertilizer Production; Proceedings of the Interna-tional Fertilizer Industry Association IFA Technical Conference; Marrakech, Morocco. 28 September–1 October 1998; p. 18.

Pawlett M., Owen A., Tibbett M. Amenity grassland quality following anaerobic digestate application. Grassl. Sci. 2018;64:185–189. doi: 10.1111/grs.12202. DOI

Makádi M., Tomócsik A., Orosz V. Digestate: A new nutrient source–review. Biogas. 2012;14:295–312.

Johansen A., Carter M.S., Jensen E.S., Hauggard-Nielsen H., Ambus P. Effects of digestate from anaerobically digested cattle slurry and plant materials on soil microbial community and emission of CO2 and N2O. Appl. Soil Ecol. 2013;63:36–44. doi: 10.1016/j.apsoil.2012.09.003. DOI

Barłóg P., Hlisnikovský L., Kunzová E. Effect of Digestate on Soil Organic Carbon and Plant-Available Nutrient Content Compared to Cattle Slurry and Mineral Fertilization. Agronomy. 2020;10:379. doi: 10.3390/agronomy10030379. DOI

Slepetiene A., Kochiieru M., Jurgutis L., Mankeviciene A., Skersiene A., Belova O. The Effect of Anaerobic Digestate on the Soil Organic Carbon and Humified Carbon Fractions in Different Land-Use Systems in Lithuania. Land. 2022;11:133. doi: 10.3390/land11010133. DOI

Chen R., Blagodatskaya E., Senbayram M., Blagodatsky S., Myachina O., Dittert K., Kuzyakov Y. Decomposition of biogas residues in soil and their effects on microbial growth kinetics and enzyme activities. Biomass Bioenergy. 2012;45:221–229. doi: 10.1016/j.biombioe.2012.06.014. DOI

Stumpe B., Werner S., Jung R., Heinze S., Jüschke E., Strippel C., Marschner B. Organic carbon dynamics and enzyme activities in agricultural soils amended with biogas slurry, liquid manure and sewage sludge. Agric. Sci. 2012;03:104–113. doi: 10.4236/as.2012.31014. DOI

Thomsen I.K., Olesen J.E., Møller H.B., Sørensen P., Christensen B.T. Carbon dynamics and retention in soil after anaerobic digestion of dairy cattle feed and faeces. Soil Biol. Biochem. 2013;58:82–87. doi: 10.1016/j.soilbio.2012.11.006. DOI

Spagnolo S., Tinello A., Cavinato C., Zabeo A., Semenzin E. Sustainability assessment of two digestate treatments: A comparative life cycle assessment. Environ. Eng. Manag. J. 2019;18:2193–2202.

Möller K., Stinner W. Effects of different manuring systems with and without biogas digestion on soil mineral nitrogen content and on gaseous nitrogen losses (ammonia, nitrous oxides) Eur. J. Agron. 2009;30:1–16. doi: 10.1016/j.eja.2008.06.003. DOI

Yaseen M., Ahmad A., Naveed M., Ali M.A., Shah S.S.H., Hasnain M., Ali H.M., Siddiqui M.H., Salem M.Z.M., Mustafa A. Subsurface-Applied Coated Nitrogen Fertilizer Enhanced Wheat Production by Improving Nutrient-Use Efficiency with Less Ammonia Volatilization. Agronomy. 2021;11:2396. doi: 10.3390/agronomy11122396. DOI

Martin S.L., Clarke M.L., Othman M., Ramsden S.J., West H.M. Biochar-mediated reductions in greenhouse gas emissions from soil amended with anaerobic digestates. Biomass Bioenergy. 2015;79:39–49. doi: 10.1016/j.biombioe.2015.04.030. DOI

Dicke C., Andert J., Ammon C., Kern J., Meyer-Aurich A., Kaupenjohann M. Effects of different biochars and digestate on N2O fluxes under field conditions. Sci. Total. Environ. 2015;524:310–318. doi: 10.1016/j.scitotenv.2015.04.005. PubMed DOI

Zhang B., Yin R., Wei Q., Qin S., Peng Y., Zhang B. Effects of Combined Applications of Biogas Slurry and Biochar on Phosphorus Leaching and Fractionations in Lateritic Soil. Sustainability. 2022;14:7924. doi: 10.3390/su14137924. DOI

Elbashier M.M.A., Xiaohou S., Ali A.A.S., Mohmmed A. Effect of Digestate and Biochar Amendments on Photosynthesis Rate, Growth Parameters, Water Use Efficiency and Yield of Chinese Melon (Cucumis melo L.) under Saline Irrigation. Agronomy. 2018;8:22. doi: 10.3390/agronomy8020022. DOI

Atkinson C.J., Fitzgerald J.D., Hipps N.A. Potential mechanisms for achieving agricultural benefits from biochar application to temperate soils: A review. Plant Soil. 2010;337:1–18. doi: 10.1007/s11104-010-0464-5. DOI

Mousavi S.M., Srivastava A.K., Cheraghi M. Soil health and crop response of biochar: An updated analysis. Arch. Agron. Soil Sci. 2022:1–26. doi: 10.1080/03650340.2022.2054998. DOI

Wang J., Xiong Z., Kuzyakov Y. Biochar stability in soil: Meta-analysis of decomposition and priming effects. GCB Bioenergy. 2015;8:512–523. doi: 10.1111/gcbb.12266. DOI

Liao N., Li Q., Zhang W., Zhou G., Ma L., Min W., Ye J., Hou Z. Effects of biochar on soil microbial community composition and activity in drip-irrigated desert soil. Eur. J. Soil Biol. 2016;72:27–34. doi: 10.1016/j.ejsobi.2015.12.008. DOI

Brtnicky M., Hammerschmiedt T., Elbl J., Kintl A., Skulcova L., Radziemska M., Latal O., Baltazar T., Kobzova E., Holatko J. The Potential of Biochar Made from Agricultural Residues to Increase Soil Fertility and Microbial Activity: Impacts on Soils with Varying Sand Content. Agronomy. 2021;11:1174. doi: 10.3390/agronomy11061174. DOI

Peng Y., Sun Y., Fan B., Zhang S., Bolan N.S., Chen Q., Tsang D.C. Fe/Al (hydr)oxides engineered biochar for reducing phosphorus leaching from a fertile calcareous soil. J. Clean. Prod. 2021;279:123877. doi: 10.1016/j.jclepro.2020.123877. DOI

Peng Y., Zhang B., Guan C.-Y., Jiang X., Tan J., Li X. Identifying biotic and abiotic processes of reversing biochar-induced soil phosphorus leaching through biochar modification with MgAl layered (hydr)oxides. Sci. Total. Environ. 2022;843:157037. doi: 10.1016/j.scitotenv.2022.157037. PubMed DOI

Scherer H.W. Sulfur in soils. J. Plant Nutr. Soil Sci. 2009;172:326–335. doi: 10.1002/jpln.200900037. DOI

Yang Z., Haneklaus S., Singh B.R., Schnug E. Effect of Repeated Applications of Elemental Sulfur on Microbial Population, Sulfate Concentration, and pH in Soils. Commun. Soil Sci. Plant Anal. 2007;39:124–140. doi: 10.1080/00103620701759079. DOI

Malik K.M., Khan K.S., Billah M., Akhtar M.S., Rukh S., Alam S., Munir A., Aulakh A.M., Rahim M., Qaisrani M.M., et al. Organic Amendments and Elemental Sulfur Stimulate Microbial Biomass and Sulfur Oxidation in Alkaline Subtropical Soils. Agronomy. 2021;11:2514. doi: 10.3390/agronomy11122514. DOI

Bouranis D.L., Venieraki A., Chorianopoulou S.N., Katinakis P. Impact of Elemental Sulfur on the Rhizospheric Bacteria of Durum Wheat Crop Cultivated on a Calcareous Soil. Plants. 2019;8:379. doi: 10.3390/plants8100379. PubMed DOI PMC

Hu Z.Y., Zhao F.-J., McGrath S.P. Sulphur fractionation in calcareous soils and bioavailability to plants. Plant Soil. 2005;268:103–109. doi: 10.1007/s11104-004-0229-0. DOI

Wainwright M., Nevell W., Grayston S.J. Effects of organic matter on sulphur oxidation in soil and influence of sulphur oxidation on soil nitrification. Plant Soil. 1986;96:369–376. doi: 10.1007/BF02375141. DOI

Morales-Polo C., del Mar Cledera-Castro M., Soria B.Y.M. Reviewing the Anaerobic Digestion of Food Waste: From Waste Generation and Anaerobic Process to Its Perspectives. Appl. Sci. 2018;8:1804–1838. doi: 10.3390/app8101804. DOI

International Organization for Standardization; Geneva, Switzerland: 2009. Fertilizers-Determination of Nitric and Ammoniacal Nitrogen according to Devarda.

International Organization for Standardi-zation; Geneva, Switzerland: 2000. Soil Quality—Determination of Total Sulfur by Dry Combustion.

Rotthauwe J.H., Witzel K.P., Liesack W. The ammonia monooxygenase structural gene amoA as a functional marker: Molecular fine-scale analysis of natural ammonia-oxidizing populations. Appl. Environ. Microbiol. 1997;63:4704–4712. doi: 10.1128/aem.63.12.4704-4712.1997. PubMed DOI PMC

Ben-Dov E., Brenner A., Kushmaro A. Quantification of Sulfate-reducing Bacteria in Industrial Wastewater, by Real-time Polymerase Chain Reaction (PCR) Using dsrA and apsA Genes. Microb. Ecol. 2007;54:439–451. doi: 10.1007/s00248-007-9233-2. PubMed DOI

Kandeler E., Deiglmayr K., Tscherko D., Bru D., Philippot L. Abundance of narG, nirS, nirK, and nosZ Genes of Denitrifying Bacteria during Primary Successions of a Glacier Foreland. Appl. Environ. Microbiol. 2006;72:5957–5962. doi: 10.1128/AEM.00439-06. PubMed DOI PMC

Amann R.I., Ludwig W., Schleifer K.H. Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol. Rev. 1995;59:143–169. doi: 10.1128/mr.59.1.143-169.1995. PubMed DOI PMC

Hammerschmiedt T., Holatko J., Sudoma M., Kintl A., Vopravil J., Ryant P., Skarpa P., Radziemska M., Latal O., Brtnicky M. Biochar and Sulphur Enriched Digestate: Utilization of Agriculture Associated Waste Products for Improved Soil Carbon and Nitrogen Content, Microbial Activity, and Plant Growth. Agronomy. 2021;11:2041. doi: 10.3390/agronomy11102041. DOI

International Organization for Standardization; Geneva, Switzerland: 2005. Soil Quality-Determination of pH.

International Organization for Standardization; Geneva, Switzerland: 2018. Soil Quality—Measurement of Enzyme Activity Patterns in Soil Samples Using Colorimetric Substrates in Micro-Well Plates.

R Core Team . R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing; Vienna, Austria: 2020.

Hinkle D.E., Wiersma W., Jurs S.G. Applied Statistics for the Behavioral Sciences. 5th ed. Houghton Mifflin College Division; Boston, MA, USA: 2003.

Karimi M., Aminuddin, Yusop M., Radziah M. Effect of Elemental Sulphur Timing and Application Rates on Soil P Release and Concentration in Maize. J. Trop. Agric. Sci. 2016;39:235–248.

Kulczycki G. The effect of elemental sulfur fertilization on plant yields and soil properties. Adv. Agron. 2021;167:105–181. doi: 10.1016/bs.agron.2020.12.003. DOI

Rezaee M., Gitipour S., Sarrafzadeh M.H. Evaluation of phosphate and ammonium adsorption-desorption of slow pyrolyzed wood biochar. Environ. Eng. Manag. J. 2021;20:217–227. doi: 10.30638/eemj.2021.022. DOI

Wang B., Lehmann J., Hanley K., Hestrin R., Enders A. Adsorption and desorption of ammonium by maple wood biochar as a function of oxidation and pH. Chemosphere. 2015;138:120–126. doi: 10.1016/j.chemosphere.2015.05.062. PubMed DOI

Soaud A.A., Saleh M.E., El-Tarabily K.A., Sofian-Azirun M., Rahman M.M. Effect of elemental sulfur application on am-monia volatilization from surface applied urea fertilizer to calcareous sandy soils. Aust. J. Crop. Sci. 2011;5:611–619.

Gupta V.V.S.R., Lawrence J.R., Germida J.J. Impact of elemental sulfur fertilization on agricultural soils. I. Effects on microbial biomass and enzyme activities. Can. J. Soil Sci. 1988;68:463–473. doi: 10.4141/cjss88-045. DOI

McCarty G.W., Bremner J.M., Krogmeier M.J. Evaluation of ammonium thiosulfate as a soil urease inhibitor. Fertil. Res. 1990;24:135–139. doi: 10.1007/BF01073581. DOI

Suzuki I., Lee D., Mackay B., Harahuc L., Oh J.K. Effect of Various Ions, pH, and Osmotic Pressure on Oxidation of Elemental Sulfur by Thiobacillus thiooxidans. Appl. Environ. Microbiol. 1999;65:5163–5168. doi: 10.1128/AEM.65.11.5163-5168.1999. PubMed DOI PMC

Akhtar M.S., Babel S., Yadav B.K., Yadav R.S., Panwar J. Potentiality of Thiobacillus in Agricultural System. Adv. Sci. Eng. Med. 2012;4:77–80. doi: 10.1166/asem.2012.1123. DOI

Xu X., Cao X., Zhao L., Sun T. Comparison of sewage sludge- and pig manure-derived biochars for hydrogen sulfide removal. Chemosphere. 2014;111:296–303. doi: 10.1016/j.chemosphere.2014.04.014. PubMed DOI

Kang X.H., Zhong J.K., Zhao B.W., Chang G.H., Wang L.G., Zhang J.Y. Effect of swine manure biochar on the adsorption of sulfur in light sierozem. Fresen. Environ. Bull. 2016;25:4478–4486.

Allison S.D., LeBauer D.S., Ofrecio M.R., Reyes R., Ta A.-M., Tran T.M. Low levels of nitrogen addition stimulate decomposition by boreal forest fungi. Soil Biol. Biochem. 2009;41:293–302. doi: 10.1016/j.soilbio.2008.10.032. DOI

Veresoglou S.D., Chen B., Rillig M.C. Arbuscular mycorrhiza and soil nitrogen cycling. Soil Biol. Biochem. 2012;46:53–62. doi: 10.1016/j.soilbio.2011.11.018. DOI

Duffková R., Fučík P., Jurkovská L., Janoušková M. Experimental evaluation of the potential of arbuscular mycorrhiza to modify nutrient leaching in three arable soils located on one slope. Appl. Soil Ecol. 2019;143:116–125. doi: 10.1016/j.apsoil.2019.06.001. DOI

Keyes S., Veelen A., Fletcher D.M., Scotson C., Koebernick N., Petroselli C., Williams K., Ruiz S., Cooper L., Mayon R., et al. Multimodal correlative imaging and modelling of phosphorus uptake from soil by hyphae of mycorrhizal fungi. N. Phytol. 2022;234:688–703. doi: 10.1111/nph.17980. PubMed DOI PMC

Lošák T., Hlušek J., Válka T., Elbl J., Vítěz T., Bělíková H., Von Bennewitz E. The effect of fertilisation with digestate on kohlrabi yields and quality. Plant Soil Environ. 2016;62:274–278. doi: 10.17221/16/2016-PSE. DOI

Gomez-Saez G.V., Dittmar T., Holtappels M., Pohlabeln A.M., Lichtschlag A., Schnetger B., Boetius A., Niggemann J. Sulfurization of dissolved organic matter in the anoxic water column of the Black Sea. Sci. Adv. 2021;7:eabf6199. doi: 10.1126/sciadv.abf6199. PubMed DOI PMC

Chen Q., Tang K., Chen X., Jiao N. Microbial sulfurization stimulates carbon sequestration in marine oxygen minimum zones. Sci. Bull. 2022;67:895–898. doi: 10.1016/j.scib.2022.01.028. PubMed DOI

Ma Q., Luo Y., Wen Y., Hill P.W., Chadwick D.R., Wu L., Jones D.L. Carbon and sulphur tracing from soil organic sulphur in plants and soil microorganisms. Soil Biol. Biochem. 2020;150:107971. doi: 10.1016/j.soilbio.2020.107971. DOI

Ye R., McCray J.M., Wright A.L. Microbial Response of a Calcareous Histosol to Sulfur Amendment. Soil Sci. 2011;176:479–486. doi: 10.1097/SS.0b013e31822769e7. DOI

Chapman S.J. Carbon substrate mineralization and sulphur limitation. Soil Biol. Biochem. 1997;29:115–122. doi: 10.1016/S0038-0717(96)00302-1. DOI

Giweta M., Dyck M.F., Malhi S.S., Puurveen D., Robertson J.A. Long-term S-fertilization increases carbon sequestration in a sulfur-deficient soil. Can. J. Soil Sci. 2014;94:295–301. doi: 10.4141/cjss2013-022. DOI

Turan M.A., Taban S., Katkat A.V., Kucukyumuk Z. The evaluation of the elemental sulfur and gypsum effect on soil pH, EC, SO4-S and available Mn content. J. Food Agric. Environ. 2013;11:572–575.

Yuan J.-H., Xu R.-K. The amelioration effects of low temperature biochar generated from nine crop residues on an acidic Ultisol. Soil Use Manag. 2011;27:110–115. doi: 10.1111/j.1475-2743.2010.00317.x. DOI

Shah T., Khan S., Shah Z. Soil respiration, pH and EC as influenced by biochar. Soil Environ. 2017;36:77–83. doi: 10.25252/SE/17/51184. DOI

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...