Comparative Analysis of Toxic Responses of Organic Extracts from Diesel and Selected Alternative Fuels Engine Emissions in Human Lung BEAS-2B Cells
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu srovnávací studie, časopisecké články
PubMed
27827897
PubMed Central
PMC5133834
DOI
10.3390/ijms17111833
PII: ijms17111833
Knihovny.cz E-zdroje
- Klíčová slova
- alternative fuels, diesel, diesel exhaust particles, gene expression profiles, organic extracts,
- MeSH
- anotace sekvence MeSH
- benzin analýza toxicita MeSH
- biopaliva analýza toxicita MeSH
- bronchy cytologie účinky léků metabolismus MeSH
- epitelové buňky cytologie účinky léků metabolismus MeSH
- látky znečišťující vzduch analýza toxicita MeSH
- lidé MeSH
- oleje rostlin chemie MeSH
- pevné částice analýza toxicita MeSH
- polycyklické aromatické uhlovodíky analýza toxicita MeSH
- regulace genové exprese u rostlin * MeSH
- rostlinné proteiny genetika metabolismus MeSH
- signální transdukce MeSH
- stanovení celkové genové exprese MeSH
- transformované buněčné linie MeSH
- výfukové emise vozidel analýza MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- srovnávací studie MeSH
- Názvy látek
- benzin MeSH
- biopaliva MeSH
- látky znečišťující vzduch MeSH
- oleje rostlin MeSH
- pevné částice MeSH
- polycyklické aromatické uhlovodíky MeSH
- rostlinné proteiny MeSH
- výfukové emise vozidel MeSH
This study used toxicogenomics to identify the complex biological response of human lung BEAS-2B cells treated with organic components of particulate matter in the exhaust of a diesel engine. First, we characterized particles from standard diesel (B0), biodiesel (methylesters of rapeseed oil) in its neat form (B100) and 30% by volume blend with diesel fuel (B30), and neat hydrotreated vegetable oil (NEXBTL100). The concentration of polycyclic aromatic hydrocarbons (PAHs) and their derivatives in organic extracts was the lowest for NEXBTL100 and higher for biodiesel. We further analyzed global gene expression changes in BEAS-2B cells following 4 h and 24 h treatment with extracts. The concentrations of 50 µg extract/mL induced a similar molecular response. The common processes induced after 4 h treatment included antioxidant defense, metabolism of xenobiotics and lipids, suppression of pro-apoptotic stimuli, or induction of plasminogen activating cascade; 24 h treatment affected fewer processes, particularly those involved in detoxification of xenobiotics, including PAHs. The majority of distinctively deregulated genes detected after both 4 h and 24 h treatment were induced by NEXBTL100; the deregulated genes included, e.g., those involved in antioxidant defense and cell cycle regulation and proliferation. B100 extract, with the highest PAH concentrations, additionally affected several cell cycle regulatory genes and p38 signaling.
Zobrazit více v PubMed
Aatola H., Larmi M., Sarjovaara T., Mikkonen S. Hydrotreated vegetable oil (HVO) as a renewable diesel fuel: Trade-off between nox, particulate emission, and fuel consumption of a heavy duty engine. SAE Int. J. Engines. 2009;1:1251–1262. doi: 10.4271/2008-01-2500. DOI
Moser B.R. Impact of fatty ester composition on low temperature properties of biodiesel–petroleum diesel blends. Fuel. 2014;115:500–506. doi: 10.1016/j.fuel.2013.07.075. DOI
Kim D., Kim S., Oh S., No S.-Y. Engine performance and emission characteristics of hydrotreated vegetable oil in light duty diesel engines. Fuel. 2014;125:36–43. doi: 10.1016/j.fuel.2014.01.089. DOI
Omidvarborna H., Kumar A., Kim D.-S. Variation of diesel soot characteristics by different types and blends of biodiesel in a laboratory combustion chamber. Sci. Total Environ. 2016;544:450–459. doi: 10.1016/j.scitotenv.2015.11.076. PubMed DOI
Prokopowicz A., Zaciera M., Sobczak A., Bielaczyc P., Woodburn J. The effects of neat biodiesel and biodiesel and HVO blends in diesel fuel on exhaust emissions from a light duty vehicle with a diesel engine. Environ. Sci. Technol. 2015;49:7473–7482. doi: 10.1021/acs.est.5b00648. PubMed DOI
Rakopoulos D.C., Rakopoulos C.D., Giakoumis E.G. Impact of properties of vegetable oil, bio-diesel, ethanol and n-butanol on the combustion and emissions of turbocharged hddi diesel engine operating under steady and transient conditions. Fuel. 2015;156:1–19. doi: 10.1016/j.fuel.2015.04.021. DOI
Singh D., Subramanian K.A., Singal S.K. Emissions and fuel consumption characteristics of a heavy duty diesel engine fueled with hydroprocessed renewable diesel and biodiesel. Appl. Energy. 2015;155:440–446. doi: 10.1016/j.apenergy.2015.06.020. DOI
Woo C., Kook S., Hawkes E.R., Rogers P.L., Marquis C. Dependency of engine combustion on blending ratio variations of lipase-catalysed coconut oil biodiesel and petroleum diesel. Fuel. 2016;169:146–157. doi: 10.1016/j.fuel.2015.12.024. DOI
Xue J., Grift T.E., Hansen A.C. Effect of biodiesel on engine performances and emissions. Renew. Sustain. Energy Rev. 2011;15:1098–1116. doi: 10.1016/j.rser.2010.11.016. DOI
Millo F., Debnath B.K., Vlachos T., Ciaravino C., Postrioti L., Buitoni G. Effects of different biofuels blends on performance and emissions of an automotive diesel engine. Fuel. 2015;159:614–627. doi: 10.1016/j.fuel.2015.06.096. DOI
Lapuerta M., Armas O., Rodríguez-Fernández J. Effect of biodiesel fuels on diesel engine emissions. Prog. Energy Combust. Sci. 2008;34:198–223. doi: 10.1016/j.pecs.2007.07.001. DOI
Vojtisek-Lom M., Pechout M., Dittrich L., Beranek V., Kotek M., Schwarz J., Vodicka P., Milcova A., Rossnerova A., Ambroz A., et al. Polycyclic aromatic hydrocarbons (PAH) and their genotoxicity in exhaust emissions from a diesel engine during extended low-load operation on diesel and biodiesel fuels. Atmos. Environ. 2015;109:9–18. doi: 10.1016/j.atmosenv.2015.02.077. DOI
Tang S., LaDuke G., Chien W., Frank B.P. Impacts of biodiesel blends on pm2.5, particle number and size distribution, and elemental/organic carbon from nonroad diesel generators. Fuel. 2016;172:11–19. doi: 10.1016/j.fuel.2015.12.060. DOI
IARC Working Group on the Evaluation of Carcinogenic Risks to Humans Chemical agents and related occupations. IARC Monogr. Eval. Carcinog. Risks Hum. 2012;100:9–562. PubMed PMC
IARC Working Group on the Evaluation of Carcinogenic Risks to Humans Diesel and gasoline engine exhausts and some nitroarenes. IARC monographs on the evaluation of carcinogenic risks to humans. IARC Monogr. Eval. Carcinog. Risks Hum. 2014;105:9–699. PubMed PMC
Claxton L.D. The history, genotoxicity and carcinogenicity of carbon-based fuels and their emissions: Part 4—Alternative fuels. Mutat. Res. Rev. Mutat. Res. 2015;763:86–102. doi: 10.1016/j.mrrev.2014.06.003. PubMed DOI
Schins R.P., Knaapen A.M. Genotoxicity of poorly soluble particles. Inhal. Toxicol. 2007;19:189–198. doi: 10.1080/08958370701496202. PubMed DOI
Topinka J., Milcova A., Schmuczerova J., Mazac M., Pechout M., Vojtisek-Lom M. Genotoxic potential of organic extracts from particle emissions of diesel and rapeseed oil powered engines. Toxicol. Lett. 2012;212:11–17. doi: 10.1016/j.toxlet.2012.04.017. PubMed DOI
André V., Barraud C., Capron D., Preterre D., Keravec V., Vendeville C., Cazier F., Pottier D., Morin J.P., Sichel F. Comparative mutagenicity and genotoxicity of particles and aerosols emitted by the combustion of standard vs. Rapeseed methyl ester supplemented bio-diesel fuels: Impact of after treatment devices: Oxidation catalyst and particulate filter. Mutat. Res. Genet. Toxicol. Environ. Mutagen. 2015;777:33–42. doi: 10.1016/j.mrgentox.2014.11.007. PubMed DOI
Steiner S., Heeb N.V., Czerwinski J., Comte P., Mayer A., Petri-Fink A., Rothen-Rutishauser B. Test-methods on the test-bench: A comparison of complete exhaust and exhaust particle extracts for genotoxicity/mutagenicity assessment. Environ. Sci. Technol. 2014;48:5237–5244. doi: 10.1021/es4056033. PubMed DOI
Iba M.M., Caccavale R.J. Genotoxic bioactivation of constituents of a diesel exhaust particle extract by the human lung. Environ. Mol. Mutagen. 2013;54:158–171. doi: 10.1002/em.21759. PubMed DOI
Bao L., Xu A., Tong L., Chen S., Zhu L., Zhao Y., Zhao G., Jiang E., Wang J., Wu L. Activated toxicity of diesel particulate extract by ultraviolet a radiation in mammalian cells: Role of singlet oxygen. Environ. Health Perspect. 2009;117:436–441. doi: 10.1289/ehp.0800029. PubMed DOI PMC
Jalava P.I., Tapanainen M., Kuuspalo K., Markkanen A., Hakulinen P., Happo M.S., Pennanen A.S., Ihalainen M., Yli-Pirila P., Makkonen U., et al. Toxicological effects of emission particles from fossil- and biodiesel-fueled diesel engine with and without doc/poc catalytic converter. Inhal. Toxicol. 2010;22:48–58. doi: 10.3109/08958378.2010.519009. PubMed DOI
Kooter I.M., van Vugt M.A.T.M., Jedynska A.D., Tromp P.C., Houtzager M.M.G., Verbeek R.P., Kadijk G., Mulderij M., Krul C.A.M. Toxicological characterization of diesel engine emissions using biodiesel and a closed soot filter. Atmos. Environ. 2011;45:1574–1580. doi: 10.1016/j.atmosenv.2010.12.040. DOI
Palkova L., Vondracek J., Trilecova L., Ciganek M., Pencikova K., Neca J., Milcova A., Topinka J., Machala M. The aryl hydrocarbon receptor-mediated and genotoxic effects of fractionated extract of standard reference diesel exhaust particle material in pulmonary, liver and prostate cells. Toxicol. In Vitro. 2015;29:438–448. doi: 10.1016/j.tiv.2014.12.002. PubMed DOI
Lou H., Du S.Y., Ji Q., Stolz A. Induction of AKR1C2 by phase II inducers: Identification of a distal consensus antioxidant response element regulated by Nrf2. Mol. Pharmacol. 2006;69:1662–1672. doi: 10.1124/mol.105.019794. PubMed DOI
Penning T.M. Human aldo-keto reductases and the metabolic activation of polycyclic aromatic hydrocarbons. Chem. Res. Toxicol. 2014;27:1901–1917. doi: 10.1021/tx500298n. PubMed DOI PMC
Longhin E., Capasso L., Battaglia C., Proverbio M.C., Cosentino C., Cifola I., Mangano E., Camatini M., Gualtieri M. Integrative transcriptomic and protein analysis of human bronchial BEAS-2B exposed to seasonal urban particulate matter. Environ. Pollut. 2016;209:87–98. doi: 10.1016/j.envpol.2015.11.013. PubMed DOI
Ma Q. Role of Nrf2 in oxidative stress and toxicity. Annu. Rev. Pharmacol. Toxicol. 2013;53:401–426. doi: 10.1146/annurev-pharmtox-011112-140320. PubMed DOI PMC
Li N., Wang M.Y., Oberley T.D., Sempf J.M., Nel A.E. Comparison of the pro-oxidative and proinflammatory effects of organic diesel exhaust particle chemicals in bronchial epithelial cells and macrophages. J. Immunol. 2002;169:4531–4541. doi: 10.4049/jimmunol.169.8.4531. PubMed DOI
Totlandsdal A.I., Lag M., Lilleaas E., Cassee F., Schwarze P. Differential proinflammatory responses induced by diesel exhaust particles with contrasting pah and metal content. Environ. Toxicol. 2015;30:188–196. doi: 10.1002/tox.21884. PubMed DOI
Arrigo A.P. The cellular “networking” of mammalian hsp27 and its functions in the control of protein folding, redox state and apoptosis. Adv. Exp. Med. Biol. 2007;594:14–26. PubMed
Krause K., Wasner M., Reinhard W., Haugwitz U., Dohna C.L.Z., Mossner J., Engeland K. The tumour suppressor protein p53 can repress transcription of cyclin B. Nucleic Acids Res. 2000;28:4410–4418. doi: 10.1093/nar/28.22.4410. PubMed DOI PMC
Karantanos T., Tanimoto R., Edamura K., Hirayama T., Yang G., Golstov A.A., Wang J.X., Kurosaka S., Park S., Thompson T.C. Systemic GLIPR1-ΔTM protein as a novel therapeutic approach for prostate cancer. Int. J. Cancer. 2014;134:2003–2013. doi: 10.1002/ijc.28529. PubMed DOI PMC
Feng X., Liu X., Zhang W., Xiao W.H. P53 directly suppresses BNIP3 expression to protect against hypoxia-induced cell death. EMBO J. 2011;30:3397–3415. doi: 10.1038/emboj.2011.248. PubMed DOI PMC
Galvagni F., Orlandini M., Oliviero S. Role of the AP-1 transcription factor FOSL1 in endothelial cell adhesion and migration. Cell Adhes. Migr. 2013;7:408–411. doi: 10.4161/cam.25894. PubMed DOI PMC
West M.D., Shay J.W., Wright W.E., Linskens M.H.K. Altered expression of plasminogen activator and plasminogen activator inhibitor during cellular senescence. Exp. Gerontol. 1996;31:175–193. doi: 10.1016/0531-5565(95)02013-6. PubMed DOI
Johannson K.A., Vittinghoff E., Lee K., Balmes J.R., Ji W., Kaplan G.G., Kim D.S., Collard H.R. Acute exacerbation of idiopathic pulmonary fibrosis associated with air pollution exposure. Eur. Respir. J. 2014;43:1124–1131. doi: 10.1183/09031936.00122213. PubMed DOI PMC
Hattori N., Mizuno S., Yoshida Y., Chin K., Mishima M., Sisson T.H., Simon R.H., Nakamura T., Miyake M. The plasminogen activation system reduces fibrosis in the lung by a hepatocyte growth factor-dependent mechanism. Am. J. Pathol. 2004;164:1091–1098. doi: 10.1016/S0002-9440(10)63196-3. PubMed DOI PMC
Cho H.Y., Reddy S.P., Yamamoto M., Kleeberger S.R. The transcription factor Nrf2 protects against pulmonary fibrosis. FASEB J. 2004;18:1258–1260. doi: 10.1096/fj.03-1127fje. PubMed DOI
Lakatos H.F., Thatcher T.H., Kottmann R.M., Garcia T.M., Phipps R.P., Sime P.J. The role of ppars in lung fibrosis. PPAR Res. 2007;2007:71323. doi: 10.1155/2007/71323. PubMed DOI PMC
Devchand P.R., Ziouzenkova O., Plutzky J. Oxidative stress and peroxisome proliferator-activated receptors: Reversing the curse? Circ. Res. 2004;95:1137–1139. doi: 10.1161/01.RES.0000151331.69399.b2. PubMed DOI
Zhang L., Jin Y., Huang M., Penning T.M. The role of human Aldo-Keto reductases in the metabolic activation and detoxication of polycyclic aromatic hydrocarbons: Interconversion of pah catechols and pah o-quinones. Front. Pharmacol. 2012;3:193. doi: 10.1007/s11467-011-0217-9. PubMed DOI PMC
Jiang H., Vudathala D.K., Blair I.A., Penning T.M. Competing roles of Aldo-Keto reductase 1A1 and cytochrome P4501B1 in benzo[a]pyrene-7,8-diol activation in human bronchoalveolar H358 cells: Role of akrs in p4501b1 induction. Chem. Res. Toxicol. 2006;19:68–78. doi: 10.1021/tx0502488. PubMed DOI
Andrysik Z., Vondracek J., Marvanova S., Ciganek M., Neca J., Pencikova K., Mahadevan B., Topinka J., Baird W.M., Kozubik A., et al. Activation of the aryl hydrocarbon receptor is the major toxic mode of action of an organic extract of a reference urban dust particulate matter mixture: The role of polycyclic aromatic hydrocarbons. Mutat. Res. Fund. Mol. M. 2011;714:53–62. doi: 10.1016/j.mrfmmm.2011.06.011. PubMed DOI
Crane R., Gadea B., Littlepage L., Wu H., Ruderman J.V. Aurora A, meiosis and mitosis. Biol. Cell. 2004;96:215–229. doi: 10.1016/j.biolcel.2003.09.008. PubMed DOI
Kunitoku N., Sasayama T., Marumoto T., Zhang D.W., Honda S., Kobayashi O., Hatakeyama K., Ushio Y., Saya H., Hirota T. Cenp-a phosphorylation by aurora-A in prophase is required for enrichment of aurora-b inner centromeres and for kinetochore function. Dev. Cell. 2003;5:853–864. doi: 10.1016/S1534-5807(03)00364-2. PubMed DOI
Neef R., Preisinger C., Sutcliffe J., Kopajtich R., Nigg E.A., Mayer T.U., Barr F.A. Phosphorylation of mitotic kinesin-like protein 2 by polo-like kinase 1 is required for cytokinesis. J. Cell Biol. 2003;162:863–875. doi: 10.1083/jcb.200306009. PubMed DOI PMC
Wu C.C., Yang T.Y., Yu C.T., Phan L., Ivan C., Sood A.K., Hsu S.L., Lee M.H. P53 negatively regulates aurora a via both transcriptional and posttranslational regulation. Cell Cycle. 2012;11:3433–3442. doi: 10.4161/cc.21732. PubMed DOI PMC
Eyers P.A., Erikson E., Chen L.G., Maller J.L. A novel mechanism for activation of the protein kinase aurora A. Curr. Biol. 2003;13:691–697. doi: 10.1016/S0960-9822(03)00166-0. PubMed DOI
Garrido G., Vernos I. Non-centrosomal tpx2-dependent regulation of the aurora a kinase: Functional implications for healthy and pathological cell division. Front. Oncol. 2016;6:88. doi: 10.3389/fonc.2016.00088. PubMed DOI PMC
Aguirre-Portoles C., Bird A.W., Hyman A., Canamero M., de Castro I.P., Malunnbres M. Tpx2 controls spindle integrity, genome stability, and tumor development. Cancer Res. 2012;72:1518–1528. doi: 10.1158/0008-5472.CAN-11-1971. PubMed DOI
Livak K.J., Schmittgen T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCt method. Methods. 2001;25:402–408. doi: 10.1006/meth.2001.1262. PubMed DOI
Du P., Kibbe W.A., Lin S.M. Lumi: A pipeline for processing illumina microarray. Bioinformatics. 2008;24:1547–1548. doi: 10.1093/bioinformatics/btn224. PubMed DOI
Smyth G.K. Linear models and empirical bayes methods for assessing differential expression in microarray experiments. Stat. Appl. Genet. Mol. Biol. 2004;3:Article 3. doi: 10.2202/1544-6115.1027. PubMed DOI
Chen J., Bardes E.E., Aronow B.J., Jegga A.G. Toppgene suite for gene list enrichment analysis and candidate gene prioritization. Nucleic Acids Res. 2009;37:W305–W311. doi: 10.1093/nar/gkp427. PubMed DOI PMC
R Core Team . R: A Language and Environment for Statistical Computing. R foundation for Statistical Computing; Vienna, Austria: 2015. [(accessed on 8 August 2016)]. Available online: http://www.R-project.org/
Chambers J.M., Freeny A., Heiberger R.M. Analysis of Variance. Wadsworth & Brooks/Cole; Pacific Grove, CA, USA: 1992. Designed Experiments.
Benjamini Y., Hochberg Y. Controlling the false discovery rate: A practical and powerful approach to multiple testing. J. R. Stat. Soc. 1995;57:289–300.
Yandell B.S. Practical Data Analysis for Designed Experiments. Volume 39 Crc Press, Chapman & Hall; London, UK: 1997.