The Biological Effects of Complete Gasoline Engine Emissions Exposure in a 3D Human Airway Model (MucilAirTM) and in Human Bronchial Epithelial Cells (BEAS-2B)
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
18-04719S
Grantová Agentura České Republiky
PubMed
31739528
PubMed Central
PMC6888625
DOI
10.3390/ijms20225710
PII: ijms20225710
Knihovny.cz E-zdroje
- Klíčová slova
- 3D models, cell monocultures, complete engine emissions, gene expression,
- MeSH
- biologické markery MeSH
- biologické modely * MeSH
- chaperon endoplazmatického retikula BiP MeSH
- elektrická impedance MeSH
- epitelové buňky účinky léků metabolismus MeSH
- exprese genu MeSH
- lidé MeSH
- muciny biosyntéza MeSH
- respirační sliznice účinky léků metabolismus MeSH
- výfukové emise vozidel toxicita MeSH
- vystavení vlivu životního prostředí škodlivé účinky MeSH
- zlomy DNA MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- biologické markery MeSH
- chaperon endoplazmatického retikula BiP MeSH
- HSPA5 protein, human MeSH Prohlížeč
- muciny MeSH
- výfukové emise vozidel MeSH
The biological effects induced by complete engine emissions in a 3D model of the human airway (MucilAirTM) and in human bronchial epithelial cells (BEAS-2B) grown at the air-liquid interface were compared. The cells were exposed for one or five days to emissions generated by a Euro 5 direct injection spark ignition engine. The general condition of the cells was assessed by the measurement of transepithelial electrical resistance and mucin production. The cytotoxic effects were evaluated by adenylate kinase (AK) and lactate dehydrogenase (LDH) activity. Phosphorylation of histone H2AX was used to detect double-stranded DNA breaks. The expression of the selected 370 relevant genes was analyzed using next-generation sequencing. The exposure had minimal effects on integrity and AK leakage in both cell models. LDH activity and mucin production in BEAS-2B cells significantly increased after longer exposures; DNA breaks were also detected. The exposure affected CYP1A1 and HSPA5 expression in MucilAirTM. There were no effects of this kind observed in BEAS-2B cells; in this system gene expression was rather affected by the time of treatment. The type of cell model was the most important factor modulating gene expression. In summary, the biological effects of complete emissions exposure were weak. In the specific conditions used in this study, the effects observed in BEAS-2B cells were induced by the exposure protocol rather than by emissions and thus this cell line seems to be less suitable for analyses of longer treatment than the 3D model.
Department of Chemistry and Toxicology Veterinary Research Institute 621 00 Brno Czech Republic
Department of Computer Science Czech Technical University Prague 12135 Prague Czech Republic
Zobrazit více v PubMed
Lewtas J. Air pollution combustion emissions: Characterization of causative agents and mechanisms associated with cancer, reproductive, and cardiovascular effects. Mutat. Res. 2007;636:95–133. doi: 10.1016/j.mrrev.2007.08.003. PubMed DOI
De Marini D.M. Genotoxicity biomarkers associated with exposure to traffic and near-road atmospheres: A review. Mutagenesis. 2013;28:485–505. doi: 10.1093/mutage/get042. PubMed DOI
International Agency for Research on Cancer (IARC) Diesel and Gasoline Engine Exhausts and Some Nitroarenes. Volume 105 IARC Publications; Lyon, France: 2013. IARC Monographs on the Evaluation of the Carcinogenic Risk of Chemicals to Humans. PubMed
Eisenbrand G., Pool-Zobel B., Baker V., Balls M., Blaauboer B.J., Boobis A., Carere A., Kevekordes S., Lhuguenot J.-C., Pieters R., et al. Methods of in vitro toxicology. Food Chem. Toxicol. 2002;40:193–236. doi: 10.1016/S0278-6915(01)00118-1. PubMed DOI
Müller L. 4.3 In vitro genotoxicity tests to detect carcinogenicity: A systematic review. Hum. Exp. Toxicol. 2009;28:131–133. doi: 10.1177/0960327109105770. PubMed DOI
Evans S.J., Clift M.J.D., Singh N., de Oliveira Mallia J., Burgum M., Wills J.W., Wilkinson T.S., Jenkins G.J.S., Doak S.H. Critical review of the current and future challenges associated with advanced in vitro systems towards the study of nanoparticle (secondary) genotoxicity. Mutagenesis. 2017;32:233–241. doi: 10.1093/mutage/gew054. PubMed DOI PMC
Huang S., Wiszniewski L., Derouette J.-P., Constant S. In vitro organ culture models of asthma. Drug Discov. Today Dis. Models. 2009;6:137–144. doi: 10.1016/j.ddmod.2009.08.002. DOI
Huang S., Wiszniewski L., Constant S., Roggen E. Potential of in vitro reconstituted 3D human airway epithelia (MucilAirTM) to assess respiratory sensitizers. Toxicol. In Vitro. 2013;27:1151–1156. doi: 10.1016/j.tiv.2012.10.010. PubMed DOI
Müller L., Comte P., Czerwinski J., Kasper M., Mayer A.C.R., Gehr P., Burtscher H., Morin J.-P., Konstandopoulos A., Rothen-Rutishauser B. New exposure system to evaluate the toxicity of (scooter) exhaust emissions in lung cells in vitro. Environ. Sci. Technol. 2010;44:2632–2638. doi: 10.1021/es903146g. PubMed DOI
Steiner S., Mueller L., Popovicheva O.B., Raemy D.O., Czerwinski J., Comte P., Mayer A., Gehr P., Rothen-Rutishauser B., Clift M.J.D. Cerium dioxide nanoparticles can interfere with the associated cellular mechanistic response to diesel exhaust exposure. Toxicol. Lett. 2012;214:218–225. doi: 10.1016/j.toxlet.2012.08.026. PubMed DOI
Hawley B., L’Orange C., Olsen D.B., Marchese A.J., Volckens J. Oxidative stress and aromatic hydrocarbon response of human bronchial epithelial cells exposed to petro- or biodiesel exhaust treated with a diesel particulate filter. Toxicol. Sci. 2014;141:505–514. doi: 10.1093/toxsci/kfu147. PubMed DOI PMC
Steiner S., Czerwinski J., Comte P., Heeb N.V., Mayer A., Petri-Fink A., Rothen-Rutishauser B. Effects of an iron-based fuel-borne catalyst and a diesel particle filter on exhaust toxicity in lung cells in vitro. Anal. Bioanal. Chem. 2015;407:5977–5986. doi: 10.1007/s00216-014-7878-5. PubMed DOI
Oeder S., Kanashova T., Sippula O., Sapcariu S.C., Streibel T., Arteaga-Salas J.M., Passig J., Dilger M., Paur H.-R., Schlager C., et al. Particulate matter from both heavy fuel oil and diesel fuel shipping emissions show strong biological effects on human lung cells at realistic and comparable in vitro exposure conditions. PLoS ONE. 2015;10:e0126536. doi: 10.1371/journal.pone.0126536. PubMed DOI PMC
Bisig C., Comte P., Güdel M., Czerwinski J., Mayer A., Müller L., Petri-Fink A., Rothen-Rutishauser B. Assessment of lung cell toxicity of various gasoline engine exhausts using a versatile in vitro exposure system. Environ. Pollut. 2018;235:263–271. doi: 10.1016/j.envpol.2017.12.061. PubMed DOI
Ghio A.J., Dailey L.A., Soukup J.M., Stonehuerner J., Richards J.H., Devlin R.B. Growth of human bronchial epithelial cells at an air-liquid interface alters the response to particle exposure. Part. Fibre Toxicol. 2013;10:25. doi: 10.1186/1743-8977-10-25. PubMed DOI PMC
Gerlofs-Nijland M.E., Totlandsdal A.I., Tzamkiozis T., Leseman D.L.A.C., Samaras Z., Låg M., Schwarze P., Ntziachristos L., Cassee F.R. Cell toxicity and oxidative potential of engine exhaust particles: Impact of using particulate filter or biodiesel fuel blend. Environ. Sci. Technol. 2013;47:5931–5938. doi: 10.1021/es305330y. PubMed DOI
Totlandsdal A.I., Lag M., Lilleaas E., Cassee F., Schwarze P. Differential proinflammatory responses induced by diesel exhaust particles with contrasting PAH and metal content. Environ. Toxicol. 2015;30:188–196. doi: 10.1002/tox.21884. PubMed DOI
Martin N., Lombard M., Jensen K.R., Kelley P., Pratt T., Traviss N. Effect of biodiesel fuel on “real-world”, nonroad heavy duty diesel engine particulate matter emissions, composition and cytotoxicity. Sci. Total Environ. 2017;586:409–418. doi: 10.1016/j.scitotenv.2016.12.041. PubMed DOI PMC
Zhang Z.-H., Balasubramanian R. Physicochemical and toxicological characteristics of particulate matter emitted from a non-road diesel engine: Comparative evaluation of biodiesel-diesel and butanol-diesel blends. J. Hazard. Mater. 2014;264:395–402. doi: 10.1016/j.jhazmat.2013.11.033. PubMed DOI
Lawal A.O., Zhang M., Dittmar M., Lulla A., Araujo J.A. Heme oxygenase-1 protects endothelial cells from the toxicity of air pollutant chemicals. Toxicol. Appl. Pharmacol. 2015;284:281–291. doi: 10.1016/j.taap.2015.01.010. PubMed DOI PMC
Libalova H., Rossner P., Vrbova K., Brzicova T., Sikorova J., Vojtisek-Lom M., Beranek V., Klema J., Ciganek M., Neca J., et al. Comparative analysis of toxic responses of organic extracts from diesel and selected alternative fuels engine emissions in human lung BEAS-2B cells. Int. J. Mol. Sci. 2016;17:1833. doi: 10.3390/ijms17111833. PubMed DOI PMC
Libalova H., Rossner P., Vrbova K., Brzicova T., Sikorova J., Vojtisek-Lom M., Beranek V., Klema J., Ciganek M., Neca J., et al. Transcriptional response to organic compounds from diverse gasoline and biogasoline fuel emissions in human lung cells. Toxicol. In Vitro. 2018;48:329–341. doi: 10.1016/j.tiv.2018.02.002. PubMed DOI
McDonald J.D., Doyle-Eisele M., Seagrave J., Gigliotti A.P., Chow J., Zielinska B., Mauderly J.L., Seilkop S.K., Miller R.A. HEI health review committee part 1. Assessment of carcinogenicity and biologic responses in rats after lifetime inhalation of new-technology diesel exhaust in the ACES bioassay. Res. Rep. Health Eff. Inst. 2015;9:141–171. PubMed
Savary C.C., Bellamri N., Morzadec C., Langouët S., Lecureur V., Vernhet L. Long term exposure to environmental concentrations of diesel exhaust particles does not impact the phenotype of human bronchial epithelial cells. Toxicol. In Vitro. 2018;52:154–160. doi: 10.1016/j.tiv.2018.06.014. PubMed DOI
Cervena T., Vrbova K., Rossnerova A., Topinka J., Rossner P. Short-Term and long-term Exposure of the MucilAirTM Model to Polycyclic Aromatic Hydrocarbons. Altern. Lab. Anim. 2019;47:9–18. doi: 10.1177/0261192919841484. PubMed DOI
Bisig C., Steiner S., Comte P., Czerwinski J., Mayer A., Petri-Fink A., Rothen-Rutishauser B. Biological effects in lung cells in vitro of exhaust aerosols from a gasoline passenger car with and without particle filter. Emiss. Control Sci. Technol. 2015;1:237–246. doi: 10.1007/s40825-015-0019-6. DOI
Bisig C., Roth M., Müller L., Comte P., Heeb N., Mayer A., Czerwinski J., Petri-Fink A., Rothen-Rutishauser B. Hazard identification of exhausts from gasoline-ethanol fuel blends using a multi-cellular human lung model. Environ. Res. 2016;151:789–796. doi: 10.1016/j.envres.2016.09.010. PubMed DOI
Vojtisek-Lom M., Pechout M., Macoun D., Rameswaran R., Kumar Praharaj K., Cervena T., Topinka J., Rossner P. Assessing exhaust toxicity with biological detector: configuration of portable air-liquid interface human lung cell model exposure system, sampling train and test conditions. SAE Tech. Pap. 2019;24:50.
Stewart C.E., Torr E.E., Mohd Jamili N.H., Bosquillon C., Sayers I. Evaluation of differentiated human bronchial epithelial cell culture systems for asthma research. J. Allergy. 2012;2012:1–11. doi: 10.1155/2012/943982. PubMed DOI PMC
Ridley C., Thornton D.J. Mucins: The frontline defence of the lung. Biochem. Soc. Trans. 2018;46:1099–1106. doi: 10.1042/BST20170402. PubMed DOI PMC
Ishikawa S., Matsumura K., Kitamura N., Takanami Y., Ito S. Multi-Omics analysis: Repeated exposure of a 3D bronchial tissue culture to whole-cigarette smoke. Toxicol. In Vitro. 2019;54:251–262. doi: 10.1016/j.tiv.2018.10.001. PubMed DOI
Reuter C., Alzheimer M., Walles H., Oelschlaeger T.A. An adherent mucus layer attenuates the genotoxic effect of colibactin. Cell. Microbiol. 2018;20:e12812. doi: 10.1111/cmi.12812. PubMed DOI
Garcia-Canton C., Anadón A., Meredith C. γH2AX as a novel endpoint to detect DNA damage: Applications for the assessment of the in vitro genotoxicity of cigarette smoke. Toxicol. In Vitro. 2012;26:1075–1086. doi: 10.1016/j.tiv.2012.06.006. PubMed DOI
Barraud C., Corbière C., Pottier I., Estace E., Blanchard K., Logie C., Lagadu S., Kéravec V., Pottier D., Dionnet F., et al. Impact of after-treatment devices and biofuels on diesel exhausts genotoxicity in A549 cells exposed at air-liquid interface. Toxicol. In Vitro. 2017;45:426–433. doi: 10.1016/j.tiv.2017.04.025. PubMed DOI
Kowalska M., Wegierek-Ciuk A., Brzoska K., Wojewodzka M., Meczynska-Wielgosz S., Gromadzka-Ostrowska J., Mruk R., Øvrevik J., Kruszewski M., Lankoff A. Genotoxic potential of diesel exhaust particles from the combustion of first- and second-generation biodiesel fuels—The FuelHealth project. Environ. Sci. Pollut. Res. 2017;24:24223–24234. doi: 10.1007/s11356-017-9995-0. PubMed DOI PMC
Steiner S., Heeb N.V., Czerwinski J., Comte P., Mayer A., Petri-Fink A., Rothen-Rutishauser B. Test-Methods on the test-bench: A comparison of complete exhaust and exhaust particle extracts for genotoxicity/mutagenicity assessment. Environ. Sci. Technol. 2014;48:5237–5244. doi: 10.1021/es4056033. PubMed DOI
Tomašek I., Horwell C.J., Bisig C., Damby D.E., Comte P., Czerwinski J., Petri-Fink A., Clift M.J.D., Drasler B., Rothen-Rutishauser B. Respiratory hazard assessment of combined exposure to complete gasoline exhaust and respirable volcanic ash in a multicellular human lung model at the air-liquid interface. Environ. Pollut. 2018;238:977–987. doi: 10.1016/j.envpol.2018.01.115. PubMed DOI
Zarcone M.C., Duistermaat E., Alblas M.J., van Schadewijk A., Ninaber D.K., Clarijs V., Moerman M.M., Vaessen D., Hiemstra P.S., Kooter I.M. Effect of diesel exhaust generated by a city bus engine on stress responses and innate immunity in primary bronchial epithelial cell cultures. Toxicol. In Vitro. 2018;48:221–231. doi: 10.1016/j.tiv.2018.01.024. PubMed DOI
Reddel R.R., Ke Y., Gerwin B.I., McMenamin M.G., Lechner J.F., Su R.T., Brash D.E., Park J.B., Rhim J.S., Harris C.C. Transformation of human bronchial epithelial cells by infection with SV40 or adenovirus-12 SV40 hybrid virus, or transfection via strontium phosphate coprecipitation with a plasmid containing SV40 early region genes. Cancer Res. 1988;48:1904–1909. PubMed
Cervena T., Rossnerova A., Sikorova J., Beranek V., Vojtisek-Lom M., Ciganek M., Topinka J., Rossner P. DNA damage potential of engine emissions measured in vitro by micronucleus test in human bronchial epithelial cells. Basic Clin. Pharmacol. Toxicol. 2016 doi: 10.1111/bcpt.12693. PubMed DOI
Morin J.P., Fouquet F., Monteil C., Le Prieur E., Vaz E., Dionnet F. Development of a new in vitro system for continuous in vitro exposure of lung tissue to complex atmospheres: Application to diesel exhaust toxicology. Cell Biol. Toxicol. 1999;15:143–152. doi: 10.1023/A:1007625302215. PubMed DOI
Ewels P.A., Peltzer A., Fillinger S., Alneberg J., Patel H., Wilm A., Garcia M.U., Di Tommaso P., Nahnsen S. Nf-core: Community curated bioinformatics pipelines. Bioinformatics. 2019 doi: 10.1101/610741. PubMed DOI
Love M.I., Huber W., Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15:550. doi: 10.1186/s13059-014-0550-8. PubMed DOI PMC
Ordinary Gasoline Emissions Induce a Toxic Response in Bronchial Cells Grown at Air-Liquid Interface