Transcriptomic and epigenomic profiling reveals altered responses to diesel emissions in Alzheimer's disease both in vitro and in population-based data
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
JPND2019-466-037
ADAIR project
22-10279S
Czech Science Foundation
Ministry of Education, Youth, and Sports of the Czech Republic
CZ.02.1.01/0.0/0.0/16_013/0001821
European Union-European Structural and Investments Funds in the frame of Operational Programme Research Development and Education
Doctoral Program in Molecular Medicine at the University of Eastern Finland
Kuopio University Foundation,
65231471
North Savo Regional Fund of the Finnish Cultural Foundation
97030.2021.101.430/057/RB
Stichting Erasmus Trustfonds
733051107
Netherlands Organisation for Health Research and Development
n/a
Pohjois-Savon Rahasto
JPND2019-466-037
EU Joint Programme - Neurodegenerative Disease Research
PubMed
39579047
PubMed Central
PMC11667542
DOI
10.1002/alz.14347
Knihovny.cz E-zdroje
- Klíčová slova
- Alzheimer's disease (AD), air pollution, air–liquid interface (ALI), heat shock protein (HSP), next‐generation sequencing (NGS), nuclear factor erythroid 2–related factor 2 (NRF2), traffic emissions, traffic‐related air pollution (TRAP) olfactory mucosa (OM),
- MeSH
- Alzheimerova nemoc * genetika metabolismus MeSH
- čichová sliznice metabolismus MeSH
- epigenomika MeSH
- faktor 2 související s NF-E2 genetika metabolismus MeSH
- látky znečišťující vzduch škodlivé účinky MeSH
- lidé středního věku MeSH
- lidé MeSH
- metylace DNA * MeSH
- mikro RNA metabolismus genetika MeSH
- senioři MeSH
- stanovení celkové genové exprese MeSH
- transkriptom MeSH
- výfukové emise vozidel * toxicita MeSH
- Check Tag
- lidé středního věku MeSH
- lidé MeSH
- mužské pohlaví MeSH
- senioři MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- faktor 2 související s NF-E2 MeSH
- látky znečišťující vzduch MeSH
- mikro RNA MeSH
- NFE2L2 protein, human MeSH Prohlížeč
- výfukové emise vozidel * MeSH
INTRODUCTION: Studies have correlated living close to major roads with Alzheimer's disease (AD) risk. However, the mechanisms responsible for this link remain unclear. METHODS: We exposed olfactory mucosa (OM) cells of healthy individuals and AD patients to diesel emissions (DE). Cytotoxicity of exposure was assessed, mRNA, miRNA expression, and DNA methylation analyses were performed. The discovered altered pathways were validated using data from the human population-based Rotterdam Study. RESULTS: DE exposure resulted in an almost four-fold higher response in AD OM cells, indicating increased susceptibility to DE effects. Methylation analysis detected different DNA methylation patterns, revealing new exposure targets. Findings were validated by analyzing data from the Rotterdam Study cohort and demonstrated a key role of nuclear factor erythroid 2-related factor 2 signaling in responses to air pollutants. DISCUSSION: This study identifies air pollution exposure biomarkers and pinpoints key pathways activated by exposure. The data suggest that AD individuals may face heightened risks due to impaired cellular defenses. HIGHLIGHTS: Healthy and AD olfactory cells respond differently to DE exposure. AD cells are highly susceptible to DE exposure. The NRF2 oxidative stress response is highly activated upon air pollution exposure. DE-exposed AD cells activate the unfolded protein response pathway. Key findings are also confirmed in a population-based study.
A 1 Virtanen Institute for Molecular Sciences University of Eastern Finland Kuopio Finland
Department Driving Assessment Neuro Centre Kuopio University Hospital Kuopio Finland
Department of Computer Science University of Verona Verona Italy
Department of Environmental and Biological Sciences University of Eastern Finland Kuopio Finland
Department of Epidemiology Erasmus MC University Medical Center Rotterdam The Netherlands
Department of Geriatrics Helsinki University Hospital Helsinki Finland
Department of Neurosciences Faculty of Medicine University of Helsinki Helsinki Finland
Faculty of Mechanical Engineering Czech Technical University Prague Prague Czech Republic
Zobrazit více v PubMed
Yu W, Ye T, Zhang Y, et al. Global estimates of daily ambient fine particulate matter concentrations and unequal spatiotemporal distribution of population exposure: a machine learning modelling study. Lancet Planet Health. 2023;7(3):e209‐e218. doi:10.1016/S2542-5196(23)00008-6 PubMed DOI
Cory‐Slechta DA, Sobolewski M. Neurotoxic effects of air pollution: an urgent public health concern. Nat Rev Neurosci. 2023;24:129‐130. doi:10.1038/s41583-022-00672-8 PubMed DOI PMC
Ferreira APS, Ramos JMO, Gamaro GD, Gioda A, Gioda CR, Souza ICC. Experimental rodent models exposed to fine particulate matter (PM2.5) highlighting the injuries in the central nervous system: a systematic review. Atmos Pollut Res. 2022;13(5):101407. doi:10.1016/J.APR.2022.101407 DOI
Kilian J, Kitazawa M. The emerging risk of exposure to air pollution on cognitive decline and Alzheimer's disease—evidence from epidemiological and animal studies. Biomed J. 2018;41(3):141‐162. doi:10.1016/j.bj.2018.06.001 PubMed DOI PMC
Duchesne J, Gutierrez LA, Carrière I, et al. Exposure to ambient air pollution and cognitive decline: results of the prospective three‐city cohort study. Environ Int. 2022;161:107118. doi:10.1016/J.ENVINT.2022.107118 PubMed DOI
O'Piela DR, Durisek GR, Escobar YNH, Mackos AR, Wold LE. Particulate matter and Alzheimer's disease: an intimate connection. Trends Mol Med. 2022;28:770‐780. doi:10.1016/J.MOLMED.2022.06.004 PubMed DOI PMC
Livingston G, Huntley J, Sommerlad A, et al. Dementia prevention, intervention, and care: 2020 report of the Lancet Commission. Lancet. 2020;396(10248):413‐446. doi:10.1016/S0140-6736(20)30367-6 PubMed DOI PMC
Ajmani GS, Suh HH, Pinto JM. Effects of ambient air pollution exposure on olfaction: a review. Environ Health Perspect. 2016;124(11):1683‐1693. doi:10.1289/EHP136 PubMed DOI PMC
Liang C, Jiang Y, Zhang T, et al. Atmospheric particulate matter impairs cognition by modulating synaptic function via the nose‐to‐brain route. Sci Total Environ. 2022;857:159600. doi:10.1016/J.SCITOTENV.2022.159600 PubMed DOI
Kim SJ, Kim N, Park SH, et al. Genomic approach to explore altered signaling networks of olfaction in response to diesel exhaust particles in mice. Sci Rep. 2020;10(1):16972. doi:10.1038/S41598-020-74109-6 PubMed DOI PMC
Vondráček J, Pěnčíková K, Neča J, et al. Assessment of the aryl hydrocarbon receptor‐mediated activities of polycyclic aromatic hydrocarbons in a human cell‐based reporter gene assay. Environ Pollut. 2017;220(Pt A):307‐316. doi:10.1016/J.ENVPOL.2016.09.064 PubMed DOI
Kanninen KM, Lampinen R, Rantanen LM, et al. Olfactory cell cultures to investigate health effects of air pollution exposure: implications for neurodegeneration. Neurochem Int. 2020;136:104729. doi:10.1016/j.neuint.2020.104729 PubMed DOI
Lampinen R, Fazaludeen MF, Avesani S, et al. Single‐Cell RNA‐seq analysis of olfactory mucosal cells of Alzheimer's disease patients. Cells. 2022;11(4):676. doi:10.3390/CELLS11040676 PubMed DOI PMC
Lampinen R, Górová V, Avesani S, et al. Biometal Dyshomeostasis in olfactory mucosa of Alzheimer's disease patients. Int J Mol Sci. 2022;23(8):4123. doi:10.3390/IJMS23084123 PubMed DOI PMC
Mussalo L, Avesani S, Shahbaz MA, et al. Emissions from modern engines induce distinct effects in human olfactory mucosa cells, depending on fuel and aftertreatment. Sci Total Environ. 2023;905:167038. doi:10.1016/j.scitotenv.2023.167038 PubMed DOI
Rossner P, Cervena T, Vojtisek‐Lom M. In vitro exposure to complete engine emissions—a mini‐review. Toxicology. 2021;462:152953. doi:10.1016/J.TOX.2021.152953 PubMed DOI
Rossner P, Cervena T, Vojtisek‐Lom M, et al. The biological effects of complete gasoline engine emissions exposure in a 3d human airway model (MucilAirTM) and in human bronchial epithelial cells (BEAS‐2B). Int J Mol Sci. 2019;20(22):5710. doi:10.3390/IJMS20225710 PubMed DOI PMC
Vojtisek‐Lom M, Pechout M, MacOun D, et al. Assessing exhaust toxicity with biological detector: configuration of portable air‐liquid interface human lung cell model exposure system, sampling train and test conditions. SAE Int J Adv Curr Pract Mobil. 2019;2(2):520‐534. doi:10.4271/2019-24-0050 DOI
Cervena T, Vojtisek‐Lom M, Vrbova K, et al. Ordinary gasoline emissions induce a toxic response in bronchial cells grown at air‐liquid interface. Int J Mol Sci. 2020;22(1):79. doi:10.3390/IJMS22010079 PubMed DOI PMC
Libalova H, Rossner P, Vrbova K, et al. Comparative analysis of toxic responses of organic extracts from diesel and selected alternative fuels engine emissions in human lung BEAS‐2B cells. Int J Mol Sci. 2016;17(11):1833. doi:10.3390/IJMS17111833 PubMed DOI PMC
Dobin A, Davis CA, Schlesinger F, et al. STAR: ultrafast universal RNA‐seq aligner. Bioinformatics. 2013;29(1):15‐21. doi:10.1093/BIOINFORMATICS/BTS635 PubMed DOI PMC
Robinson MD, McCarthy DJ, Smyth GK. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics. 2010;26(1):139‐140. doi:10.1093/BIOINFORMATICS/BTP616 PubMed DOI PMC
Ritchie ME, Phipson B, Wu D, et al. limma powers differential expression analyses for RNA‐sequencing and microarray studies. Nucleic Acids Res. 2015;43(7):e47. doi:10.1093/NAR/GKV007 PubMed DOI PMC
Wu T, Hu E, Xu S, et al. clusterProfiler 4.0: a universal enrichment tool for interpreting omics data. Innovation. 2021;2(3):100141. doi:10.1016/J.XINN.2021.100141 PubMed DOI PMC
Krämer A, Green J, Pollard J, Tugendreich S. Causal analysis approaches in Ingenuity Pathway Analysis. Bioinformatics. 2014;30(4):523‐530. doi:10.1093/BIOINFORMATICS/BTT703 PubMed DOI PMC
Bioconductor . miRNAtap. 2024. Accessed September 25, 2023. https://bioconductor.org/packages/release/bioc/html/miRNAtap.html
Wong N, Wang X. miRDB: an online resource for microRNA target prediction and functional annotations. Nucleic Acids Res. 2015;43:D146‐D152. doi:10.1093/NAR/GKU1104 PubMed DOI PMC
Maragkakis M, Vergoulis T, Alexiou P, et al. DIANA‐microT Web server upgrade supports fly and worm miRNA target prediction and bibliographic miRNA to disease association. Nucleic Acids Res. 2011;39:W145‐W148. doi:10.1093/NAR/GKR294 PubMed DOI PMC
Reczko M, Maragkakis M, Alexiou P, Grosse I, Hatzigeorgiou AG. Functional microRNA targets in protein coding sequences. Bioinformatics. 2012;28(6):771‐776. doi:10.1093/BIOINFORMATICS/BTS043 PubMed DOI
Friedman RC, Farh KK, Burge CB, Bartel DP. Most mammalian mRNAs are conserved targets of microRNAs. Genome Res. 2009;19(1):92‐105. doi:10.1101/GR.082701.108 PubMed DOI PMC
Lall S, Grün D, Krek A, et al. A genome‐wide map of conserved MicroRNA targets in C. elegans. Curr Biol. 2006;16(5):460‐471. doi:10.1016/j.cub.2006.01.050 PubMed DOI
Betel D, Koppal A, Agius P, Sander C, Leslie C. Comprehensive modeling of microRNA targets predicts functional non‐conserved and non‐canonical sites. Genome Biol. 2010;11(8):R90. doi:10.1186/GB-2010-11-8-R90/FIGURES/6 PubMed DOI PMC
John B, Enright AJ, Aravin A, Tuschl T, Sander C, Marks DS. Human MicroRNA targets. PLoS Biol. 2004;2(11):e363. doi:10.1371/JOURNAL.PBIO.0020363 PubMed DOI PMC
Enright AJ, John B, Gaul U, Tuschl T, Sander C, Marks DS. MicroRNA targets in drosophila. Genome Biol. 2003;5(1):R1. doi:10.1186/GB-2003-5-1-R1 PubMed DOI PMC
Ikram MA, Brusselle G, Ghanbari M, et al. Objectives, design and main findings until 2020 from the Rotterdam Study. Eur J Epidemiol. 2020;35(5):483‐517. doi:10.1007/S10654-020-00640-5 PubMed DOI PMC
de Crom TOE, Ginos BNR, Oudin A, Ikram MK, Voortman T, Ikram MA. Air pollution and the risk of dementia: the Rotterdam Study. J Alzheimers Dis. 2023;91(2):603‐613. doi:10.3233/JAD-220804 PubMed DOI PMC
Vojinovic D, van der Lee SJ, van Duijn CM, et al. Metabolic profiling of intra‐ and extracranial carotid artery atherosclerosis. Atherosclerosis. 2018;272:60‐65. doi:10.1016/j.atherosclerosis.2018.03.015 PubMed DOI
Richards J, Rivadeneira F, Inouye M, et al. Bone mineral density, osteoporosis, and osteoporotic fractures: a genome‐wide association study. Lancet. 2008;371(9623):1505‐1512. doi:10.1016/S0140-6736(08)60599-1 PubMed DOI PMC
van den Berg RA, Hoefsloot HCJ, Westerhuis JA, Smilde AK, van der Werf MJ. Centering, scaling, and transformations: improving the biological information content of metabolomics data. BMC Genomics. 2006;7:142. doi:10.1186/1471-2164-7-142 PubMed DOI PMC
Purcell S, Neale B, Todd‐Brown K, et al. PLINK: a tool set for whole‐genome association and population‐based linkage analyses. Am J Hum Genet. 2007;81(3):559‐579. doi:10.1086/519795 PubMed DOI PMC
Naj AC, Jun G, Beecham GW, et al. Common variants at MS4A4/MS4A6E, CD2AP, CD33 and EPHA1 are associated with late‐onset Alzheimer's disease. Nat Genet. 2011;43(5):436‐441. doi:10.1038/ng.801 PubMed DOI PMC
Merico D, Isserlin R, Stueker O, Emili A, Bader GD. Enrichment map: a network‐based method for gene‐set enrichment visualization and interpretation. PLoS One. 2010;5(11):e13984. doi:10.1371/JOURNAL.PONE.0013984 PubMed DOI PMC
Kunkle BW, Grenier‐Boley B, Sims R, et al. Genetic meta‐analysis of diagnosed Alzheimer's disease identifies new risk loci and implicates Aβ, tau, immunity and lipid processing. Nat Genet. 2019;51(3):414‐430. doi:10.1038/s41588-019-0358-2 PubMed DOI PMC
Lambert JC, Ibrahim‐Verbaas CA, Harold D, et al. Meta‐analysis of 74,046 individuals identifies 11 new susceptibility loci for Alzheimer's disease. Nat Genet. 2013;45(12):1452‐1458. doi:10.1038/ng.2802 PubMed DOI PMC
Hollingworth P, Harold D, Sims R, et al. Common variants in ABCA7, MS4A6A/MS4A4E, EPHA1, CD33 and CD2AP are associated with Alzheimer's disease. Nat Genet. 2011;43(5):429‐435. doi:10.1038/NG.803 PubMed DOI PMC
Pai S, Weber P, Isserlin R, et al. netDx: software for building interpretable patient classifiers by multi‐’omic data integration using patient similarity networks. F1000Research. 2020;9:1239. doi:10.12688/f1000research.26429.2 PubMed DOI PMC
Pai S, Hui S, Isserlin R, et al. netDx: interpretable patient classification using integrated patient similarity networks. Mol Syst Biol. 2019;15(3):e8497. doi:10.15252/MSB.20188497 PubMed DOI PMC
Finckh U, van Hadeln K, Müller‐Thomsen T, et al. Association of late‐onset Alzheimer disease with a genotype of PLAU, the gene encoding urokinase‐type plasminogen activator on chromosome 10q22.2. Neurogenetics. 2003;4(4):213‐217. doi:10.1007/S10048-003-0157-9/FIGURES/1 PubMed DOI
Cuyvers E, van der Zee J, Bettens K, et al. Genetic variability in SQSTM1 and risk of early‐onset Alzheimer dementia: a European early‐onset dementia consortium study. Neurobiol Aging. 2015;36(5):2005.e15‐2005.e22. doi:10.1016/J.NEUROBIOLAGING.2015.02.014 PubMed DOI
Tramutola A, Di Domenico F, Barone E, Perluigi M, Butterfield DA. It is all about (U)biquitin: role of altered ubiquitin‐proteasome system and UCHL1 in alzheimer disease. Oxid Med Cell Longev. 2016;2016:2756068. doi:10.1155/2016/2756068 PubMed DOI PMC
Liu D, Wang Y, Jing H, Meng Q, Yang J. Mendelian randomization integrating GWAS and DNA methylation quantitative trait loci data identified novel pleiotropic DNA methylation loci for neuropathology of Alzheimer's disease. Neurobiol Aging. 2021;97:18‐27. doi:10.1016/J.NEUROBIOLAGING.2020.09.019 PubMed DOI PMC
Chen Y, Zhou H, binYin W, Ren H. Construction of a new protein–protein interaction and molecular biomarkers networks in Alzheimer's disease patients by bioinformatics screening. J Biomed Nanotechnol. 2023;19(1):154‐171. doi:10.1166/JBN.2023.3507 DOI
He F, Ru X, Wen T. NRF2, a transcription factor for stress response and beyond. Int J Mol Sci. 2020;21(13):4777. doi:10.3390/IJMS21134777 PubMed DOI PMC
Buendia I, Michalska P, Navarro E, Gameiro I, Egea J, León R. Nrf2‐ARE pathway: an emerging target against oxidative stress and neuroinflammation in neurodegenerative diseases. Pharmacol Ther. 2016;157:84‐104. doi:10.1016/J.PHARMTHERA.2015.11.003 PubMed DOI
Ngo V, Duennwald ML. Nrf2 and oxidative stress: a general overview of mechanisms and implications in human disease. Antioxidants. 2022;11(12):2345. doi:10.3390/ANTIOX11122345 PubMed DOI PMC
Morales‐Bárcenas R, Sánchez‐Pérez Y, Santibáñez‐Andrade M, Chirino YI, Soto‐Reyes E, García‐Cuellar CM. Airborne particulate matter (PM10) induces cell invasion through aryl hydrocarbon receptor and activator protein 1 (AP‐1) pathway deregulation in A549 lung epithelial cells. Mol Biol Rep. 2023;50(1):107‐119. doi:10.1007/S11033-022-07986-X/FIGURES/5 PubMed DOI
Pichler S, Gu W, Hartl D, et al. The miRNome of Alzheimer's disease: consistent downregulation of the miR‐132/212 cluster. Neurobiol Aging. 2017;50:167.e1‐167.e10. doi:10.1016/J.NEUROBIOLAGING.2016.09.019 PubMed DOI
Lau P, Bossers K, Janky R, et al. Alteration of the microRNA network during the progression of Alzheimer's disease. EMBO Mol Med. 2013;5(10):1613‐1634. doi:10.1002/EMMM.201201974 PubMed DOI PMC
Song Y, He S, Zhuang J, et al. MicroRNA‐601 serves as a potential tumor suppressor in hepatocellular carcinoma by directly targeting PIK3R3. Mol Med Rep. 2023;27:36. doi:10.3892/MMR.2019.9857/HTML PubMed DOI PMC
Sun B, Hua J, Cui H, Liu H, Zhang K, Zhou H. MicroRNA‐1197 downregulation inhibits proliferation and migration in human non‐ small cell lung cancer cells by upregulating HOXC11. Biomed Pharmacother. 2019;117:109041. doi:10.1016/J.BIOPHA.2019.109041 PubMed DOI
Huang X, Tang F, Weng Z, Zhou M, Zhang Q. MiR‐591 functions as tumor suppressor in breast cancer by targeting TCF4 and inhibits Hippo‐YAP/TAZ signaling pathway. Cancer Cell Int. 2019;19(1):108. doi:10.1186/S12935-019-0818-X/FIGURES/6 PubMed DOI PMC
Song MK, Lee HS, Ryu JC. Integrated analysis of microRNA and mRNA expression profiles highlights aldehyde‐induced inflammatory responses in cells relevant for lung toxicity. Toxicology. 2015;334:111‐121. doi:10.1016/J.TOX.2015.06.007 PubMed DOI
Moore LD, Le T, Fan G. DNA methylation and its basic function. Neuropsychopharmacology. 2012;38(1):23‐38. doi:10.1038/npp.2012.112 PubMed DOI PMC
De Prins S, Koppen G, Jacobs G, et al. Influence of ambient air pollution on global DNA methylation in healthy adults: a seasonal follow‐up. Environ Int. 2013;59:418‐424. doi:10.1016/J.ENVINT.2013.07.007 PubMed DOI
Huo X, Sun H, Cao D, et al. Identification of prognosis markers for endometrial cancer by integrated analysis of DNA methylation and RNA‐Seq data. Sci Rep. 2019;9(1):9924. doi:10.1038/s41598-019-46195-8 PubMed DOI PMC
Huang SK, Tripathi P, Koneva LA, et al. Effect of concentration and duration of particulate matter exposure on the transcriptome and DNA methylome of bronchial epithelial cells. Environ Epigenet. 2021;7(1):dvaa022. doi:10.1093/EEP/DVAA022 PubMed DOI PMC
Zhu W, Gu Y, Li M, et al. Integrated single‐cell RNA‐seq and DNA methylation reveal the effects of air pollution in patients with recurrent spontaneous abortion. Clin Epigenetics. 2022;14(1):105. doi:10.1186/S13148-022-01327-2/TABLES/3 PubMed DOI PMC
Safe S, Jin UH, Morpurgo B, Abudayyeh A, Singh M, Tjalkens RB. Nuclear receptor 4A (NR4A) family—orphans no more. J Steroid Biochem Mol Biol. 2016;157:48‐60. doi:10.1016/J.JSBMB.2015.04.016 PubMed DOI PMC
Navarro JF, Croteau DL, Jurek A, et al. Spatial transcriptomics reveals genes associated with dysregulated mitochondrial functions and stress signaling in Alzheimer disease. iScience. 2020;23(10):101556. doi:10.1016/J.ISCI.2020.101556 PubMed DOI PMC
Zhao LG, Tang Y, Tan JZ, Wang JW, Chen GJ, Zhu BL. The effect of NR4A1 on APP metabolism and tau phosphorylation. Genes Dis. 2018;5(4):342‐348. doi:10.1016/J.GENDIS.2018.04.008 PubMed DOI PMC
Parra‐Damas A, Valero J, Chen M, et al. Crtc1 activates a transcriptional program deregulated at early Alzheimer's disease‐related stages. J Neurosci. 2014;34(17):5776‐5787. doi:10.1523/JNEUROSCI.5288-13.2014 PubMed DOI PMC
Montarolo F, Perga S, Martire S, et al. Altered NR4A subfamily gene expression level in peripheral blood of Parkinson's and Alzheimer's disease patients. Neurotox Res. 2016;30(3):338‐344. doi:10.1007/S12640-016-9626-4/TABLES/2 PubMed DOI
Jeon SG, Yoo A, Chun DW, et al. The critical role of nurr1 as a mediator and therapeutic target in Alzheimer's disease‐related pathogenesis. Aging Dis. 2020;11(3):705‐724. doi:10.14336/AD.2019.0718 PubMed DOI PMC
Jardim MJ. microRNAs: implications for air pollution research. Mutat Res. 2011;717(1‐2):38‐45. doi:10.1016/J.MRFMMM.2011.03.014 PubMed DOI
Krauskopf J, van Veldhoven K, Chadeau‐Hyam M, et al. Short‐term exposure to traffic‐related air pollution reveals a compound‐specific circulating miRNA profile indicating multiple disease risks. Environ Int. 2019;128:193‐200. doi:10.1016/J.ENVINT.2019.04.063 PubMed DOI
Haghani A, Cacciottolo M, Doty KR, et al. Mouse brain transcriptome responses to inhaled nanoparticulate matter differed by sex and APOE in Nrf2‐Nfkb interactions. Elife. 2020;9:e54822. doi:10.7554/eLife.54822 PubMed DOI PMC
Kampa M, Castanas E. Human health effects of air pollution. Environ Pollut. 2008;151(2):362‐367. doi:10.1016/J.ENVPOL.2007.06.012 PubMed DOI
Lepers C, André V, Dergham M, et al. Xenobiotic metabolism induction and bulky DNA adducts generated by particulate matter pollution in BEAS‐2B cell line: geographical and seasonal influence. J Appl Toxicol. 2014;34(6):703‐713. doi:10.1002/JAT.2931 PubMed DOI
Líbalová H, Krčková S, Uhlířová K, et al. Analysis of gene expression changes in A549 cells induced by organic compounds from respirable air particles. Mutat Res. 2014;770:94‐105. doi:10.1016/J.MRFMMM.2014.10.002 PubMed DOI
Andersson H, Piras E, Demma J, Hellman B, Brittebo E. Low levels of the air pollutant 1‐nitropyrene induce DNA damage, increased levels of reactive oxygen species and endoplasmic reticulum stress in human endothelial cells. Toxicology. 2009;262(1):57‐64. doi:10.1016/J.TOX.2009.05.008 PubMed DOI
Laing S, Wang G, Briazova T, et al. Airborne particulate matter selectively activates endoplasmic reticulum stress response in the lung and liver tissues. Am J Physiol Cell Physiol. 2010;299(4):C736‐C749. doi:10.1152/AJPCELL.00529.2009 PubMed DOI PMC
Hu C, Yang J, Qi Z, et al. Heat shock proteins: biological functions, pathological roles, and therapeutic opportunities. MedComm. 2022;3(3):e161. doi:10.1002/MCO2.161 PubMed DOI PMC
Moreira‐de‐Sousa C, de Souza RB, Fontanetti CS. HSP70 as a biomarker: an excellent tool in environmental contamination analysis—a review. Water Air Soil Pollut. 2018;229(8):264. doi:10.1007/S11270-018-3920-0/TABLES/1 DOI
Smeester L, Rager JE, Bailey KA, et al. Epigenetic changes in individuals with arsenicosis. Chem Res Toxicol. 2011;24(2):165‐167. doi:10.1021/TX1004419/SUPPL_FILE/TX1004419_SI_001.PDF PubMed DOI PMC
Lee JY, Tokumoto M, Fujiwara Y, et al. Accumulation of p53 via down‐regulation of UBE2D family genes is a critical pathway for cadmium‐induced renal toxicity. Sci Rep. 2016;6(1):21968. doi:10.1038/srep21968 PubMed DOI PMC