BACKGROUND AND PURPOSE: To develop and test a decision tree for predicting contrast enhancement quality and shape using precontrast magnetic resonance imaging (MRI) sequences in a large adult-type diffuse glioma cohort. METHODS: Preoperative MRI scans (development/optimization/test sets: n = 31/38/303, male = 17/22/189, mean age = 52/59/56.7 years, high-grade glioma = 22/33/249) were retrospectively evaluated, including pre- and postcontrast T1-weighted, T2-weighted, fluid-attenuated inversion recovery, and diffusion-weighted imaging sequences. Enhancement prediction decision tree (EPDT) was developed using development and optimization sets, incorporating four imaging features: necrosis, diffusion restriction, T2 inhomogeneity, and nonenhancing tumor margins. EPDT accuracy was assessed on a test set by three raters of variable experience. True enhancement features (gold standard) were evaluated using pre- and postcontrast T1-weighted images. Statistical analysis used confusion matrices, Cohen's/Fleiss' kappa, and Kendall's W. Significance threshold was p < .05. RESULTS: Raters 1, 2, and 3 achieved overall accuracies of .86 (95% confidence interval [CI]: .81-.90), .89 (95% CI: .85-.92), and .92 (95% CI: .89-.95), respectively, in predicting enhancement quality (marked, mild, or no enhancement). Regarding shape, defined as the thickness of enhancing margin (solid, rim, or no enhancement), accuracies were .84 (95% CI: .79-.88), .88 (95% CI: .84-.92), and .89 (95% CI: .85-.92). Intrarater intergroup agreement comparing predicted and true enhancement features consistently reached substantial levels (≥.68 [95% CI: .61-.75]). Interrater comparison showed at least moderate agreement (group: ≥.42 [95% CI: .36-.48], pairwise: ≥.61 [95% CI: .50-.72]). Among the imaging features in the EPDT, necrosis assessment displayed the highest intra- and interrater consistency (≥.80 [95% CI: .73-.88]). CONCLUSION: The proposed EPDT has high accuracy in predicting enhancement patterns of gliomas irrespective of rater experience.
- MeSH
- Adult MeSH
- Gadolinium MeSH
- Glioma * diagnostic imaging pathology MeSH
- Contrast Media * MeSH
- Middle Aged MeSH
- Humans MeSH
- Magnetic Resonance Imaging * methods MeSH
- Brain Neoplasms * diagnostic imaging pathology MeSH
- Reproducibility of Results MeSH
- Retrospective Studies MeSH
- Decision Trees MeSH
- Aged MeSH
- Sensitivity and Specificity MeSH
- Image Enhancement methods MeSH
- Check Tag
- Adult MeSH
- Middle Aged MeSH
- Humans MeSH
- Male MeSH
- Aged MeSH
- Female MeSH
- Publication type
- Journal Article MeSH
Instant Blood-Mediated Inflammatory Reaction (IBMIR) is a major cause of graft loss during pancreatic islet transplantation, leading to a low efficiency of this treatment method and significantly limiting its broader clinical use. Within the procedure, transplanted islets obstruct intrahepatic portal vein branches and consequently restrict blood supply of downstream lying liver tissue, resulting typically in ischemic necrosis. The extent of ischemic lesions is influenced by mechanical obstruction and inflammation, as well as subsequent recanalization and regeneration capacity of recipient liver tissue. Monitoring of immediate liver perfusion impairment, which is directly related to the intensity of post-transplant inflammation and thrombosis (IBMIR), is essential for improving therapeutic and preventive strategies to improve overall islet graft survival. In this study, we present a new experimental model enabling direct quantification of liver perfusion impairment after pancreatic islet transplantation using ligation of hepatic arteries followed by contrast-enhanced magnetic resonance imaging (MRI). The ligation of hepatic arteries prevents the contrast agent from circumventing the portal vein obstruction and enables to discriminate between well-perfused and non-perfused liver tissue. Here we demonstrate that the extent of liver ischemia reliably reflects the number of transplanted islets. This model represents a useful tool for in vivo monitoring of biological effect of IBMIR-alleviating interventions as well as other experiments related to liver ischemia. This technical paper introduces a novel technique and its first application in experimental animals.
- MeSH
- Embolism * complications diagnosis MeSH
- Ischemia * diagnostic imaging etiology MeSH
- Liver * blood supply diagnostic imaging pathology MeSH
- Rats MeSH
- Magnetic Resonance Angiography methods MeSH
- Graft Survival MeSH
- Reproducibility of Results MeSH
- Models, Theoretical MeSH
- Islets of Langerhans Transplantation adverse effects MeSH
- Portal Vein * MeSH
- Image Enhancement methods MeSH
- Animals MeSH
- Check Tag
- Rats MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
In genetic programming (GP), computer programs are often coevolved with training data subsets that are known as fitness predictors. In order to maximize performance of GP, it is important to find the most suitable parameters of coevolution, particularly the fitness predictor size. This is a very time-consuming process as the predictor size depends on a given application, and many experiments have to be performed to find its suitable size. A new method is proposed which enables us to automatically adapt the predictor and its size for a given problem and thus to reduce not only the time of evolution, but also the time needed to tune the evolutionary algorithm. The method was implemented in the context of Cartesian genetic programming and evaluated using five symbolic regression problems and three image filter design problems. In comparison with three different CGP implementations, the time required by CGP search was reduced while the quality of results remained unaffected.
- MeSH
- Algorithms * MeSH
- Biological Evolution * MeSH
- Genetic Fitness MeSH
- Humans MeSH
- Computer Simulation MeSH
- Image Processing, Computer-Assisted methods MeSH
- Signal-To-Noise Ratio MeSH
- Regression Analysis MeSH
- Software * MeSH
- Image Enhancement methods MeSH
- Computational Biology methods MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
PURPOSE: The soft tissue imaging in micro-CT remains challenging due to its low intrinsic contrast. The aim of this study was to create a simple staining method omitting the usage of contrast agents for ex vivo soft tissue imaging in micro-CT. MATERIALS AND METHODS: Hearts and lungs from 30 mice were used. Twenty-seven organs were either fixed in 97% or 50% ethanol solution or in a series of ascending ethanol concentrations. Images were acquired after 72, 168 and 336 h on a custom-built micro-CT machine and compared to scans of three native samples. RESULTS: Ethanol provided contrast enhancement in all evaluated fixations. Fixation in 97% ethanol resulted in contrast enhancement after 72 h; however, it caused hardening of the samples. Fixation in 50% ethanol provided contrast enhancement after 336 h, with milder hardening, compared to the 97% ethanol fixation, but the visualization of details was worse. The fixation in a series of ascending ethanol concentrations provided the most satisfactory results; all organs were visualized in great detail without tissue damage. CONCLUSIONS: Simple ethanol fixation improves the tissue contrast enhancement in micro-CT. The best results can be obtained with fixation of the soft tissue samples in a series of ascending ethanol concentrations.
- MeSH
- Ethanol * MeSH
- Contrast Media * MeSH
- Models, Animal MeSH
- Mice, Inbred C57BL MeSH
- Mice MeSH
- Lung anatomy & histology diagnostic imaging MeSH
- X-Ray Microtomography methods MeSH
- Heart anatomy & histology diagnostic imaging MeSH
- Image Enhancement methods MeSH
- Animals MeSH
- Check Tag
- Male MeSH
- Mice MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
PURPOSE: To determine the test-retest reproducibility of neurochemical concentrations obtained with a highly optimized, short-echo, single-voxel proton MR spectroscopy (MRS) pulse sequence at 3T and 7T using state-of-the-art hardware. METHODS: A semi-LASER sequence (echo time = 26-28 ms) was used to acquire spectra from the posterior cingulate and cerebellum at 3T and 7T from six healthy volunteers who were scanned four times weekly on both scanners. Spectra were quantified with LCModel. RESULTS: More neurochemicals were quantified with mean Cramér-Rao lower bounds (CRLBs) ≤20% at 7T than at 3T despite comparable frequency-domain signal-to-noise ratio. Whereas CRLBs were lower at 7T (P < 0.05), between-session coefficients of variance (CVs) were comparable at the two fields with 64 transients. Five metabolites were quantified with between-session CVs ≤5% at both fields. Analysis of subspectra showed that a minimum achievable CV was reached with a lower number of transients at 7T for multiple metabolites and that between-session CVs were lower at 7T than at 3T with fewer than 64 transients. CONCLUSION: State-of-the-art MRS methodology allows excellent reproducibility for many metabolites with 5-min data averaging on clinical 3T hardware. Sensitivity and resolution advantages at 7T are important for weakly represented metabolites, short acquisitions, and small volumes of interest. Magn Reson Med 76:1083-1091, 2016. © 2015 Wiley Periodicals, Inc.
- MeSH
- Algorithms * MeSH
- Adult MeSH
- Image Interpretation, Computer-Assisted methods MeSH
- Humans MeSH
- Magnetic Resonance Spectroscopy methods MeSH
- Magnetic Resonance Imaging instrumentation methods MeSH
- Molecular Imaging instrumentation methods MeSH
- Brain anatomy & histology metabolism MeSH
- Reproducibility of Results MeSH
- Sensitivity and Specificity MeSH
- Tissue Distribution MeSH
- Image Enhancement methods MeSH
- Imaging, Three-Dimensional methods MeSH
- Check Tag
- Adult MeSH
- Humans MeSH
- Male MeSH
- Publication type
- Journal Article MeSH
- Evaluation Study MeSH
- Research Support, Non-U.S. Gov't MeSH
- Research Support, N.I.H., Extramural MeSH
- Comparative Study MeSH
- Validation Study MeSH
Glaucoma is a disease of the retina which is one of the most common causes of permanent blindness worldwide. This paper presents an automatic image processing based method for glaucoma diagnosis from the digital fundus image. In this paper wavelet feature extraction has been followed by optimized genetic feature selection combined with several learning algorithms and various parameter settings. Unlike the existing research works where the features are considered from the complete fundus or a sub image of the fundus, this work is based on feature extraction from the segmented and blood vessel removed optic disc to improve the accuracy of identification. The experimental results presented in this paper indicate that the wavelet features of the segmented optic disc image are clinically more significant in comparison to features of the whole or sub fundus image in the detection of glaucoma from fundus image. Accuracy of glaucoma identification achieved in this work is 94.7% and a comparison with existing methods of glaucoma detection from fundus image indicates that the proposed approach has improved accuracy of classification.
- MeSH
- Algorithms * MeSH
- Optic Disk pathology MeSH
- Adult MeSH
- Glaucoma pathology MeSH
- Image Interpretation, Computer-Assisted methods MeSH
- Middle Aged MeSH
- Humans MeSH
- Adolescent MeSH
- Young Adult MeSH
- Reproducibility of Results MeSH
- Retinoscopy methods MeSH
- Pattern Recognition, Automated methods MeSH
- Aged MeSH
- Sensitivity and Specificity MeSH
- Machine Learning MeSH
- Subtraction Technique MeSH
- Wavelet Analysis MeSH
- Image Enhancement methods MeSH
- Check Tag
- Adult MeSH
- Middle Aged MeSH
- Humans MeSH
- Adolescent MeSH
- Young Adult MeSH
- Male MeSH
- Aged MeSH
- Female MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
We present a new method of multiple immunolabeling that is suitable for a broad spectrum of biomedical applications. The general concept is to label both sides of the ultrathin section with the thickness of 70-80 nm with different antibodies conjugated to gold nanoparticles and to distinguish the labeled side by advanced imaging methods with high resolution scanning electron microscopy, such as by correlating images acquired at different energies of primary electrons using different signals. From the Clinical Editor: The use of transmission electron microscopy has become an indispensible tool in the detection of cellular proteins. In this short but interesting article, the authors described their new method of labeling and the identification of four different proteins simultaneously, which represents another advance in imaging technique.
- MeSH
- Acrylic Resins chemistry MeSH
- Staining and Labeling methods MeSH
- Immunohistochemistry MeSH
- Metal Nanoparticles chemistry ultrastructure MeSH
- Microtomy methods MeSH
- Reproducibility of Results MeSH
- Sensitivity and Specificity MeSH
- Microscopy, Electrochemical, Scanning methods MeSH
- Image Enhancement methods MeSH
- Gold chemistry MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH