A brain atlas of axonal and synaptic delays based on modelling of cortico-cortical evoked potentials
Jazyk angličtina Země Velká Británie, Anglie Médium print
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
35416942
PubMed Central
PMC9166555
DOI
10.1093/brain/awab362
PII: 6433676
Knihovny.cz E-zdroje
- Klíčová slova
- axonal conduction delay, cortico-cortical evoked potential, dynamic causal modelling, neural mass models, synaptic time constant,
- MeSH
- Bayesova věta MeSH
- elektrická stimulace metody MeSH
- epilepsie * MeSH
- evokované potenciály * fyziologie MeSH
- lidé MeSH
- mapování mozku metody MeSH
- mozek MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Epilepsy presurgical investigation may include focal intracortical single-pulse electrical stimulations with depth electrodes, which induce cortico-cortical evoked potentials at distant sites because of white matter connectivity. Cortico-cortical evoked potentials provide a unique window on functional brain networks because they contain sufficient information to infer dynamical properties of large-scale brain connectivity, such as preferred directionality and propagation latencies. Here, we developed a biologically informed modelling approach to estimate the neural physiological parameters of brain functional networks from the cortico-cortical evoked potentials recorded in a large multicentric database. Specifically, we considered each cortico-cortical evoked potential as the output of a transient stimulus entering the stimulated region, which directly propagated to the recording region. Both regions were modelled as coupled neural mass models, the parameters of which were estimated from the first cortico-cortical evoked potential component, occurring before 80 ms, using dynamic causal modelling and Bayesian model inversion. This methodology was applied to the data of 780 patients with epilepsy from the F-TRACT database, providing a total of 34 354 bipolar stimulations and 774 445 cortico-cortical evoked potentials. The cortical mapping of the local excitatory and inhibitory synaptic time constants and of the axonal conduction delays between cortical regions was obtained at the population level using anatomy-based averaging procedures, based on the Lausanne2008 and the HCP-MMP1 parcellation schemes, containing 130 and 360 parcels, respectively. To rule out brain maturation effects, a separate analysis was performed for older (>15 years) and younger patients (<15 years). In the group of older subjects, we found that the cortico-cortical axonal conduction delays between parcels were globally short (median = 10.2 ms) and only 16% were larger than 20 ms. This was associated to a median velocity of 3.9 m/s. Although a general lengthening of these delays with the distance between the stimulating and recording contacts was observed across the cortex, some regions were less affected by this rule, such as the insula for which almost all efferent and afferent connections were faster than 10 ms. Synaptic time constants were found to be shorter in the sensorimotor, medial occipital and latero-temporal regions, than in other cortical areas. Finally, we found that axonal conduction delays were significantly larger in the group of subjects younger than 15 years, which corroborates that brain maturation increases the speed of brain dynamics. To our knowledge, this study is the first to provide a local estimation of axonal conduction delays and synaptic time constants across the whole human cortex in vivo, based on intracerebral electrophysiological recordings.
'Claudio Munari' Centre for Epilepsy Surgery; Neuroscience Department GOM Niguarda Milano Italy
Aix Marseille Université Inserm INS Institut de Neurosciences des Systèmes Marseille France
Canton Sanjiu Brain Hospital Epilepsy Center Jinan University Guangzhou China
Centre Hospitalier Universitaire de Nancy Nancy France
Department of Neurology Epilepsy Unit AP HP Hôpital de la Pitié Salpêtrière F 75013 Paris France
Department of Neurosurgery Sainte Anne Hospital Paris France
Department of Radiology Lausanne University Hospital Lausanne Switzerland
Epilepsy Monitoring Unit Department of Neurology Hospital del Mar IMIM Barcelona Spain
Epilepsy Unit Department of Clinical Neurophysiology Lille University Medical Center Lille France
Epilepsy Unit Hospital for Children and Adolescents Helsinki Finland
Montreal Neurological Institute and Hospital Montreal Canada
Multidisciplinary Epilepsy Unit Hospital Universitario y Politécnico La Fe Valencia Spain
Neurology Department CHU Grenoble Alpes Grenoble France
Neurology Department CIC 1414 Rennes University Hospital; LTSI INSERM U 1099 F 35000 Rennes France
Neurology Department University Emergency Hospital Bucharest Romania
Neurophysiology and Epilepsy Unit Bicêtre Hospital France
Neuroscience Department Children's Hospital Meyer University of Florence Florence Italy
Service de Neurochirurgie Pédiatrique Fondation Rothschild Paris France
Service de Neurophysiologie Clinique APHM Hôpitaux de la Timone Marseille France
Université Grenoble Alpes Inserm U1216 Grenoble Institut Neurosciences 38000 Grenoble France
University Hospital Department of Neurology Strasbourg France
Yuquan Hospital Epilepsy Center Tsinghua University Beijing China
Zobrazit více v PubMed
Koch C, Rapp M, Segev I.. A brief history of time (constants). Cereb Cortex. 1996;6(2):93–101. PubMed
Swadlow HA, Waxman SG.. Axonal conduction delays. Scholarpedia. 2012;7(6):1451.
Brunel N. Dynamics of sparsely connected networks of excitatory and inhibitory spiking neurons. J Comput Neurosci 2000;8:183–208. PubMed
Jirsa VK. Neural field dynamics with local and global connectivity and time delay. Philos Trans R Soc Math Phys Eng Sci. 2009;367(1891):1131–1143. PubMed
Deco G, Jirsa V, McIntosh AR, Sporns O, Kotter R.. Key role of coupling, delay, and noise in resting brain fluctuations. Proc Natl Acad Sci USA. 2009;106(25):10302–10307. PubMed PMC
Emmenegger V, Obien MEJ, Franke F, Hierlemann A.. Technologies to study action potential propagation with a focus on HD-MEAs. Front Cell Neurosci. 2019;13:159. PubMed PMC
Popovic M, Vogt K, Holthoff K, et al. . Imaging submillisecond membrane potential changes from individual regions of single axons, dendrites and spines. In: Canepari M, Zecevic D, Bernus O, eds. Membrane Potential Imaging in the Nervous System and Heart. Vol 859. Springer International Publishing; 2015:57–101. PubMed PMC
Radivojevic M, Franke F, Altermatt M, Müller J, Hierlemann A, Bakkum DJ.. Tracking individual action potentials throughout mammalian axonal arbors. eLife. 2017;6:30198. PubMed PMC
Liewald D, Miller R, Logothetis N, Wagner H-J, Schüz A.. Distribution of axon diameters in cortical white matter: An electron-microscopic study on three human brains and a macaque. Biol Cybern. 2014;108(5):541–557. PubMed PMC
Stikov N, Campbell JSW, Stroh T, et al. . In vivo histology of the myelin g-ratio with magnetic resonance imaging. Neuroimage. 2015;118:397–405. PubMed
Wendling F, Chauvel P, Biraben A, Bartolomei F.. From intracerebral EEG signals to brain connectivity: Identification of epileptogenic networks in partial epilepsy. Front Syst Neurosci. 2010;4:154. PubMed PMC
Lhatoo SD, Kahane P, Lüders HO.. Invasive studies of the human epileptic brain: Principles and practice. Oxford University Press; 2018. 10.1093/med/9780198714668.001.0001. DOI
Keller CJ, Honey CJ, Megevand P, Entz L, Ulbert I, Mehta AD.. Mapping human brain networks with cortico-cortical evoked potentials. Philos Trans R Soc B Biol Sci. 2014;369(1653):20130528. PubMed PMC
David O, Job A-S, De Palma L, Hoffmann D, Minotti L, Kahane P.. Probabilistic functional tractography of the human cortex. Neuroimage. 2013;80:307–317. PubMed
Trebaul L, Deman P, Tuyisenge V, et al. . Probabilistic functional tractography of the human cortex revisited. Neuroimage. 2018;181:414–429. PubMed PMC
Matsumoto R, Kunieda T, Nair D.. Single pulse electrical stimulation to probe functional and pathological connectivity in epilepsy. Seizure. 2017;44:27–36. PubMed PMC
David O, Kiebel SJ, Harrison LM, Mattout J, Kilner JM, Friston KJ.. Dynamic causal modeling of evoked responses in EEG and MEG. Neuroimage. 2006;30(4):1255–1272. PubMed
Friston KJ. Functional and effective connectivity: A review. Brain Connect. 2011;1(1):13–36. PubMed
Deman P, Bhattacharjee M, Tadel F, et al. . IntrAnat electrodes: A free database and visualization software for intracranial electroencephalographic data processed for case and group studies. Front Neuroinformatics. 2018;12:40. PubMed PMC
Valentin A, Anderson M, Alarcón G, et al. . Responses to single pulse electrical stimulation identify epileptogenesis in the human brain in vivo. Brain. 2002;125(8):1709–1718. PubMed
Donos C, Mîndruţă I, Malîia MD, Raşină A, Ciurea J, Barborica A.. Co-occurrence of high-frequency oscillations and delayed responses evoked by intracranial electrical stimulation in stereo-EEG studies. Clin Neurophysiol. 2017;128(6):1043–1052. PubMed
Roehri N, Lina J-M, Mosher JC, Bartolomei F, Benar C-G.. Time–frequency strategies for increasing high-frequency oscillation detectability in intracerebral EEG. IEEE Trans Biomed Eng. 2016;63(12):2595–2606. PubMed PMC
Roehri N, Pizzo F, Bartolomei F, Wendling F, Bénar C-G.. What are the assets and weaknesses of HFO detectors? A benchmark framework based on realistic simulations. PLoS One. 2017;12(4):e0174702. PubMed PMC
Parvizi J, Kastner S.. Promises and limitations of human intracranial electroencephalography. Nat Neurosci. 2018;21(4):474–483. PubMed PMC
Tuyisenge V, Trebaul L, Bhattacharjee M, et al. . Automatic bad channel detection in intracranial electroencephalographic recordings using ensemble machine learning. Clin Neurophysiol. 2018;129(3):548–554. PubMed PMC
David O, Harrison L, Friston KJ.. Modelling event-related responses in the brain. Neuroimage. 2005;25(3):756–770. PubMed
David O, Maess B, Eckstein K, Friederici AD.. Dynamic causal modeling of subcortical connectivity of language. J Neurosci. 2011;31(7):2712–2717. PubMed PMC
Lemaréchal J-D, George N, David O.. Comparison of two integration methods for dynamic causal modeling of electrophysiological data. Neuroimage. 2018;173:623–631. PubMed PMC
Kasess CH, Stephan KE, Weissenbacher A, Pezawas L, Moser E, Windischberger C.. Multi-subject analyses with dynamic causal modeling. Neuroimage. 2010;49(4):3065–3074. PubMed PMC
Friston KJ, Litvak V, Oswal A, et al. . Bayesian model reduction and empirical Bayes for group (DCM) studies. Neuroimage. 2016;128:413–431. PubMed PMC
David O, Woźniak A, Minotti L, Kahane P.. Preictal short-term plasticity induced by intracerebral 1 Hz stimulation. Neuroimage. 2008;39(4):1633–1646. PubMed
Hagmann P, Cammoun L, Gigandet X, et al. . Mapping the structural core of human cerebral cortex. PLoS Biol. 2008;6(7):e159. PubMed PMC
Glasser MF, Coalson TS, Robinson EC, et al. . A multi-modal parcellation of human cerebral cortex. Nature. 2016;536(7615):171–178. PubMed PMC
Schmitt B, Duclap D, Lebois A, et al. . A novel probabilistic connectivity atlas for the human connectome: The CONNECT/ARCHI atlas; 2013. Accessed 15 June 2021. https://archive.ismrm.org/2013/3155.html
Foster RE, Connors BW, Waxman SG.. Rat optic nerve: Electrophysiological, pharmacological and anatomical studies during development. Dev Brain Res. 1982;3(3):371–386. PubMed
Menon V, Uddin LQ.. Saliency, switching, attention and control: A network model of insula function. Brain Struct Funct. 2010;214(5-6):655–667. PubMed PMC
Raichle ME, MacLeod AM, Snyder AZ, Powers WJ, Gusnard DA, Shulman GL.. A default mode of brain function. Proc Natl Acad Sci U S A. 2001;98(2):676–682. PubMed PMC
Donos C, Mîndruţă I, Ciurea J, Mălîia MD, Barborica A.. A comparative study of the effects of pulse parameters for intracranial direct electrical stimulation in epilepsy. Clin Neurophysiol. 2016;127(1):91–101. PubMed
Prime D, Rowlands D, O’Keefe S, Dionisio S.. Considerations in performing and analyzing the responses of cortico-cortical evoked potentials in stereo-EEG. Epilepsia. 2018;59(1):16–26. PubMed
Wang SS-H, Shultz JR, Burish MJ, et al. . Functional trade-offs in white matter axonal scaling. J Neurosci. 2008;28(15):4047–4056. PubMed PMC
Assaf Y, Blumenfeld-Katzir T, Yovel Y, Basser PJ.. Axcaliber: A method for measuring axon diameter distribution from diffusion MRI. Magn Reson Med. 2008;59(6):1347–1354. PubMed PMC
Caminiti R, Carducci F, Piervincenzi C, et al. . Diameter, length, speed, and conduction delay of callosal axons in macaque monkeys and humans: Comparing data from histology and magnetic resonance imaging diffusion tractography. J Neurosci. 2013;33(36):14501–14511. PubMed PMC
Drakesmith M, Harms R, Rudrapatna SU, Parker GD, Evans CJ, Jones DK.. Estimating axon conduction velocity in vivo from microstructural MRI. Neuroimage. 2019;203:116186. PubMed PMC
Wibral M, Pampu N, Priesemann V, et al. . Measuring information-transfer delays. PLoS ONE. 2013;8(2):e55809. PubMed PMC
Drakesmith M, Singh K, Jones D. Estimating axonal conduction delays and directionality in humans using transfer entropy; 2017.
Moran R, Pinotsis DA, Friston K.. Neural masses and fields in dynamic causal modeling. Front Comput Neurosci. 2013;7:57. PubMed PMC
Besson P, Bandt SK, Proix T, et al. . Anatomic consistencies across epilepsies: A stereotactic-EEG informed high-resolution structural connectivity study. Brain. 2017;140(10):2639–2652. PubMed
Proix T, Bartolomei F, Guye M, Jirsa VK.. Individual brain structure and modelling predict seizure propagation. Brain. 2017;140(3):641–654. PubMed PMC
Enatsu R, Jin K, Elwan S, et al. . Correlations between ictal propagation and response to electrical cortical stimulation: A cortico-cortical evoked potential study. Epilepsy Res. 2012;101(1-2):76–87. PubMed
Boido D, Kapetis D, Gnatkovsky V, et al. . Stimulus-evoked potentials contribute to map the epileptogenic zone during stereo-EEG presurgical monitoring: Stimulus-evoked potentials. Hum Brain Mapp. 2014;35(9):4267–4281. PubMed PMC
Lacruz ME, García Seoane JJ, Valentin A, Selway R, Alarcón G.. Frontal and temporal functional connections of the living human brain: Connections of the human brain. Eur J Neurosci. 2007;26(5):1357–1370. PubMed
Vicente R, Gollo LL, Mirasso CR, Fischer I, Pipa G.. Dynamical relaying can yield zero time lag neuronal synchrony despite long conduction delays. Proc Natl Acad Sci USA. 2008;105(44):17157–17162. PubMed PMC
Buzsáki G, Logothetis N, Singer W.. Scaling brain size, keeping timing: Evolutionary preservation of brain rhythms. Neuron. 2013;80(3):751–764. PubMed PMC
Cabral J, Hugues E, Sporns O, Deco G.. Role of local network oscillations in resting-state functional connectivity. Neuroimage. 2011;57(1):130–139. PubMed
Jirsa VK, Proix T, Perdikis D, et al. . The virtual epileptic patient: Individualized whole-brain models of epilepsy spread. Neuroimage. 2017;145:377–388. PubMed
Roberts JA, Robinson PA.. Modeling absence seizure dynamics: Implications for basic mechanisms and measurement of thalamocortical and corticothalamic latencies. J Theor Biol. 2008;253(1):189–201. PubMed
Roberts JA, Robinson PA.. Modeling distributed axonal delays in mean-field brain dynamics. Phys Rev E. 2008;78(5):051901. PubMed
Bojak I, Liley DTJ.. Axonal velocity distributions in neural field equations. PLoS Comput Biol. 2010;6(1):e1000653. PubMed PMC
Deco G, Kringelbach ML, Arnatkeviciute A, et al. . Dynamical consequences of regional heterogeneity in the brain’s transcriptional landscape. Sci Adv. 2021;7(29):eabf4752. PubMed PMC
Burt JB, Demirtaş M, Eckner WJ, et al. . Hierarchy of transcriptomic specialization across human cortex captured by structural neuroimaging topography. Nat Neurosci. 2018;21(9):1251–1259. PubMed PMC