Assessing Lettuce Exposure to a Multi-Pharmaceutical Mixture in Soil: Insights from LC-ESI-TQ Analysis and the Impact of Biochar on Pharmaceutical Bioavailability
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
39310173
PubMed Central
PMC11411693
DOI
10.1021/acsomega.4c05831
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
Agricultural practices introduce pharmaceutical (PhAC) residues into the terrestrial environment, potentially endangering agricultural crops and human health. This study aimed to evaluate various aspects related to the presence of pharmaceuticals in the lettuce-soil system, including bioconcentration factors (BCFs), translocation factors (TFs), ecotoxicological effects, the influence of biochar on the PhAC bioavailability, persistence in soil, and associated environmental and health risks. Lettuce (Lactuca sativa L.) was exposed to a mixture of 25 PhACs in two scenarios: initially contaminated soil (ranging from 0 to 10,000 ng·g-1) and soil irrigated with contaminated water (ranging from 0 to 1000 μg·L-1) over a 28-day period. The findings revealed a diverse range of BCFs (0.068-3.7) and TFs (0.032-0.58), indicating the uptake and translocation potential of pharmaceuticals by lettuce. Significant ecotoxicological effects on L. sativa, including weight change and increased mortality, were observed (p < 0.05). Interestingly, biochar did not significantly affect PhAC uptake by L. sativa (p > 0.05), while it significantly influenced the soil degradation kinetics of 12 PhACs (p < 0.05). Additionally, the estimated daily intake of PhACs through the consumption of L. sativa suggested negligible health risks, although concerns arose regarding the potential health risks if other vegetable sources were similarly contaminated with trace residues. Furthermore, this study evaluated the environmental risk associated with the emergence of antimicrobial resistance (AMR) in soil, as medium to high. In conclusion, these findings highlight the multifaceted challenges posed by pharmaceutical contamination in agricultural environments and emphasize the importance of proactive measures to mitigate the associated risks to both environmental and human health.
Zobrazit více v PubMed
Khasawneh O. F. S.; Palaniandy P. Occurrence and Removal of Pharmaceuticals in Wastewater Treatment Plants. Process Saf. Environ. Prot. 2021, 150, 532–556. 10.1016/j.psep.2021.04.045. DOI
Bijlsma L.; Pitarch E.; Fonseca E.; Ibáñez M.; Botero A. M.; Claros J.; Pastor L.; Hernández F. Investigation of Pharmaceuticals in a Conventional Wastewater Treatment Plant: Removal Efficiency, Seasonal Variation and Impact of a Nearby Hospital. J. Environ. Chem. Eng. 2021, 9 (4), 10554810.1016/j.jece.2021.105548. DOI
Xia K.; Bhandari A.; Das K.; Pillar G. Occurrence and Fate of Pharmaceuticals and Personal Care Products (PPCPs) in Biosolids. J. Environ. Qual. 2005, 34 (1), 91–104. 10.2134/jeq2005.0091. PubMed DOI
Kinney C. A.; Heuvel B. V. Translocation of Pharmaceuticals and Personal Care Products after Land Application of Biosolids. Curr. Opin. Environ. Sci. Health 2020, 14, 23–30. 10.1016/j.coesh.2019.11.004. DOI
Li Y.; Sallach J. B.; Zhang W.; Boyd S. A.; Li H. Characterization of Plant Accumulation of Pharmaceuticals from Soils with Their Concentration in Soil Pore Water. Environ. Sci. Technol. 2022, 56 (13), 9346–9355. 10.1021/acs.est.2c00303. PubMed DOI
Kaczala F.; Blum S. E. The Occurrence of Veterinary Pharmaceuticals in the Environment: A Review. Curr. Anal. Chem. 2016, 12 (3), 169–182. 10.2174/1573411012666151009193108. PubMed DOI PMC
Białk-Bielińska A.; Kumirska J.; Borecka M.; Caban M.; Paszkiewicz M.; Pazdro K.; Stepnowski P. Selected Analytical Challenges in the Determination of Pharmaceuticals in Drinking/Marine Waters and Soil/Sediment Samples. J. Pharm. Biomed. Anal. 2016, 121, 271–296. 10.1016/j.jpba.2016.01.016. PubMed DOI
Wu X.; Ernst F.; Conkle J. L.; Gan J. Comparative Uptake and Translocation of Pharmaceutical and Personal Care Products (PPCPs) by Common Vegetables. Environ. Int. 2013, 60, 15–22. 10.1016/j.envint.2013.07.015. PubMed DOI
Mordechay E. B.; Mordehay V.; Tarchitzky J.; Chefetz B. Fate of Contaminants of Emerging Concern in the Reclaimed Wastewater-Soil-Plant Continuum. Sci. Total Environ. 2022, 822, 15357410.1016/j.scitotenv.2022.153574. PubMed DOI
Riva F.; Zuccato E.; Pacciani C.; Colombo A.; Castiglioni S. A Multi-Residue Analytical Method for Extraction and Analysis of Pharmaceuticals and Other Selected Emerging Contaminants in Sewage Sludge. Anal. Methods 2021, 13 (4), 526–535. 10.1039/D0AY02027C. PubMed DOI
Mordechay E. B.; Tarchitzky J.; Chen Y.; Shenker M.; Chefetz B. Composted Biosolids and Treated Wastewater as Sources of Pharmaceuticals and Personal Care Products for Plant Uptake: A Case Study with Carbamazepine. Environ. Pollut. 2018, 232, 164–172. 10.1016/j.envpol.2017.09.029. PubMed DOI
Kodešová R.; Klement A.; Golovko O.; Fér M.; Kočárek M.; Nikodem A.; Grabic R. Soil Influences on Uptake and Transfer of Pharmaceuticals from Sewage Sludge Amended Soils to Spinach. J. Environ. Manage. 2019, 250, 10940710.1016/j.jenvman.2019.109407. PubMed DOI
Mejías C.; Martín J.; Santos J. L.; Aparicio I.; Alonso E. Occurrence of Pharmaceuticals and Their Metabolites in Sewage Sludge and Soil: A Review on Their Distribution and Environmental Risk Assessment. Trends Environ. Anal. Chem. 2021, 30, e0012510.1016/j.teac.2021.e00125. DOI
Gros M.; Mas-Pla J.; Boy-Roura M.; Geli I.; Domingo F.; Petrović M. Veterinary Pharmaceuticals and Antibiotics in Manure and Slurry and Their Fate in Amended Agricultural Soils: Findings from an Experimental Field Site (Baix Empordà, NE Catalonia). Sci. Total Environ. 2019, 654, 1337–1349. 10.1016/j.scitotenv.2018.11.061. PubMed DOI
Gworek B.; Kijeńska M.; Wrzosek J.; Graniewska M. Pharmaceuticals in the Soil and Plant Environment: A Review. Water, Air, Soil Pollut. 2021, 232 (4), 14510.1007/s11270-020-04954-8. DOI
Santiago S.; Roll D. M.; Ray C.; Williams C.; Moravcik P.; Knopf A. Effects of Soil Moisture Depletion on Vegetable Crop Uptake of Pharmaceuticals and Personal Care Products (PPCPs). Environ. Sci. Pollut. Res. 2016, 23 (20), 20257–20268. 10.1007/s11356-016-7194-z. PubMed DOI
Azanu D.; Mortey C.; Darko G.; Weisser J. J.; Styrishave B.; Abaidoo R. C. Uptake of Antibiotics from Irrigation Water by Plants. Chemosphere 2016, 157, 107–114. 10.1016/j.chemosphere.2016.05.035. PubMed DOI
Sallach J. B.; Zhang Y.; Hodges L.; Snow D.; Li X.; Bartelt-Hunt S. Concomitant Uptake of Antimicrobials and Salmonella in Soil and into Lettuce Following Wastewater Irrigation. Environ. Pollut. 2015, 197, 269–277. 10.1016/j.envpol.2014.11.018. PubMed DOI
Li Y.; He J.; Qi H.; Li H.; Boyd S. A.; Zhang W. Impact of Biochar Amendment on the Uptake, Fate and Bioavailability of Pharmaceuticals in Soil-Radish Systems. J. Hazard. Mater. 2020, 398, 12285210.1016/j.jhazmat.2020.122852. PubMed DOI
Stando K.; Korzeniewska E.; Felis E.; Harnisz M.; Bajkacz S. Uptake of Pharmaceutical Pollutants and Their Metabolites from Soil Fertilized with Manure to Parsley Tissues. Molecules 2022, 27 (14), 437810.3390/molecules27144378. PubMed DOI PMC
Malchi T.; Maor Y.; Tadmor G.; Shenker M.; Chefetz B. Irrigation of Root Vegetables with Treated Wastewater: Evaluating Uptake of Pharmaceuticals and the Associated Human Health Risks. Environ. Sci. Technol. 2014, 48 (16), 9325–9333. 10.1021/es5017894. PubMed DOI
Prosser R. S.; Trapp S.; Sibley P. K. Modeling Uptake of Selected Pharmaceuticals and Personal Care Products into Food Crops from Biosolids-Amended Soil. Environ. Sci. Technol. 2014, 48 (19), 11397–11404. 10.1021/es503067v. PubMed DOI
Sabourin L.; Duenk P.; Bonte-Gelok S.; Payne M.; Lapen D. R.; Topp E. Uptake of Pharmaceuticals, Hormones and Parabens into Vegetables Grown in Soil Fertilized with Municipal Biosolids. Sci. Total Environ. 2012, 431, 233–236. 10.1016/j.scitotenv.2012.05.017. PubMed DOI
Riemenschneider C.; Al-Raggad M.; Moeder M.; Seiwert B.; Salameh E.; Reemtsma T. Pharmaceuticals, Their Metabolites, and Other Polar Pollutants in Field-Grown Vegetables Irrigated with Treated Municipal Wastewater. J. Agric. Food Chem. 2016, 64 (29), 5784–5792. 10.1021/acs.jafc.6b01696. PubMed DOI
Bhalsod G. D.; Chuang Y.-H.; Jeon S.; Gui W.; Li H.; Ryser E. T.; Guber A. K.; Zhang W. Uptake and Accumulation of Pharmaceuticals in Overhead- and Surface-Irrigated Greenhouse Lettuce. J. Agric. Food Chem. 2018, 66 (4), 822–830. 10.1021/acs.jafc.7b04355. PubMed DOI
Bassil R. J.; Bashour I. I.; Sleiman F. T.; Abou-Jawdeh Y. A. Antibiotic Uptake by Plants from Manure-Amended Soils. J. Environ. Sci. Health, Part B 2013, 48 (7), 570–574. 10.1080/03601234.2013.774898. PubMed DOI
Chuang Y.-H.; Liu C.-H.; Sallach J. B.; Hammerschmidt R.; Zhang W.; Boyd S. A.; Li H. Mechanistic Study on Uptake and Transport of Pharmaceuticals in Lettuce from Water. Environ. Int. 2019, 131, 10497610.1016/j.envint.2019.104976. PubMed DOI
Akenga P.; Gachanja A.; Fitzsimons M. F.; Tappin A.; Comber S. Uptake, Accumulation and Impact of Antiretroviral and Antiviral Pharmaceutical Compounds in Lettuce. Sci. Total Environ. 2021, 766, 14449910.1016/j.scitotenv.2020.144499. PubMed DOI
Yu X.; Liu X.; Liu H.; Chen J.; Sun Y. The Accumulation and Distribution of Five Antibiotics from Soil in 12 Cultivars of Pak Choi. Environ. Pollut. 2019, 254, 11311510.1016/j.envpol.2019.113115. PubMed DOI
Benassi-Borba L.; Dal’Lin C. M. P.; Testolin R. C.; Vieira N. M. B.; Corrêa C. V. T.; Bianchi I.; Barwinski M. J. B.; Radetski C. M.; Somensi C. A. Assessment of Phytotoxicity and Impact on the Enzymatic Activity of Soil Microorganisms Caused by Veterinary Antibiotics Used in Brazilian Farms. J. Environ. Sci. Health, Part B 2021, 56 (7), 675–684. 10.1080/03601234.2021.1938480. PubMed DOI
Rede D.; Santos L. H. M. L. M.; Ramos S.; Oliva-Teles F.; Antão C.; Sousa S. R.; Delerue-Matos C. Individual and Mixture Toxicity Evaluation of Three Pharmaceuticals to the Germination and Growth of Lactuca Sativa Seeds. Sci. Total Environ. 2019, 673, 102–109. 10.1016/j.scitotenv.2019.03.432. PubMed DOI
Hillis D. G.; Fletcher J.; Solomon K. R.; Sibley P. K. Effects of Ten Antibiotics on Seed Germination and Root Elongation in Three Plant Species. Arch. Environ. Contam. Toxicol. 2011, 60 (2), 220–232. 10.1007/s00244-010-9624-0. PubMed DOI
Pino M. R.; Muñiz S.; Val J.; Navarro E. Phytotoxicity of 15 Common Pharmaceuticals on the Germination of Lactuca Sativa and Photosynthesis of Chlamydomonas Reinhardtii. Environ. Sci. Pollut. Res. 2016, 23 (22), 22530–22541. 10.1007/s11356-016-7446-y. PubMed DOI
Bair D. A.; Anderson C. G.; Chung Y.; Scow K. M.; Franco R. B.; Parikh S. J. Impact of Biochar on Plant Growth and Uptake of Ciprofloxacin, Triclocarban and Triclosan from Biosolids. J. Environ. Sci. Health, Part B 2020, 55 (11), 990–1001. 10.1080/03601234.2020.1807264. PubMed DOI
Keerthanan S.; Jayasinghe C.; Bolan N.; Rinklebe J.; Vithanage M. Retention of Sulfamethoxazole by Cinnamon Wood Biochar and Its Efficacy of Reducing Bioavailability and Plant Uptake in Soil. Chemosphere 2022, 297, 13407310.1016/j.chemosphere.2022.134073. PubMed DOI
Geng J.; Liu X.; Wang J.; Li S. Accumulation and Risk Assessment of Antibiotics in Edible Plants Grown in Contaminated Farmlands: A Review. Sci. Total Environ. 2022, 853, 15861610.1016/j.scitotenv.2022.158616. PubMed DOI
Keerthanan S.; Jayasinghe C.; Biswas J. K.; Vithanage M. Pharmaceutical and Personal Care Products (PPCPs) in the Environment: Plant Uptake, Translocation, Bioaccumulation, and Human Health Risks. Crit. Rev. Environ. Sci. Technol. 2021, 51 (12), 1221–1258. 10.1080/10643389.2020.1753634. DOI
Mieczyslaw G.; Janas R. Physiological method for improving seed germination and seedling emergence of root parsley in organic systems. J. Res. Appl. Agric. Eng. 2014, 59, 80–86.
Bożym M. Assessment of Phytotoxicity of Leachates from Landfilled Waste and Dust from Foundry. Ecotoxicology 2020, 29 (4), 429–443. 10.1007/s10646-020-02197-1. PubMed DOI PMC
Holatko J.; Brtnicky M.; Mustafa A.; Kintl A.; Skarpa P.; Ryant P.; Baltazar T.; Malicek O.; Latal O.; Hammerschmiedt T. Effect of Digestate Modified with Amendments on Soil Health and Plant Biomass under Varying Experimental Durations. Materials 2023, 16 (3), 102710.3390/ma16031027. PubMed DOI PMC
Mravcová L.; Amrichová A.; Navrkalová J.; Hamplová M.; Sedlář M.; Gargošová H. Z.; Fučík J. Optimization and Validation of Multiresidual Extraction Methods for Pharmaceuticals in Soil, Lettuce, and Earthworms. Environ. Sci. Pollut. Res. 2024, 31, 33120–33140. 10.1007/s11356-024-33492-7. PubMed DOI PMC
Pang Z.; Lu Y.; Zhou G.; Hui F.; Xu L.; Viau C.; Spigelman A. F.; MacDonald P. E.; Wishart D. S.; Li S.; Xia J. MetaboAnalyst 6.0: Towards a Unified Platform for Metabolomics Data Processing, Analysis and Interpretation. Nucleic Acids Res. 2024, 52, gkae25310.1093/nar/gkae253. PubMed DOI PMC
Bao Y.; Li Y.; Pan C. Effects of the Removal of Soil Extractable Oxytetracycline Fractions on Its Bioaccumulation in Earthworm and Horsebean. Water, Air, Soil Pollut. 2018, 229 (3), 7910.1007/s11270-018-3742-0. DOI
Wu X.; Dodgen L. K.; Conkle J. L.; Gan J. Plant Uptake of Pharmaceutical and Personal Care Products from Recycled Water and Biosolids: A Review. Sci. Total Environ. 2015, 536, 655–666. 10.1016/j.scitotenv.2015.07.129. PubMed DOI
Schmidt T.; Kimmel S.; Hoeger S.; Lemic D.; Bazok R.; Gasparic H. V. Plant Protection Products in Agricultural Fields – Residues in Earthworms and Assessment of Potentially Toxic Effects to the Environment. J. Cent. Eur. Agric. 2022, 23 (3), 604–614. 10.5513/JCEA01/23.3.3625. DOI
Ma X.; Zhang H.; Wang Z.; Yao Z.; Chen J.; Chen J. Bioaccumulation and Trophic Transfer of Short Chain Chlorinated Paraffins in a Marine Food Web from Liaodong Bay, North China. Environ. Sci. Technol. 2014, 48 (10), 5964–5971. 10.1021/es500940p. PubMed DOI
Zhu M.; Chen J.; Peijnenburg W. J. G. M.; Xie H.; Wang Z.; Zhang S. Controlling Factors and Toxicokinetic Modeling of Antibiotics Bioaccumulation in Aquatic Organisms: A Review. Crit. Rev. Environ. Sci. Technol. 2023, 53 (15), 1431–1451. 10.1080/10643389.2022.2142033. DOI
Hyland K. C.; Blaine A. C.; Higgins C. P. Accumulation of Contaminants of Emerging Concern in Food Crops—Part 2: Plant Distribution. Environ. Toxicol. Chem. 2015, 34 (10), 2222–2230. 10.1002/etc.3068. PubMed DOI
Knight E. R.; Carter L. J.; McLaughlin M. J. Bioaccumulation, Uptake, and Toxicity of Carbamazepine in Soil–Plant Systems. Environ. Toxicol. Chem. 2018, 37 (4), 1122–1130. 10.1002/etc.4053. PubMed DOI
Conde-Cid M.; Ferreira-Coelho G.; Fernández-Calviño D.; Núñez-Delgado A.; Fernández-Sanjurjo M. J.; Arias-Estévez M.; Álvarez-Rodríguez E. Single and Simultaneous Adsorption of Three Sulfonamides in Agricultural Soils: Effects of PH and Organic Matter Content. Sci. Total Environ. 2020, 744, 14087210.1016/j.scitotenv.2020.140872. PubMed DOI
Al-Farsi R. S.; Ahmed M.; Al-Busaidi A.; Choudri B. S. Translocation of Pharmaceuticals and Personal Care Products (PPCPs) into Plant Tissues: A Review. Emerging Contam. 2017, 3 (4), 132–137. 10.1016/j.emcon.2018.02.001. DOI
Al-Farsi R.; Ahmed M.; Al-Busaidi A.; Choudri B. S. Assessing the Presence of Pharmaceuticals in Soil and Plants Irrigated with Treated Wastewater in Oman. Int. J. Recycl. Org. Waste Agric. 2018, 7 (2), 165–172. 10.1007/s40093-018-0202-1. DOI
Hyland K. C.; Blaine A. C.; Dickenson E. R. V.; Higgins C. P. Accumulation of Contaminants of Emerging Concern in Food Crops—Part 1: Edible Strawberries and Lettuce Grown in Reclaimed Water. Environ. Toxicol. Chem. 2015, 34 (10), 2213–2221. 10.1002/etc.3066. PubMed DOI
Caban M.; Folentarska A.; Lis H.; Kobylis P.; Bielicka-Giełdoń A.; Kumirska J.; Ciesielski W.; Stepnowski P. Critical Study of Crop-Derived Biochars for Soil Amendment and Pharmaceutical Ecotoxicity Reduction. Chemosphere 2020, 248, 12597610.1016/j.chemosphere.2020.125976. PubMed DOI
Chung H. S.; Lee Y.-J.; Rahman Md. M.; Abd El-Aty A. M.; Lee H. S.; Kabir Md. H.; Kim S. W.; Park B.-J.; Kim J.-E.; Hacımüftüoğlu F.; Nahar N.; Shin H.-C.; Shim J.-H. Uptake of the Veterinary Antibiotics Chlortetracycline, Enrofloxacin, and Sulphathiazole from Soil by Radish. Sci. Total Environ. 2017, 605–606, 322–331. 10.1016/j.scitotenv.2017.06.231. PubMed DOI
Tasho R. P.; Cho J. Y. Veterinary Antibiotics in Animal Waste, Its Distribution in Soil and Uptake by Plants: A Review. Sci. Total Environ. 2016, 563–564, 366–376. 10.1016/j.scitotenv.2016.04.140. PubMed DOI
Chowdhury K. F.; Hall R. J.; McNally A.; Carter L. J. Phytoremediation as a Tool to Remove Drivers of Antimicrobial Resistance in the Aquatic Environment. Rev. Environ. Contam. Toxicol. 2023, 261 (1), 1610.1007/s44169-023-00039-9. DOI
Singh S.; Pant A.; Dutta K.; Rani R.; Vithanage M.; Daverey A. Phytoremediation of Pharmaceuticals and Personal Care Products Using the Constructed Wetland. Environ. Chem. Ecotoxicol. 2024, 6, 104–116. 10.1016/j.enceco.2024.04.001. DOI
Li Y.; Lian J.; Wu B.; Zou H.; Tan S. K. Phytoremediation of Pharmaceutical-Contaminated Wastewater: Insights into Rhizobacterial Dynamics Related to Pollutant Degradation Mechanisms during Plant Life Cycle. Chemosphere 2020, 253, 12668110.1016/j.chemosphere.2020.126681. PubMed DOI
Carter L. J.; Williams M.; Martin S.; Kamaludeen S. P. B.; Kookana R. S. Sorption, Plant Uptake and Metabolism of Benzodiazepines. Sci. Total Environ. 2018, 628–629, 18–25. 10.1016/j.scitotenv.2018.01.337. PubMed DOI
Paz A.; Tadmor G.; Malchi T.; Blotevogel J.; Borch T.; Polubesova T.; Chefetz B. Fate of Carbamazepine, Its Metabolites, and Lamotrigine in Soils Irrigated with Reclaimed Wastewater: Sorption, Leaching and Plant Uptake. Chemosphere 2016, 160, 22–29. 10.1016/j.chemosphere.2016.06.048. PubMed DOI
Chitara M. K.; Chauhan S.; Singh R. P.. Bioremediation of Polluted Soil by Using Plant Growth–Promoting Rhizobacteria. In Microorganisms for Sustainability; Springer, 2021; pp 203–226.
Shen X.; Dai M.; Yang J.; Sun L.; Tan X.; Peng C.; Ali I.; Naz I. A Critical Review on the Phytoremediation of Heavy Metals from Environment: Performance and Challenges. Chemosphere 2022, 291, 13297910.1016/j.chemosphere.2021.132979. PubMed DOI
Bhat S. A.; Bashir O.; Ul Haq S. A.; Amin T.; Rafiq A.; Ali M.; Américo-Pinheiro J. H. P.; Sher F. Phytoremediation of Heavy Metals in Soil and Water: An Eco-Friendly, Sustainable and Multidisciplinary Approach. Chemosphere 2022, 303, 13478810.1016/j.chemosphere.2022.134788. PubMed DOI
Lin Q.; Tan X.; Almatrafi E.; Yang Y.; Wang W.; Luo H.; Qin F.; Zhou C.; Zeng G.; Zhang C. Effects of Biochar-Based Materials on the Bioavailability of Soil Organic Pollutants and Their Biological Impacts. Sci. Total Environ. 2022, 826, 15395610.1016/j.scitotenv.2022.153956. PubMed DOI
Yang X.; Hou R.; Fu Q.; Li T.; Li M.; Cui S.; Li Q.; Liu M. A Critical Review of Biochar as an Environmental Functional Material in Soil Ecosystems for Migration and Transformation Mechanisms and Ecological Risk Assessment. J. Environ. Manage. 2024, 360, 12119610.1016/j.jenvman.2024.121196. PubMed DOI
Wang J.; Odinga E. S.; Zhang W.; Zhou X.; Yang B.; Waigi M. G.; Gao Y. Polyaromatic Hydrocarbons in Biochars and Human Health Risks of Food Crops Grown in Biochar-Amended Soils: A Synthesis Study. Environ. Int. 2019, 130, 10489910.1016/j.envint.2019.06.009. PubMed DOI
García-Delgado C.; Delgado-Moreno L.; Toro M.; Puñal M.; Martín-Trueba M.; Eymar E.; Ruíz A. I. The Role of Biochar and Green Compost Amendments in the Adsorption, Leaching, and Degradation of Sulfamethoxazole in Basic Soil. Chemosphere 2023, 344, 14036410.1016/j.chemosphere.2023.140364. PubMed DOI
Hurtado C.; Cañameras N.; Domínguez C.; Price G. W.; Comas J.; Bayona J. M. Effect of Soil Biochar Concentration on the Mitigation of Emerging Organic Contaminant Uptake in Lettuce. J. Hazard. Mater. 2017, 323, 386–393. 10.1016/j.jhazmat.2016.04.046. PubMed DOI
Patel A. K.; Katiyar R.; Chen C.-W.; Singhania R. R.; Awasthi M. K.; Bhatia S.; Bhaskar T.; Dong C.-D. Antibiotic Bioremediation by New Generation Biochar: Recent Updates. Bioresour. Technol. 2022, 358, 12738410.1016/j.biortech.2022.127384. PubMed DOI
Sun Y.; Lyu H.; Cheng Z.; Wang Y.; Tang J. Insight into the Mechanisms of Ball-Milled Biochar Addition on Soil Tetracycline Degradation Enhancement: Physicochemical Properties and Microbial Community Structure. Chemosphere 2022, 291, 13269110.1016/j.chemosphere.2021.132691. PubMed DOI
Pan M.; Chu L. M. Fate of Antibiotics in Soil and Their Uptake by Edible Crops. Sci. Total Environ. 2017, 599–600, 500–512. 10.1016/j.scitotenv.2017.04.214. PubMed DOI
Cycoń M.; Mrozik A.; Piotrowska-Seget Z. Antibiotics in the Soil Environment—Degradation and Their Impact on Microbial Activity and Diversity. Front. Microbiol. 2019, 10, 33810.3389/fmicb.2019.00338. PubMed DOI PMC
Carter L. J.; Williams M.; Böttcher C.; Kookana R. S. Uptake of Pharmaceuticals Influences Plant Development and Affects Nutrient and Hormone Homeostases. Environ. Sci. Technol. 2015, 49 (20), 12509–12518. 10.1021/acs.est.5b03468. PubMed DOI
Sidhu H.; O’Connor G.; Kruse J. Plant Toxicity and Accumulation of Biosolids-Borne Ciprofloxacin and Azithromycin. Sci. Total Environ. 2019, 648, 1219–1226. 10.1016/j.scitotenv.2018.08.218. PubMed DOI
Riemenschneider C.; Seiwert B.; Moeder M.; Schwarz D.; Reemtsma T. Extensive Transformation of the Pharmaceutical Carbamazepine Following Uptake into Intact Tomato Plants. Environ. Sci. Technol. 2017, 51 (11), 6100–6109. 10.1021/acs.est.6b06485. PubMed DOI
Tanoue R.; Sato Y.; Motoyama M.; Nakagawa S.; Shinohara R.; Nomiyama K. Plant Uptake of Pharmaceutical Chemicals Detected in Recycled Organic Manure and Reclaimed Wastewater. J. Agric. Food Chem. 2012, 60 (41), 10203–10211. 10.1021/jf303142t. PubMed DOI
Gallego S.; Montemurro N.; Béguet J.; Rouard N.; Philippot L.; Pérez S.; Martin-Laurent F. Ecotoxicological Risk Assessment of Wastewater Irrigation on Soil Microorganisms: Fate and Impact of Wastewater-Borne Micropollutants in Lettuce-Soil System. Ecotoxicol. Environ. Saf. 2021, 223, 11259510.1016/j.ecoenv.2021.112595. PubMed DOI
Ponce-Robles L.; Benelhadj L.; García-García A. J.; Pedrero-Salcedo F.; Nortes-Tortosa P. A.; Albacete J.; Alarcón J. J. Risk Assessment for Uptake and Accumulation of Pharmaceuticals by Baby Leaf Lettuce Irrigated with Reclaimed Water under Commercial Agricultural Activities. J. Environ. Manage. 2022, 324, 11632110.1016/j.jenvman.2022.116321. PubMed DOI
Christou A.; Karaolia P.; Hapeshi E.; Michael C.; Fatta-Kassinos D. Long-Term Wastewater Irrigation of Vegetables in Real Agricultural Systems: Concentration of Pharmaceuticals in Soil, Uptake and Bioaccumulation in Tomato Fruits and Human Health Risk Assessment. Water Res. 2017, 109, 24–34. 10.1016/j.watres.2016.11.033. PubMed DOI
Zheng W.; Guo M. Soil–Plant Transfer of Pharmaceuticals and Personal Care Products. Curr. Pollut. Rep. 2021, 7 (4), 510–523. 10.1007/s40726-021-00207-2. DOI
Margenat A.; You R.; Cañameras N.; Carazo N.; Díez S.; Bayona J. M.; Matamoros V. Occurrence and Human Health Risk Assessment of Antibiotics and Trace Elements in Lactuca Sativa Amended with Different Organic Fertilizers. Environ. Res. 2020, 190, 10994610.1016/j.envres.2020.109946. PubMed DOI
Maeusli M.; Lee B.; Miller S.; Reyna Z.; Lu P.; Yan J.; Ulhaq A.; Skandalis N.; Spellberg B.; Luna B. Horizontal Gene Transfer of Antibiotic Resistance from Acinetobacter Baylyi to Escherichia Coli on Lettuce and Subsequent Antibiotic Resistance Transmission to the Gut Microbiome. mSphere 2020, 5 (3), e00329-2010.1128/mSphere.00329-20. PubMed DOI PMC
Bourdat-Deschamps M.; Leang S.; Bernet N.; Daudin J.-J.; Nélieu S. Multi-Residue Analysis of Pharmaceuticals in Aqueous Environmental Samples by Online Solid-Phase Extraction–Ultra-High-Performance Liquid Chromatography-Tandem Mass Spectrometry: Optimisation and Matrix Effects Reduction by Quick, Easy, Cheap, Effective, Rugged and Safe Extraction. J. Chromatogr. A 2014, 1349, 11–23. 10.1016/j.chroma.2014.05.006. PubMed DOI
Sun J.; Zeng Q.; Tsang D. C. W.; Zhu L. Z.; Li X. D. Antibiotics in the Agricultural Soils from the Yangtze River Delta, China. Chemosphere 2017, 189, 301–308. 10.1016/j.chemosphere.2017.09.040. PubMed DOI
Fang L.; Chen C.; Zhang F.; Ali E. F.; Sarkar B.; Rinklebe J.; Shaheen S. M.; Chen X.; Xiao R. Occurrence Profiling and Environmental Risk Assessment of Veterinary Antibiotics in Vegetable Soils at Chongqing Region, China. Environ. Res. 2023, 227, 11579910.1016/j.envres.2023.115799. PubMed DOI
Ren J.; Shi H.; Liu J.; Zheng C.; Lu G.; Hao S.; Jin Y.; He C. Occurrence, Source Apportionment and Ecological Risk Assessment of Thirty Antibiotics in Farmland System. J. Environ. Manage. 2023, 335, 11754610.1016/j.jenvman.2023.117546. PubMed DOI