The Biological Effects of Complete Gasoline Engine Emissions Exposure in a 3D Human Airway Model (MucilAirTM) and in Human Bronchial Epithelial Cells (BEAS-2B)

. 2019 Nov 14 ; 20 (22) : . [epub] 20191114

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid31739528

Grantová podpora
18-04719S Grantová Agentura České Republiky

The biological effects induced by complete engine emissions in a 3D model of the human airway (MucilAirTM) and in human bronchial epithelial cells (BEAS-2B) grown at the air-liquid interface were compared. The cells were exposed for one or five days to emissions generated by a Euro 5 direct injection spark ignition engine. The general condition of the cells was assessed by the measurement of transepithelial electrical resistance and mucin production. The cytotoxic effects were evaluated by adenylate kinase (AK) and lactate dehydrogenase (LDH) activity. Phosphorylation of histone H2AX was used to detect double-stranded DNA breaks. The expression of the selected 370 relevant genes was analyzed using next-generation sequencing. The exposure had minimal effects on integrity and AK leakage in both cell models. LDH activity and mucin production in BEAS-2B cells significantly increased after longer exposures; DNA breaks were also detected. The exposure affected CYP1A1 and HSPA5 expression in MucilAirTM. There were no effects of this kind observed in BEAS-2B cells; in this system gene expression was rather affected by the time of treatment. The type of cell model was the most important factor modulating gene expression. In summary, the biological effects of complete emissions exposure were weak. In the specific conditions used in this study, the effects observed in BEAS-2B cells were induced by the exposure protocol rather than by emissions and thus this cell line seems to be less suitable for analyses of longer treatment than the 3D model.

Zobrazit více v PubMed

Lewtas J. Air pollution combustion emissions: Characterization of causative agents and mechanisms associated with cancer, reproductive, and cardiovascular effects. Mutat. Res. 2007;636:95–133. doi: 10.1016/j.mrrev.2007.08.003. PubMed DOI

De Marini D.M. Genotoxicity biomarkers associated with exposure to traffic and near-road atmospheres: A review. Mutagenesis. 2013;28:485–505. doi: 10.1093/mutage/get042. PubMed DOI

International Agency for Research on Cancer (IARC) Diesel and Gasoline Engine Exhausts and Some Nitroarenes. Volume 105 IARC Publications; Lyon, France: 2013. IARC Monographs on the Evaluation of the Carcinogenic Risk of Chemicals to Humans. PubMed

Eisenbrand G., Pool-Zobel B., Baker V., Balls M., Blaauboer B.J., Boobis A., Carere A., Kevekordes S., Lhuguenot J.-C., Pieters R., et al. Methods of in vitro toxicology. Food Chem. Toxicol. 2002;40:193–236. doi: 10.1016/S0278-6915(01)00118-1. PubMed DOI

Müller L. 4.3 In vitro genotoxicity tests to detect carcinogenicity: A systematic review. Hum. Exp. Toxicol. 2009;28:131–133. doi: 10.1177/0960327109105770. PubMed DOI

Evans S.J., Clift M.J.D., Singh N., de Oliveira Mallia J., Burgum M., Wills J.W., Wilkinson T.S., Jenkins G.J.S., Doak S.H. Critical review of the current and future challenges associated with advanced in vitro systems towards the study of nanoparticle (secondary) genotoxicity. Mutagenesis. 2017;32:233–241. doi: 10.1093/mutage/gew054. PubMed DOI PMC

Huang S., Wiszniewski L., Derouette J.-P., Constant S. In vitro organ culture models of asthma. Drug Discov. Today Dis. Models. 2009;6:137–144. doi: 10.1016/j.ddmod.2009.08.002. DOI

Huang S., Wiszniewski L., Constant S., Roggen E. Potential of in vitro reconstituted 3D human airway epithelia (MucilAirTM) to assess respiratory sensitizers. Toxicol. In Vitro. 2013;27:1151–1156. doi: 10.1016/j.tiv.2012.10.010. PubMed DOI

Müller L., Comte P., Czerwinski J., Kasper M., Mayer A.C.R., Gehr P., Burtscher H., Morin J.-P., Konstandopoulos A., Rothen-Rutishauser B. New exposure system to evaluate the toxicity of (scooter) exhaust emissions in lung cells in vitro. Environ. Sci. Technol. 2010;44:2632–2638. doi: 10.1021/es903146g. PubMed DOI

Steiner S., Mueller L., Popovicheva O.B., Raemy D.O., Czerwinski J., Comte P., Mayer A., Gehr P., Rothen-Rutishauser B., Clift M.J.D. Cerium dioxide nanoparticles can interfere with the associated cellular mechanistic response to diesel exhaust exposure. Toxicol. Lett. 2012;214:218–225. doi: 10.1016/j.toxlet.2012.08.026. PubMed DOI

Hawley B., L’Orange C., Olsen D.B., Marchese A.J., Volckens J. Oxidative stress and aromatic hydrocarbon response of human bronchial epithelial cells exposed to petro- or biodiesel exhaust treated with a diesel particulate filter. Toxicol. Sci. 2014;141:505–514. doi: 10.1093/toxsci/kfu147. PubMed DOI PMC

Steiner S., Czerwinski J., Comte P., Heeb N.V., Mayer A., Petri-Fink A., Rothen-Rutishauser B. Effects of an iron-based fuel-borne catalyst and a diesel particle filter on exhaust toxicity in lung cells in vitro. Anal. Bioanal. Chem. 2015;407:5977–5986. doi: 10.1007/s00216-014-7878-5. PubMed DOI

Oeder S., Kanashova T., Sippula O., Sapcariu S.C., Streibel T., Arteaga-Salas J.M., Passig J., Dilger M., Paur H.-R., Schlager C., et al. Particulate matter from both heavy fuel oil and diesel fuel shipping emissions show strong biological effects on human lung cells at realistic and comparable in vitro exposure conditions. PLoS ONE. 2015;10:e0126536. doi: 10.1371/journal.pone.0126536. PubMed DOI PMC

Bisig C., Comte P., Güdel M., Czerwinski J., Mayer A., Müller L., Petri-Fink A., Rothen-Rutishauser B. Assessment of lung cell toxicity of various gasoline engine exhausts using a versatile in vitro exposure system. Environ. Pollut. 2018;235:263–271. doi: 10.1016/j.envpol.2017.12.061. PubMed DOI

Ghio A.J., Dailey L.A., Soukup J.M., Stonehuerner J., Richards J.H., Devlin R.B. Growth of human bronchial epithelial cells at an air-liquid interface alters the response to particle exposure. Part. Fibre Toxicol. 2013;10:25. doi: 10.1186/1743-8977-10-25. PubMed DOI PMC

Gerlofs-Nijland M.E., Totlandsdal A.I., Tzamkiozis T., Leseman D.L.A.C., Samaras Z., Låg M., Schwarze P., Ntziachristos L., Cassee F.R. Cell toxicity and oxidative potential of engine exhaust particles: Impact of using particulate filter or biodiesel fuel blend. Environ. Sci. Technol. 2013;47:5931–5938. doi: 10.1021/es305330y. PubMed DOI

Totlandsdal A.I., Lag M., Lilleaas E., Cassee F., Schwarze P. Differential proinflammatory responses induced by diesel exhaust particles with contrasting PAH and metal content. Environ. Toxicol. 2015;30:188–196. doi: 10.1002/tox.21884. PubMed DOI

Martin N., Lombard M., Jensen K.R., Kelley P., Pratt T., Traviss N. Effect of biodiesel fuel on “real-world”, nonroad heavy duty diesel engine particulate matter emissions, composition and cytotoxicity. Sci. Total Environ. 2017;586:409–418. doi: 10.1016/j.scitotenv.2016.12.041. PubMed DOI PMC

Zhang Z.-H., Balasubramanian R. Physicochemical and toxicological characteristics of particulate matter emitted from a non-road diesel engine: Comparative evaluation of biodiesel-diesel and butanol-diesel blends. J. Hazard. Mater. 2014;264:395–402. doi: 10.1016/j.jhazmat.2013.11.033. PubMed DOI

Lawal A.O., Zhang M., Dittmar M., Lulla A., Araujo J.A. Heme oxygenase-1 protects endothelial cells from the toxicity of air pollutant chemicals. Toxicol. Appl. Pharmacol. 2015;284:281–291. doi: 10.1016/j.taap.2015.01.010. PubMed DOI PMC

Libalova H., Rossner P., Vrbova K., Brzicova T., Sikorova J., Vojtisek-Lom M., Beranek V., Klema J., Ciganek M., Neca J., et al. Comparative analysis of toxic responses of organic extracts from diesel and selected alternative fuels engine emissions in human lung BEAS-2B cells. Int. J. Mol. Sci. 2016;17:1833. doi: 10.3390/ijms17111833. PubMed DOI PMC

Libalova H., Rossner P., Vrbova K., Brzicova T., Sikorova J., Vojtisek-Lom M., Beranek V., Klema J., Ciganek M., Neca J., et al. Transcriptional response to organic compounds from diverse gasoline and biogasoline fuel emissions in human lung cells. Toxicol. In Vitro. 2018;48:329–341. doi: 10.1016/j.tiv.2018.02.002. PubMed DOI

McDonald J.D., Doyle-Eisele M., Seagrave J., Gigliotti A.P., Chow J., Zielinska B., Mauderly J.L., Seilkop S.K., Miller R.A. HEI health review committee part 1. Assessment of carcinogenicity and biologic responses in rats after lifetime inhalation of new-technology diesel exhaust in the ACES bioassay. Res. Rep. Health Eff. Inst. 2015;9:141–171. PubMed

Savary C.C., Bellamri N., Morzadec C., Langouët S., Lecureur V., Vernhet L. Long term exposure to environmental concentrations of diesel exhaust particles does not impact the phenotype of human bronchial epithelial cells. Toxicol. In Vitro. 2018;52:154–160. doi: 10.1016/j.tiv.2018.06.014. PubMed DOI

Cervena T., Vrbova K., Rossnerova A., Topinka J., Rossner P. Short-Term and long-term Exposure of the MucilAirTM Model to Polycyclic Aromatic Hydrocarbons. Altern. Lab. Anim. 2019;47:9–18. doi: 10.1177/0261192919841484. PubMed DOI

Bisig C., Steiner S., Comte P., Czerwinski J., Mayer A., Petri-Fink A., Rothen-Rutishauser B. Biological effects in lung cells in vitro of exhaust aerosols from a gasoline passenger car with and without particle filter. Emiss. Control Sci. Technol. 2015;1:237–246. doi: 10.1007/s40825-015-0019-6. DOI

Bisig C., Roth M., Müller L., Comte P., Heeb N., Mayer A., Czerwinski J., Petri-Fink A., Rothen-Rutishauser B. Hazard identification of exhausts from gasoline-ethanol fuel blends using a multi-cellular human lung model. Environ. Res. 2016;151:789–796. doi: 10.1016/j.envres.2016.09.010. PubMed DOI

Vojtisek-Lom M., Pechout M., Macoun D., Rameswaran R., Kumar Praharaj K., Cervena T., Topinka J., Rossner P. Assessing exhaust toxicity with biological detector: configuration of portable air-liquid interface human lung cell model exposure system, sampling train and test conditions. SAE Tech. Pap. 2019;24:50.

Stewart C.E., Torr E.E., Mohd Jamili N.H., Bosquillon C., Sayers I. Evaluation of differentiated human bronchial epithelial cell culture systems for asthma research. J. Allergy. 2012;2012:1–11. doi: 10.1155/2012/943982. PubMed DOI PMC

Ridley C., Thornton D.J. Mucins: The frontline defence of the lung. Biochem. Soc. Trans. 2018;46:1099–1106. doi: 10.1042/BST20170402. PubMed DOI PMC

Ishikawa S., Matsumura K., Kitamura N., Takanami Y., Ito S. Multi-Omics analysis: Repeated exposure of a 3D bronchial tissue culture to whole-cigarette smoke. Toxicol. In Vitro. 2019;54:251–262. doi: 10.1016/j.tiv.2018.10.001. PubMed DOI

Reuter C., Alzheimer M., Walles H., Oelschlaeger T.A. An adherent mucus layer attenuates the genotoxic effect of colibactin. Cell. Microbiol. 2018;20:e12812. doi: 10.1111/cmi.12812. PubMed DOI

Garcia-Canton C., Anadón A., Meredith C. γH2AX as a novel endpoint to detect DNA damage: Applications for the assessment of the in vitro genotoxicity of cigarette smoke. Toxicol. In Vitro. 2012;26:1075–1086. doi: 10.1016/j.tiv.2012.06.006. PubMed DOI

Barraud C., Corbière C., Pottier I., Estace E., Blanchard K., Logie C., Lagadu S., Kéravec V., Pottier D., Dionnet F., et al. Impact of after-treatment devices and biofuels on diesel exhausts genotoxicity in A549 cells exposed at air-liquid interface. Toxicol. In Vitro. 2017;45:426–433. doi: 10.1016/j.tiv.2017.04.025. PubMed DOI

Kowalska M., Wegierek-Ciuk A., Brzoska K., Wojewodzka M., Meczynska-Wielgosz S., Gromadzka-Ostrowska J., Mruk R., Øvrevik J., Kruszewski M., Lankoff A. Genotoxic potential of diesel exhaust particles from the combustion of first- and second-generation biodiesel fuels—The FuelHealth project. Environ. Sci. Pollut. Res. 2017;24:24223–24234. doi: 10.1007/s11356-017-9995-0. PubMed DOI PMC

Steiner S., Heeb N.V., Czerwinski J., Comte P., Mayer A., Petri-Fink A., Rothen-Rutishauser B. Test-Methods on the test-bench: A comparison of complete exhaust and exhaust particle extracts for genotoxicity/mutagenicity assessment. Environ. Sci. Technol. 2014;48:5237–5244. doi: 10.1021/es4056033. PubMed DOI

Tomašek I., Horwell C.J., Bisig C., Damby D.E., Comte P., Czerwinski J., Petri-Fink A., Clift M.J.D., Drasler B., Rothen-Rutishauser B. Respiratory hazard assessment of combined exposure to complete gasoline exhaust and respirable volcanic ash in a multicellular human lung model at the air-liquid interface. Environ. Pollut. 2018;238:977–987. doi: 10.1016/j.envpol.2018.01.115. PubMed DOI

Zarcone M.C., Duistermaat E., Alblas M.J., van Schadewijk A., Ninaber D.K., Clarijs V., Moerman M.M., Vaessen D., Hiemstra P.S., Kooter I.M. Effect of diesel exhaust generated by a city bus engine on stress responses and innate immunity in primary bronchial epithelial cell cultures. Toxicol. In Vitro. 2018;48:221–231. doi: 10.1016/j.tiv.2018.01.024. PubMed DOI

Reddel R.R., Ke Y., Gerwin B.I., McMenamin M.G., Lechner J.F., Su R.T., Brash D.E., Park J.B., Rhim J.S., Harris C.C. Transformation of human bronchial epithelial cells by infection with SV40 or adenovirus-12 SV40 hybrid virus, or transfection via strontium phosphate coprecipitation with a plasmid containing SV40 early region genes. Cancer Res. 1988;48:1904–1909. PubMed

Cervena T., Rossnerova A., Sikorova J., Beranek V., Vojtisek-Lom M., Ciganek M., Topinka J., Rossner P. DNA damage potential of engine emissions measured in vitro by micronucleus test in human bronchial epithelial cells. Basic Clin. Pharmacol. Toxicol. 2016 doi: 10.1111/bcpt.12693. PubMed DOI

Morin J.P., Fouquet F., Monteil C., Le Prieur E., Vaz E., Dionnet F. Development of a new in vitro system for continuous in vitro exposure of lung tissue to complex atmospheres: Application to diesel exhaust toxicology. Cell Biol. Toxicol. 1999;15:143–152. doi: 10.1023/A:1007625302215. PubMed DOI

Ewels P.A., Peltzer A., Fillinger S., Alneberg J., Patel H., Wilm A., Garcia M.U., Di Tommaso P., Nahnsen S. Nf-core: Community curated bioinformatics pipelines. Bioinformatics. 2019 doi: 10.1101/610741. PubMed DOI

Love M.I., Huber W., Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15:550. doi: 10.1186/s13059-014-0550-8. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...