Detail
Článek
Článek online
FT
Medvik - BMČ
  • Je něco špatně v tomto záznamu ?

Molecular portraits of colorectal cancer morphological regions

E. Budinská, M. Hrivňáková, TC. Ivkovic, M. Madrzyk, R. Nenutil, B. Bencsiková, D. Al Tukmachi, M. Ručková, L. Zdražilová Dubská, O. Slabý, J. Feit, MP. Dragomir, P. Borilova Linhartova, S. Tejpar, V. Popovici

. 2023 ; 12 (-) : . [pub] 20231113

Jazyk angličtina Země Anglie, Velká Británie

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/bmc24000691

Heterogeneity of colorectal carcinoma (CRC) represents a major hurdle towards personalized medicine. Efforts based on whole tumor profiling demonstrated that the CRC molecular subtypes were associated with specific tumor morphological patterns representing tumor subregions. We hypothesize that whole-tumor molecular descriptors depend on the morphological heterogeneity with significant impact on current molecular predictors. We investigated intra-tumor heterogeneity by morphology-guided transcriptomics to better understand the links between gene expression and tumor morphology represented by six morphological patterns (morphotypes): complex tubular, desmoplastic, mucinous, papillary, serrated, and solid/trabecular. Whole-transcriptome profiling by microarrays of 202 tumor regions (morphotypes, tumor-adjacent normal tissue, supportive stroma, and matched whole tumors) from 111 stage II-IV CRCs identified morphotype-specific gene expression profiles and molecular programs and differences in their cellular buildup. The proportion of cell types (fibroblasts, epithelial and immune cells) and differentiation of epithelial cells were the main drivers of the observed disparities with activation of EMT and TNF-α signaling in contrast to MYC and E2F targets signaling, defining major gradients of changes at molecular level. Several gene expression-based (including single-cell) classifiers, prognostic and predictive signatures were examined to study their behavior across morphotypes. Most exhibited important morphotype-dependent variability within same tumor sections, with regional predictions often contradicting the whole-tumor classification. The results show that morphotype-based tumor sampling allows the detection of molecular features that would otherwise be distilled in whole tumor profile, while maintaining histopathology context for their interpretation. This represents a practical approach at improving the reproducibility of expression profiling and, by consequence, of gene-based classifiers.

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc24000691
003      
CZ-PrNML
005      
20240213093325.0
007      
ta
008      
240109e20231113enk f 000 0|eng||
009      
AR
024    7_
$a 10.7554/eLife.86655 $2 doi
035    __
$a (PubMed)37956043
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a enk
100    1_
$a Budinská, Eva $u RECETOX, Faculty of Science, Masarykova Univerzita, Brno, Czech Republic
245    10
$a Molecular portraits of colorectal cancer morphological regions / $c E. Budinská, M. Hrivňáková, TC. Ivkovic, M. Madrzyk, R. Nenutil, B. Bencsiková, D. Al Tukmachi, M. Ručková, L. Zdražilová Dubská, O. Slabý, J. Feit, MP. Dragomir, P. Borilova Linhartova, S. Tejpar, V. Popovici
520    9_
$a Heterogeneity of colorectal carcinoma (CRC) represents a major hurdle towards personalized medicine. Efforts based on whole tumor profiling demonstrated that the CRC molecular subtypes were associated with specific tumor morphological patterns representing tumor subregions. We hypothesize that whole-tumor molecular descriptors depend on the morphological heterogeneity with significant impact on current molecular predictors. We investigated intra-tumor heterogeneity by morphology-guided transcriptomics to better understand the links between gene expression and tumor morphology represented by six morphological patterns (morphotypes): complex tubular, desmoplastic, mucinous, papillary, serrated, and solid/trabecular. Whole-transcriptome profiling by microarrays of 202 tumor regions (morphotypes, tumor-adjacent normal tissue, supportive stroma, and matched whole tumors) from 111 stage II-IV CRCs identified morphotype-specific gene expression profiles and molecular programs and differences in their cellular buildup. The proportion of cell types (fibroblasts, epithelial and immune cells) and differentiation of epithelial cells were the main drivers of the observed disparities with activation of EMT and TNF-α signaling in contrast to MYC and E2F targets signaling, defining major gradients of changes at molecular level. Several gene expression-based (including single-cell) classifiers, prognostic and predictive signatures were examined to study their behavior across morphotypes. Most exhibited important morphotype-dependent variability within same tumor sections, with regional predictions often contradicting the whole-tumor classification. The results show that morphotype-based tumor sampling allows the detection of molecular features that would otherwise be distilled in whole tumor profile, while maintaining histopathology context for their interpretation. This represents a practical approach at improving the reproducibility of expression profiling and, by consequence, of gene-based classifiers.
650    _2
$a lidé $7 D006801
650    _2
$a reprodukovatelnost výsledků $7 D015203
650    12
$a kolorektální nádory $x genetika $x patologie $7 D015179
650    _2
$a stanovení celkové genové exprese $x metody $7 D020869
650    _2
$a transkriptom $7 D059467
650    _2
$a regulace genové exprese u nádorů $7 D015972
655    _2
$a časopisecké články $7 D016428
655    _2
$a práce podpořená grantem $7 D013485
700    1_
$a Hrivňáková, Martina $u RECETOX, Faculty of Science, Masarykova Univerzita, Brno, Czech Republic
700    1_
$a Ivkovic, Tina Catela $u Central European Institute of Technology, Masarykova Univerzita, Brno, Czech Republic
700    1_
$a Madrzyk, Marie $u Central European Institute of Technology, Masarykova Univerzita, Brno, Czech Republic
700    1_
$a Nenutil, Rudolf $u Masaryk Memorial Cancer Institute, Brno, Czech Republic
700    1_
$a Bencsiková, Beatrix $u Masaryk Memorial Cancer Institute, Brno, Czech Republic
700    1_
$a Al Tukmachi, Dagmar $u Central European Institute of Technology, Masarykova Univerzita, Brno, Czech Republic
700    1_
$a Ručková, Michaela $u Central European Institute of Technology, Masarykova Univerzita, Brno, Czech Republic
700    1_
$a Zdražilová Dubská, Lenka $u Faculty of Medicine, Masarykova Univerzita, Brno, Czech Republic
700    1_
$a Slabý, Ondřej $u Central European Institute of Technology, Department of Biology, Faculty of Medicine, Masarykova Univerzita, Brno, Czech Republic
700    1_
$a Feit, Josef $u Department of Pharmacology and Toxicology, Faculty of Pharmacy, Masarykova Univerzita, Brno, Czech Republic
700    1_
$a Dragomir, Mihnea-Paul $u Institute of Pathology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany $u Berlin Institute of Health, Berlin, Germany $u German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), Heidelberg, Germany
700    1_
$a Borilova Linhartova, Petra $u RECETOX, Faculty of Science, Masarykova Univerzita, Brno, Czech Republic
700    1_
$a Tejpar, Sabine $u Faculty of Medicine, Digestive Oncology Unit, Katholieke Universiteit Leuven, Leuven, Belgium
700    1_
$a Popovici, Vlad $u RECETOX, Faculty of Science, Masarykova Univerzita, Brno, Czech Republic $1 https://orcid.org/0000000213119188 $7 xx0213329
773    0_
$w MED00188753 $t eLife $x 2050-084X $g Roč. 12 (20231113)
856    41
$u https://pubmed.ncbi.nlm.nih.gov/37956043 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y - $z 0
990    __
$a 20240109 $b ABA008
991    __
$a 20240213093322 $b ABA008
999    __
$a ok $b bmc $g 2049368 $s 1210385
BAS    __
$a 3
BAS    __
$a PreBMC-MEDLINE
BMC    __
$a 2023 $b 12 $c - $e 20231113 $i 2050-084X $m eLife $n eLife $x MED00188753
LZP    __
$a Pubmed-20240109

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...