Detail
Article
Online article
FT
Medvik - BMC
  • Something wrong with this record ?

Human performance in predicting enhancement quality of gliomas using gadolinium-free MRI sequences

A. Azizova, IJHG. Wamelink, Y. Prysiazhniuk, M. Cakmak, E. Kaya, J. Petr, F. Barkhof, VC. Keil

. 2024 ; 34 (6) : 673-693. [pub] 20240919

Language English Country United States

Document type Journal Article

Grant support
Hanarth Foundation
National Institute for Health and Care Research Biomedical Research Center at University College London Hospitals
European Society of Neuroradiology Research Fellowship Grant

BACKGROUND AND PURPOSE: To develop and test a decision tree for predicting contrast enhancement quality and shape using precontrast magnetic resonance imaging (MRI) sequences in a large adult-type diffuse glioma cohort. METHODS: Preoperative MRI scans (development/optimization/test sets: n = 31/38/303, male = 17/22/189, mean age = 52/59/56.7 years, high-grade glioma = 22/33/249) were retrospectively evaluated, including pre- and postcontrast T1-weighted, T2-weighted, fluid-attenuated inversion recovery, and diffusion-weighted imaging sequences. Enhancement prediction decision tree (EPDT) was developed using development and optimization sets, incorporating four imaging features: necrosis, diffusion restriction, T2 inhomogeneity, and nonenhancing tumor margins. EPDT accuracy was assessed on a test set by three raters of variable experience. True enhancement features (gold standard) were evaluated using pre- and postcontrast T1-weighted images. Statistical analysis used confusion matrices, Cohen's/Fleiss' kappa, and Kendall's W. Significance threshold was p < .05. RESULTS: Raters 1, 2, and 3 achieved overall accuracies of .86 (95% confidence interval [CI]: .81-.90), .89 (95% CI: .85-.92), and .92 (95% CI: .89-.95), respectively, in predicting enhancement quality (marked, mild, or no enhancement). Regarding shape, defined as the thickness of enhancing margin (solid, rim, or no enhancement), accuracies were .84 (95% CI: .79-.88), .88 (95% CI: .84-.92), and .89 (95% CI: .85-.92). Intrarater intergroup agreement comparing predicted and true enhancement features consistently reached substantial levels (≥.68 [95% CI: .61-.75]). Interrater comparison showed at least moderate agreement (group: ≥.42 [95% CI: .36-.48], pairwise: ≥.61 [95% CI: .50-.72]). Among the imaging features in the EPDT, necrosis assessment displayed the highest intra- and interrater consistency (≥.80 [95% CI: .73-.88]). CONCLUSION: The proposed EPDT has high accuracy in predicting enhancement patterns of gliomas irrespective of rater experience.

References provided by Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc25003639
003      
CZ-PrNML
005      
20250206104456.0
007      
ta
008      
250121s2024 xxu f 000 0|eng||
009      
AR
024    7_
$a 10.1111/jon.13233 $2 doi
035    __
$a (PubMed)39300683
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a xxu
100    1_
$a Azizova, Aynur $u Department of Radiology and Nuclear Medicine, Amsterdam UMC, location VUMC, Amsterdam, The Netherlands $u Imaging and Biomarkers, Cancer Center Amsterdam, Amsterdam, The Netherlands
245    10
$a Human performance in predicting enhancement quality of gliomas using gadolinium-free MRI sequences / $c A. Azizova, IJHG. Wamelink, Y. Prysiazhniuk, M. Cakmak, E. Kaya, J. Petr, F. Barkhof, VC. Keil
520    9_
$a BACKGROUND AND PURPOSE: To develop and test a decision tree for predicting contrast enhancement quality and shape using precontrast magnetic resonance imaging (MRI) sequences in a large adult-type diffuse glioma cohort. METHODS: Preoperative MRI scans (development/optimization/test sets: n = 31/38/303, male = 17/22/189, mean age = 52/59/56.7 years, high-grade glioma = 22/33/249) were retrospectively evaluated, including pre- and postcontrast T1-weighted, T2-weighted, fluid-attenuated inversion recovery, and diffusion-weighted imaging sequences. Enhancement prediction decision tree (EPDT) was developed using development and optimization sets, incorporating four imaging features: necrosis, diffusion restriction, T2 inhomogeneity, and nonenhancing tumor margins. EPDT accuracy was assessed on a test set by three raters of variable experience. True enhancement features (gold standard) were evaluated using pre- and postcontrast T1-weighted images. Statistical analysis used confusion matrices, Cohen's/Fleiss' kappa, and Kendall's W. Significance threshold was p < .05. RESULTS: Raters 1, 2, and 3 achieved overall accuracies of .86 (95% confidence interval [CI]: .81-.90), .89 (95% CI: .85-.92), and .92 (95% CI: .89-.95), respectively, in predicting enhancement quality (marked, mild, or no enhancement). Regarding shape, defined as the thickness of enhancing margin (solid, rim, or no enhancement), accuracies were .84 (95% CI: .79-.88), .88 (95% CI: .84-.92), and .89 (95% CI: .85-.92). Intrarater intergroup agreement comparing predicted and true enhancement features consistently reached substantial levels (≥.68 [95% CI: .61-.75]). Interrater comparison showed at least moderate agreement (group: ≥.42 [95% CI: .36-.48], pairwise: ≥.61 [95% CI: .50-.72]). Among the imaging features in the EPDT, necrosis assessment displayed the highest intra- and interrater consistency (≥.80 [95% CI: .73-.88]). CONCLUSION: The proposed EPDT has high accuracy in predicting enhancement patterns of gliomas irrespective of rater experience.
650    _2
$a lidé $7 D006801
650    12
$a gliom $x diagnostické zobrazování $x patologie $7 D005910
650    12
$a nádory mozku $x diagnostické zobrazování $x patologie $7 D001932
650    _2
$a mužské pohlaví $7 D008297
650    _2
$a ženské pohlaví $7 D005260
650    _2
$a lidé středního věku $7 D008875
650    12
$a magnetická rezonanční tomografie $x metody $7 D008279
650    12
$a kontrastní látky $7 D003287
650    _2
$a retrospektivní studie $7 D012189
650    _2
$a vylepšení obrazu $x metody $7 D007089
650    _2
$a dospělí $7 D000328
650    _2
$a reprodukovatelnost výsledků $7 D015203
650    _2
$a senioři $7 D000368
650    _2
$a gadolinium $7 D005682
650    _2
$a rozhodovací stromy $7 D003663
650    _2
$a senzitivita a specificita $7 D012680
655    _2
$a časopisecké články $7 D016428
700    1_
$a Wamelink, Ivar J H G $u Department of Radiology and Nuclear Medicine, Amsterdam UMC, location VUMC, Amsterdam, The Netherlands $u Imaging and Biomarkers, Cancer Center Amsterdam, Amsterdam, The Netherlands
700    1_
$a Prysiazhniuk, Yeva $u Second Faculty of Medicine, Department of Pathophysiology, Charles University, Prague, Czech Republic $u Motol University Hospital, Prague, Czech Republic
700    1_
$a Cakmak, Marcus $u Department of Radiology and Nuclear Medicine, Amsterdam UMC, location VUMC, Amsterdam, The Netherlands $u University Medical Center, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
700    1_
$a Kaya, Elif $u Faculty of Medicine, Ankara Yıldırım Beyazıt University, Ankara, Türkiye
700    1_
$a Petr, Jan $u Department of Radiology and Nuclear Medicine, Amsterdam UMC, location VUMC, Amsterdam, The Netherlands $u Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Dresden, Germany
700    1_
$a Barkhof, Frederik $u Department of Radiology and Nuclear Medicine, Amsterdam UMC, location VUMC, Amsterdam, The Netherlands $u Brain Imaging, Amsterdam Neuroscience, Amsterdam, The Netherlands $u Queen Square Institute of Neurology and Center for Medical Image Computing, University College London, London, UK
700    1_
$a Keil, Vera C $u Department of Radiology and Nuclear Medicine, Amsterdam UMC, location VUMC, Amsterdam, The Netherlands $u Imaging and Biomarkers, Cancer Center Amsterdam, Amsterdam, The Netherlands $u Brain Imaging, Amsterdam Neuroscience, Amsterdam, The Netherlands $1 https://orcid.org/0000000186993506
773    0_
$w MED00002833 $t Journal of neuroimaging $x 1552-6569 $g Roč. 34, č. 6 (2024), s. 673-693
856    41
$u https://pubmed.ncbi.nlm.nih.gov/39300683 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y - $z 0
990    __
$a 20250121 $b ABA008
991    __
$a 20250206104452 $b ABA008
999    __
$a ok $b bmc $g 2263410 $s 1239646
BAS    __
$a 3
BAS    __
$a PreBMC-MEDLINE
BMC    __
$a 2024 $b 34 $c 6 $d 673-693 $e 20240919 $i 1552-6569 $m Journal of neuroimaging $n J Neuroimaging $x MED00002833
GRA    __
$p Hanarth Foundation
GRA    __
$p National Institute for Health and Care Research Biomedical Research Center at University College London Hospitals
GRA    __
$p European Society of Neuroradiology Research Fellowship Grant
LZP    __
$a Pubmed-20250121

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...