Probabilistic functional tractography of the human cortex revisited
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, multicentrická studie, práce podpořená grantem
PubMed
30025851
PubMed Central
PMC6150949
DOI
10.1016/j.neuroimage.2018.07.039
PII: S1053-8119(18)30654-2
Knihovny.cz E-zdroje
- Klíčová slova
- Brain atlas, Connectivity mapping, Cortico-cortical evoked potentials, Epilepsy, Intracranial electroencephalogram,
- MeSH
- atlasy jako téma MeSH
- databáze faktografické MeSH
- dítě MeSH
- dospělí MeSH
- elektrokortikografie metody MeSH
- epilepsie diagnostické zobrazování patofyziologie MeSH
- evokované potenciály fyziologie MeSH
- konektom metody MeSH
- lidé středního věku MeSH
- lidé MeSH
- mladiství MeSH
- mladý dospělý MeSH
- mozková kůra diagnostické zobrazování patofyziologie MeSH
- nervové dráhy diagnostické zobrazování MeSH
- předškolní dítě MeSH
- Check Tag
- dítě MeSH
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- mladiství MeSH
- mladý dospělý MeSH
- mužské pohlaví MeSH
- předškolní dítě MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- multicentrická studie MeSH
- práce podpořená grantem MeSH
In patients with pharmaco-resistant focal epilepsies investigated with intracranial electroencephalography (iEEG), direct electrical stimulations of a cortical region induce cortico-cortical evoked potentials (CCEP) in distant cerebral cortex, which properties can be used to infer large scale brain connectivity. In 2013, we proposed a new probabilistic functional tractography methodology to study human brain connectivity. We have now been revisiting this method in the F-TRACT project (f-tract.eu) by developing a large multicenter CCEP database of several thousand stimulation runs performed in several hundred patients, and associated processing tools to create a probabilistic atlas of human cortico-cortical connections. Here, we wish to present a snapshot of the methods and data of F-TRACT using a pool of 213 epilepsy patients, all studied by stereo-encephalography with intracerebral depth electrodes. The CCEPs were processed using an automated pipeline with the following consecutive steps: detection of each stimulation run from stimulation artifacts in raw intracranial EEG (iEEG) files, bad channels detection with a machine learning approach, model-based stimulation artifact correction, robust averaging over stimulation pulses. Effective connectivity between the stimulated and recording areas is then inferred from the properties of the first CCEP component, i.e. onset and peak latency, amplitude, duration and integral of the significant part. Finally, group statistics of CCEP features are implemented for each brain parcel explored by iEEG electrodes. The localization (coordinates, white/gray matter relative positioning) of electrode contacts were obtained from imaging data (anatomical MRI or CT scans before and after electrodes implantation). The iEEG contacts were repositioned in different brain parcellations from the segmentation of patients' anatomical MRI or from templates in the MNI coordinate system. The F-TRACT database using the first pool of 213 patients provided connectivity probability values for 95% of possible intrahemispheric and 56% of interhemispheric connections and CCEP features for 78% of intrahemisheric and 14% of interhemispheric connections. In this report, we show some examples of anatomo-functional connectivity matrices, and associated directional maps. We also indicate how CCEP features, especially latencies, are related to spatial distances, and allow estimating the velocity distribution of neuronal signals at a large scale. Finally, we describe the impact on the estimated connectivity of the stimulation charge and of the contact localization according to the white or gray matter. The most relevant maps for the scientific community are available for download on f-tract. eu (David et al., 2017) and will be regularly updated during the following months with the addition of more data in the F-TRACT database. This will provide an unprecedented knowledge on the dynamical properties of large fiber tracts in human.
Canton Sanjiu Brain Hospital Epilepsy Center Jinan University Guangzhou China
Centre Hospitalier Universitaire de Nancy Nancy France
Department of Neuroscience Bambino Gesù Children's Hospital IRRCS Rome Italy
Department of Neurosurgery Sainte Anne Hospital Paris France
Epilepsy Monitoring Unit Department of Neurology Hospital del Mar IMIM Barcelona Spain
Epilepsy Surgery Center Niguarda Hospital Milan Italy
Epilepsy Unit Department of Clinical Neurophysiology Lille University Medical Center Lille France
Epilepsy Unit Dept of Neurology Pitié Salpêtrière Hospital APHP Paris France
Epilepsy Unit Hospital for Children and Adolescents Helsinki Finland
Montreal Neurological Institute and Hospital Montreal Canada
Multidisciplinary Epilepsy Unit Hospital Universitario y Politécnico La Fe Valencia Spain
Neurology Department CHU Rennes France
Neurology Department University Emergency Hospital Bucharest Romania
Neurophysiology and Epilepsy Unit Bicêtre Hospital France
Service de neurochirurgie pédiatrique Fondation Rothschild Paris France
Service de Neurophysiologie Clinique APHM Hôpitaux de la Timone Marseille France
University Hospital Department of Neurology Strasbourg France
University Hospital Department of Neurology Toulouse France
Yuquan Hospital Epilepsy Center Tsinghua University Beijing China
Zobrazit více v PubMed
Almashaikhi T., Rheims S., Ostrowsky-Coste K., Montavont A., Jung J., De Bellescize J., Arzimanoglou A., Keo Kosal P., Guénot M., Bertrand O., Ryvlin P. Intrainsular functional connectivity in human. Hum. Brain Mapp. 2014;35:2779–2788. PubMed PMC
Ashburner J. Computational anatomy with the SPM software. Magn. Reson. Imaging. 2009;27:1163–1174. PubMed
Auzias G., Coulon O., Brovelli A. Vol. 37. 2016. pp. 1573–1592. (MarsAtlas: a Cortical Parcellation Atlas for Functional Mapping). PubMed PMC
Avants B.B., Tustison N.J., Wu J., Cook P.A., Gee J.C. An open source multivariate framework for n-tissue segmentation with evaluation on public data. Neuroinformatics. 2011;9:381–400. PubMed PMC
Besson P., Bandt S.K., Proix T., Lagarde S., Jirsa V.K., Ranjeva J.-P., Bartolomei F., Guye M. Anatomic consistencies across epilepsies: a stereotactic-EEG informed high-resolution structural connectivity study. Brain. 2017:1–14. PubMed
Boido D., Kapetis D., Gnatkovsky V., Pastori C., Galbardi B., Sartori I., Tassi L., Cardinale F., Francione S., de Curtis M. Stimulus-evoked potentials contribute to map the epileptogenic zone during stereo-EEG presurgical monitoring. Hum. Brain Mapp. 2014;35:4267–4281. PubMed PMC
Brodmann K. Johann Ambrosius Barth; Leipzig: 1909. Vergleichende Lokalisationslehre der Grosshirnrinde.
Catenoix H., Magnin M., Guénot M., Isnard J., Mauguière F., Ryvlin P. Hippocampal-orbitofrontal connectivity in human: an electrical stimulation study. Clin. Neurophysiol. 2005;116:1779–1784. PubMed
Conner C.R., Ellmore T.M., DiSano M.A., Pieters T.A., Potter A.W., Tandon N. Anatomic and electro-physiologic connectivity of the language system: a combined DTI-CCEP study. Comput. Biol. Med. 2011;41:1100–1109. PubMed PMC
David O., F-TRACT consortium . 2017. F-TRACT atlas.https://persyval-platform.univ-grenoble-alpes.fr/DS166/detaildataset version 1712.
David O., Job A.-S., De Palma L., Hoffmann D., Minotti L., Kahane P. Probabilistic functional tractography of the human cortex. Neuroimage. 2013;80:307–317. PubMed
Deco G., Jirsa V.K., McIntosh A.R. Resting brains never rest: computational insights into potential cognitive architectures. Trends Neurosci. 2013;36:268–274. PubMed
Deman P., Bhattacharjee M., Rivière D., Tadel F., Cointepas Y., David O. IntrAnat Electrodes: a free database software to visualize intracranial electroencephalographic data in patient's referential and to initiate group studies. Front. Neuroinf. 2018;12:40. PubMed PMC
Donos C., Mălîia M.D., Mîndruţă I., Popa I., Ene M., Bălănescu B., Ciurea A., Barborica A. A connectomics approach combining structural and effective connectivity assessed by intracranial electrical stimulation. Neuroimage. 2016;132:344–358. PubMed
Donos C., Mîndruţă I., Ciurea J., Mălîia M.D., Barborica A. A comparative study of the effects of pulse parameters for intracranial direct electrical stimulation in epilepsy. Clin. Neurophysiol. 2016;127:91–101. PubMed
Enatsu R., Jin K., Elwan S., Kubota Y., Piao Z., O'Connor T., Horning K., Burgess R.C., Bingaman W., Nair D.R. Correlations between ictal propagation and response to electrical cortical stimulation: a cortico-cortical evoked potential study. Epilepsy Res. 2012;101:76–87. PubMed
Enatsu R., Piao Z., O'Connor T., Horning K., Mosher J., Burgess R., Bingaman W., Nair D. Cortical excitability varies upon ictal onset patterns in neocortical epilepsy: a cortico-cortical evoked potential study. Clin. Neurophysiol. 2012;123:252–260. PubMed
Enatsu R., Kubota Y., Kakisaka Y., Bulacio J., Piao Z., O'Connor T., Horning K., Mosher J., Burgess R.C., Bingaman W., Nair D.R. Reorganization of posterior language area in temporal lobe epilepsy: a cortico-cortical evoked potential study. Epilepsy Res. 2013;103:73–82. PubMed
Enatsu R., Matsumoto R., Piao Z., O'Connor T., Horning K., Burgess R.C., Bulacio J., Bingaman W., Nair D.R. Cortical negative motor network in comparison with sensorimotor network: a cortico-cortical evoked potential study. Cortex. 2013;49:2080–2096. PubMed
Enatsu R., Gonzalez-Martinez J., Bulacio J., Kubota Y., Mosher J., Burgess R.C., Najm I., Nair D.R. Connections of the limbic network: a corticocortical evoked potentials study. Cortex; a journal devoted to the study of the nervous system and behavior. 2015;62:20–33. PubMed
Entz L., Tóth E., Keller C.J., Bickel S., Groppe D.M., Fabó D., Kozák L.R., Erőss L., Ulbert I., Mehta A.D. Evoked effective connectivity of the human neocortex. Hum. Brain Mapp. 2014;35:5736–5753. PubMed PMC
Ercsey-Ravasz M., Markov N.T., Lamy C., Van Essen D.C., Knoblauch K., Toroczkai Z., Kennedy H. A predictive network model of cerebral cortical connectivity based on a distance rule. Neuron. 2013;80:184–197. PubMed PMC
Guevara P., Duclap D., Poupon C., Marrakchi-Kacem L., Fillard P., Le Bihan D., Leboyer M., Houenou J., Mangin J.F. Automatic fiber bundle segmentation in massive tractography datasets using a multi-subject bundle atlas. Neuroimage. 2012;61:1083–1099. PubMed
Hagmann P., Kurant M., Gigandet X., Thiran P., Wedeen V.J., Meuli R., Thiran J.-P. Mapping human whole-brain structural networks with diffusion MRI. PLoS One. 2007;2:e597. PubMed PMC
Hagmann P., Cammoun L., Gigandet X., Meuli R., Honey C.J., Wedeen V.J., Sporns O. Mapping the structural core of human cerebral cortex. PLoS Biol. 2008;6:e159. PubMed PMC
Hammers A., Allom R., Koepp M.J., Free S.L., Myers R., Lemieux L., Mitchell T.N., Brooks D.J., Duncan J.S. Vol. 19. 2003. pp. 224–247. (Three-dimensional Maximum Probability Atlas of the Human Brain, with Particular Reference to the Temporal Lobe). PubMed PMC
Iwasaki M., Enatsu R., Matsumoto R., Novak E., Thankappen B., Piao Z., O'Connor T., Horning K., Bingaman W., Nair D. Accentuated cortico-cortical evoked potentials in neocortical epilepsy in areas of ictal onset. Epileptic Disord. 2010;12:292–302. PubMed
Kahane P., Tassi L., Francione S., Hoffmann D., Russo Lo G., Munari C. [Electroclinical manifestations elicited by intracerebral electric stimulation “shocks” in temporal lobe epilepsy] Neurophysiol. Clin. 1993;23:305–326. PubMed
Keller C.J., Bickel S., Entz L., Ulbert I., Milham M.P., Kelly C., Mehta A.D. Intrinsic functional architecture predicts electrically evoked responses in the human brain. Proc. Natl. Acad. Sci. U.S.A. 2011;108:10308–10313. PubMed PMC
Keller C.J., Honey C.J., Entz L., Bickel S., Groppe D.M., Tóth E., Ulbert I., Lado F.A., Mehta A.D. Corticocortical evoked potentials reveal projectors and integrators in human brain networks. J. Neurosci. 2014;34:9152–9163. PubMed PMC
Keller C.J., Honey C.J., Mégevand P., Entz L., Ulbert I., Mehta A.D. Mapping human brain networks with cortico-cortical evoked potentials. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2014;369 20130528–20130528. PubMed PMC
Kikuchi T., Matsumoto R., Mikuni N., Yokoyama Y., Matsumoto A., Ikeda A., Fukuyama H., Miyamoto S., Hashimoto N. Asymmetric bilateral effect of the supplementary motor area proper in the human motor system. Clin. Neurophysiol. 2012;123:324–334. PubMed
Koubeissi M.Z., Lesser R.P., Sinai A., Gaillard W.D., Franaszczuk P.J., Crone N.E. Connectivity between perisylvian and bilateral basal temporal cortices. Cerebr. Cortex. 2012;22:918–925. PubMed PMC
Krieg J., Koessler L., Jonas J., Colnat-Coulbois S., Vignal J.-P., Bénar C.-G., Maillard L.G. Discrimination of a medial functional module within the temporal lobe using an effective connectivity model: a CCEP study. Neuroimage. 2017;161:219–231. PubMed
Kubota Y., Enatsu R., Gonzalez-Martinez J., Bulacio J., Mosher J., Burgess R.C., Nair D.R. In vivo human hippocampal cingulate connectivity: a corticocortical evoked potentials (CCEPs) study. Clin. Neurophysiol. 2013;124:1547–1556. PubMed
Lacruz M.E., Seoane J.J.G., Valentin A., Selway R., Alarcón G. Frontal and temporal functional connections of the living human brain. Eur. J. Neurosci. 2007;26:1357–1370. PubMed
Lacuey N., Zonjy B., Kahriman E.S., Kaffashi F., Miller J., Lüders H.O. Functional connectivity between right and left mesial temporal structures. Brain Struct. Funct. 2015;220:2617–2623. PubMed
Mandonnet E., Dadoun Y., Poisson I., Madadaki C., Froelich S., Lozeron P. Axono-cortical evoked potentials: a proof-of-concept study. Neurochirurgie. 2016;62:67–71. PubMed
Markov N.T., Ercsey-Ravasz M., Van Essen D.C., Knoblauch K., Toroczkai Z., Kennedy H. Cortical high-density counterstream architectures. Science. 2013;342 1238406–1238406. PubMed PMC
Matsumoto R., Nair D.R., LaPresto E., Najm I., Bingaman W., Shibasaki H., Lüders H.O. Functional connectivity in the human language system: a cortico-cortical evoked potential study. Brain. 2004;127:2316–2330. PubMed
Matsumoto R., Nair D.R., LaPresto E., Bingaman W., Shibasaki H., Lüders H.O. Functional connectivity in human cortical motor system: a cortico-cortical evoked potential study. Brain. 2007;130:181–197. PubMed
Petkoski S., Spiegler A., Proix T., Aram P., Temprado J.-J., Jirsa V.K. Heterogeneity of time delays determines synchronization of coupled oscillators. Phys. Rev. E. 2016;94:012209. PubMed
Ranck J.B. Which elements are excited in electrical stimulation of mammalian central nervous system: a review. Brain Res. 1975;98:417–440. PubMed
Rivière D., Geffroy D., Denghien I., Souedet N., Cointepas Y. BrainVISA: an extensible software environment for sharing multimodal neuroimaging data and processing tools. Neuroimage. 2009;47:S163.
Rosenberg D.S., Mauguiere F., Catenoix H., Faillenot I., Magnin M. Reciprocal thalamocortical connectivity of the medial pulvinar: a depth stimulation and evoked potential study in human brain. Cerebr. Cortex. 2009;19:1462–1473. PubMed
Sporns O., Tononi G., Kötter R. The human connectome: a structural description of the human brain. PLoS Comput. Biol. 2005;1:e42. PubMed PMC
Swadlow H.A. Efferent neurons and suspected interneurons in S-1 vibrissa cortex of the awake rabbit: receptive fields and axonal properties. J. Neurophysiol. 1989;62:288–308. PubMed
Trebaul L., Rudrauf D., Job A.-S., Mălîia M.D., Popa I., Barborica A., Minotti L., Mîndruţă I., Kahane P., David O. Journal of neuroscience methods. J. Neurosci. Meth. 2016;264:94–102. PubMed PMC
Tuyisenge V., Trebaul L., Bhattacharjee M., Chanteloup-Forêt B., Saubat-Guigui C., Mîndruţă I., Rheims S., Maillard L., Kahane P., Taussig D., David O. Automatic bad channel detection in intracranial electroencephalographic recordings using ensemble machine learning. Clin. Neurophysiol. 2018;129:548–554. PubMed PMC
Tzourio-Mazoyer N., Landeau B., Papathanassiou D., Crivello F., Etard O., Delcroix N., Mazoyer B., Joliot M. Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain. Neuroimage. 2002;15:273–289. PubMed
Umeoka S., Terada K., Baba K., Usui K., Matsuda K., Tottori T., Usui N., Nakamura F., Inoue Y., Fujiwara T., Mihara T. Neural connection between bilateral basal temporal regions: cortico-cortical evoked potential analysis in patients with temporal lobe epilepsy. Neurosurgery. 2009;64:847–855. discussion 855. PubMed
Valentín A., Anderson M., Alarcón G., Seoane J.J.G., Selway R., Binnie C.D., Polkey C.E. Responses to single pulse electrical stimulation identify epileptogenesis in the human brain in vivo. Brain. 2002;125:1709–1718. PubMed
Wilson C.L., Isokawa M., Babb T.L., Crandall P.H. Functional connections in the human temporal lobe. I. Analysis of limbic system pathways using neuronal responses evoked by electrical stimulation. Exp. Brain Res. 1990;82:279–292. PubMed
Yamao Y., Matsumoto R., Kunieda T., Arakawa Y., Kobayashi K., Usami K., Shibata S., Kikuchi T., Sawamoto N., Mikuni N., Ikeda A., Fukuyama H., Miyamoto S. Intraoperative dorsal language network mapping by using single-pulse electrical stimulation. Hum. Brain Mapp. 2014;35:4345–4361. PubMed PMC