Detail
Článek
Článek online
FT
Medvik - BMČ
  • Je něco špatně v tomto záznamu ?

Human performance in predicting enhancement quality of gliomas using gadolinium-free MRI sequences

A. Azizova, IJHG. Wamelink, Y. Prysiazhniuk, M. Cakmak, E. Kaya, J. Petr, F. Barkhof, VC. Keil

. 2024 ; 34 (6) : 673-693. [pub] 20240919

Jazyk angličtina Země Spojené státy americké

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/bmc25003639

Grantová podpora
Hanarth Foundation
National Institute for Health and Care Research Biomedical Research Center at University College London Hospitals
European Society of Neuroradiology Research Fellowship Grant

BACKGROUND AND PURPOSE: To develop and test a decision tree for predicting contrast enhancement quality and shape using precontrast magnetic resonance imaging (MRI) sequences in a large adult-type diffuse glioma cohort. METHODS: Preoperative MRI scans (development/optimization/test sets: n = 31/38/303, male = 17/22/189, mean age = 52/59/56.7 years, high-grade glioma = 22/33/249) were retrospectively evaluated, including pre- and postcontrast T1-weighted, T2-weighted, fluid-attenuated inversion recovery, and diffusion-weighted imaging sequences. Enhancement prediction decision tree (EPDT) was developed using development and optimization sets, incorporating four imaging features: necrosis, diffusion restriction, T2 inhomogeneity, and nonenhancing tumor margins. EPDT accuracy was assessed on a test set by three raters of variable experience. True enhancement features (gold standard) were evaluated using pre- and postcontrast T1-weighted images. Statistical analysis used confusion matrices, Cohen's/Fleiss' kappa, and Kendall's W. Significance threshold was p < .05. RESULTS: Raters 1, 2, and 3 achieved overall accuracies of .86 (95% confidence interval [CI]: .81-.90), .89 (95% CI: .85-.92), and .92 (95% CI: .89-.95), respectively, in predicting enhancement quality (marked, mild, or no enhancement). Regarding shape, defined as the thickness of enhancing margin (solid, rim, or no enhancement), accuracies were .84 (95% CI: .79-.88), .88 (95% CI: .84-.92), and .89 (95% CI: .85-.92). Intrarater intergroup agreement comparing predicted and true enhancement features consistently reached substantial levels (≥.68 [95% CI: .61-.75]). Interrater comparison showed at least moderate agreement (group: ≥.42 [95% CI: .36-.48], pairwise: ≥.61 [95% CI: .50-.72]). Among the imaging features in the EPDT, necrosis assessment displayed the highest intra- and interrater consistency (≥.80 [95% CI: .73-.88]). CONCLUSION: The proposed EPDT has high accuracy in predicting enhancement patterns of gliomas irrespective of rater experience.

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc25003639
003      
CZ-PrNML
005      
20250206104456.0
007      
ta
008      
250121s2024 xxu f 000 0|eng||
009      
AR
024    7_
$a 10.1111/jon.13233 $2 doi
035    __
$a (PubMed)39300683
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a xxu
100    1_
$a Azizova, Aynur $u Department of Radiology and Nuclear Medicine, Amsterdam UMC, location VUMC, Amsterdam, The Netherlands $u Imaging and Biomarkers, Cancer Center Amsterdam, Amsterdam, The Netherlands
245    10
$a Human performance in predicting enhancement quality of gliomas using gadolinium-free MRI sequences / $c A. Azizova, IJHG. Wamelink, Y. Prysiazhniuk, M. Cakmak, E. Kaya, J. Petr, F. Barkhof, VC. Keil
520    9_
$a BACKGROUND AND PURPOSE: To develop and test a decision tree for predicting contrast enhancement quality and shape using precontrast magnetic resonance imaging (MRI) sequences in a large adult-type diffuse glioma cohort. METHODS: Preoperative MRI scans (development/optimization/test sets: n = 31/38/303, male = 17/22/189, mean age = 52/59/56.7 years, high-grade glioma = 22/33/249) were retrospectively evaluated, including pre- and postcontrast T1-weighted, T2-weighted, fluid-attenuated inversion recovery, and diffusion-weighted imaging sequences. Enhancement prediction decision tree (EPDT) was developed using development and optimization sets, incorporating four imaging features: necrosis, diffusion restriction, T2 inhomogeneity, and nonenhancing tumor margins. EPDT accuracy was assessed on a test set by three raters of variable experience. True enhancement features (gold standard) were evaluated using pre- and postcontrast T1-weighted images. Statistical analysis used confusion matrices, Cohen's/Fleiss' kappa, and Kendall's W. Significance threshold was p < .05. RESULTS: Raters 1, 2, and 3 achieved overall accuracies of .86 (95% confidence interval [CI]: .81-.90), .89 (95% CI: .85-.92), and .92 (95% CI: .89-.95), respectively, in predicting enhancement quality (marked, mild, or no enhancement). Regarding shape, defined as the thickness of enhancing margin (solid, rim, or no enhancement), accuracies were .84 (95% CI: .79-.88), .88 (95% CI: .84-.92), and .89 (95% CI: .85-.92). Intrarater intergroup agreement comparing predicted and true enhancement features consistently reached substantial levels (≥.68 [95% CI: .61-.75]). Interrater comparison showed at least moderate agreement (group: ≥.42 [95% CI: .36-.48], pairwise: ≥.61 [95% CI: .50-.72]). Among the imaging features in the EPDT, necrosis assessment displayed the highest intra- and interrater consistency (≥.80 [95% CI: .73-.88]). CONCLUSION: The proposed EPDT has high accuracy in predicting enhancement patterns of gliomas irrespective of rater experience.
650    _2
$a lidé $7 D006801
650    12
$a gliom $x diagnostické zobrazování $x patologie $7 D005910
650    12
$a nádory mozku $x diagnostické zobrazování $x patologie $7 D001932
650    _2
$a mužské pohlaví $7 D008297
650    _2
$a ženské pohlaví $7 D005260
650    _2
$a lidé středního věku $7 D008875
650    12
$a magnetická rezonanční tomografie $x metody $7 D008279
650    12
$a kontrastní látky $7 D003287
650    _2
$a retrospektivní studie $7 D012189
650    _2
$a vylepšení obrazu $x metody $7 D007089
650    _2
$a dospělí $7 D000328
650    _2
$a reprodukovatelnost výsledků $7 D015203
650    _2
$a senioři $7 D000368
650    _2
$a gadolinium $7 D005682
650    _2
$a rozhodovací stromy $7 D003663
650    _2
$a senzitivita a specificita $7 D012680
655    _2
$a časopisecké články $7 D016428
700    1_
$a Wamelink, Ivar J H G $u Department of Radiology and Nuclear Medicine, Amsterdam UMC, location VUMC, Amsterdam, The Netherlands $u Imaging and Biomarkers, Cancer Center Amsterdam, Amsterdam, The Netherlands
700    1_
$a Prysiazhniuk, Yeva $u Second Faculty of Medicine, Department of Pathophysiology, Charles University, Prague, Czech Republic $u Motol University Hospital, Prague, Czech Republic
700    1_
$a Cakmak, Marcus $u Department of Radiology and Nuclear Medicine, Amsterdam UMC, location VUMC, Amsterdam, The Netherlands $u University Medical Center, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
700    1_
$a Kaya, Elif $u Faculty of Medicine, Ankara Yıldırım Beyazıt University, Ankara, Türkiye
700    1_
$a Petr, Jan $u Department of Radiology and Nuclear Medicine, Amsterdam UMC, location VUMC, Amsterdam, The Netherlands $u Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Dresden, Germany
700    1_
$a Barkhof, Frederik $u Department of Radiology and Nuclear Medicine, Amsterdam UMC, location VUMC, Amsterdam, The Netherlands $u Brain Imaging, Amsterdam Neuroscience, Amsterdam, The Netherlands $u Queen Square Institute of Neurology and Center for Medical Image Computing, University College London, London, UK
700    1_
$a Keil, Vera C $u Department of Radiology and Nuclear Medicine, Amsterdam UMC, location VUMC, Amsterdam, The Netherlands $u Imaging and Biomarkers, Cancer Center Amsterdam, Amsterdam, The Netherlands $u Brain Imaging, Amsterdam Neuroscience, Amsterdam, The Netherlands $1 https://orcid.org/0000000186993506
773    0_
$w MED00002833 $t Journal of neuroimaging $x 1552-6569 $g Roč. 34, č. 6 (2024), s. 673-693
856    41
$u https://pubmed.ncbi.nlm.nih.gov/39300683 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y - $z 0
990    __
$a 20250121 $b ABA008
991    __
$a 20250206104452 $b ABA008
999    __
$a ok $b bmc $g 2263410 $s 1239646
BAS    __
$a 3
BAS    __
$a PreBMC-MEDLINE
BMC    __
$a 2024 $b 34 $c 6 $d 673-693 $e 20240919 $i 1552-6569 $m Journal of neuroimaging $n J Neuroimaging $x MED00002833
GRA    __
$p Hanarth Foundation
GRA    __
$p National Institute for Health and Care Research Biomedical Research Center at University College London Hospitals
GRA    __
$p European Society of Neuroradiology Research Fellowship Grant
LZP    __
$a Pubmed-20250121

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...