• Je něco špatně v tomto záznamu ?

Image processing based automatic diagnosis of glaucoma using wavelet features of segmented optic disc from fundus image

A. Singh, MK. Dutta, M. ParthaSarathi, V. Uher, R. Burget,

. 2016 ; 124 (-) : 108-20. [pub] 20151023

Jazyk angličtina Země Irsko

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/bmc17000871

Glaucoma is a disease of the retina which is one of the most common causes of permanent blindness worldwide. This paper presents an automatic image processing based method for glaucoma diagnosis from the digital fundus image. In this paper wavelet feature extraction has been followed by optimized genetic feature selection combined with several learning algorithms and various parameter settings. Unlike the existing research works where the features are considered from the complete fundus or a sub image of the fundus, this work is based on feature extraction from the segmented and blood vessel removed optic disc to improve the accuracy of identification. The experimental results presented in this paper indicate that the wavelet features of the segmented optic disc image are clinically more significant in comparison to features of the whole or sub fundus image in the detection of glaucoma from fundus image. Accuracy of glaucoma identification achieved in this work is 94.7% and a comparison with existing methods of glaucoma detection from fundus image indicates that the proposed approach has improved accuracy of classification.

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc17000871
003      
CZ-PrNML
005      
20170113124932.0
007      
ta
008      
170103s2016 ie f 000 0|eng||
009      
AR
024    7_
$a 10.1016/j.cmpb.2015.10.010 $2 doi
024    7_
$a 10.1016/j.cmpb.2015.10.010 $2 doi
035    __
$a (PubMed)26574297
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a ie
100    1_
$a Singh, Anushikha $u Department of Electronics and Communication Engineering, Amity University, Noida, Uttar Pradesh, India. Electronic address: anushikha4june@gmail.com.
245    10
$a Image processing based automatic diagnosis of glaucoma using wavelet features of segmented optic disc from fundus image / $c A. Singh, MK. Dutta, M. ParthaSarathi, V. Uher, R. Burget,
520    9_
$a Glaucoma is a disease of the retina which is one of the most common causes of permanent blindness worldwide. This paper presents an automatic image processing based method for glaucoma diagnosis from the digital fundus image. In this paper wavelet feature extraction has been followed by optimized genetic feature selection combined with several learning algorithms and various parameter settings. Unlike the existing research works where the features are considered from the complete fundus or a sub image of the fundus, this work is based on feature extraction from the segmented and blood vessel removed optic disc to improve the accuracy of identification. The experimental results presented in this paper indicate that the wavelet features of the segmented optic disc image are clinically more significant in comparison to features of the whole or sub fundus image in the detection of glaucoma from fundus image. Accuracy of glaucoma identification achieved in this work is 94.7% and a comparison with existing methods of glaucoma detection from fundus image indicates that the proposed approach has improved accuracy of classification.
650    _2
$a mladiství $7 D000293
650    _2
$a dospělí $7 D000328
650    _2
$a senioři $7 D000368
650    12
$a algoritmy $7 D000465
650    _2
$a ženské pohlaví $7 D005260
650    _2
$a glaukom $x patologie $7 D005901
650    _2
$a lidé $7 D006801
650    _2
$a vylepšení obrazu $x metody $7 D007089
650    _2
$a interpretace obrazu počítačem $x metody $7 D007090
650    _2
$a strojové učení $7 D000069550
650    _2
$a mužské pohlaví $7 D008297
650    _2
$a lidé středního věku $7 D008875
650    _2
$a discus nervi optici $x patologie $7 D009898
650    _2
$a rozpoznávání automatizované $x metody $7 D010363
650    _2
$a reprodukovatelnost výsledků $7 D015203
650    _2
$a retinoskopie $x metody $7 D042262
650    _2
$a senzitivita a specificita $7 D012680
650    _2
$a subtrakční technika $7 D013382
650    _2
$a vlnková analýza $7 D058067
650    _2
$a mladý dospělý $7 D055815
655    _2
$a časopisecké články $7 D016428
655    _2
$a práce podpořená grantem $7 D013485
700    1_
$a Dutta, Malay Kishore $u Department of Electronics and Communication Engineering, Amity University, Noida, Uttar Pradesh, India. Electronic address: malaykishoredutta@gmail.com.
700    1_
$a ParthaSarathi, M $u Department of Electronics and Communication Engineering, Amity University, Noida, Uttar Pradesh, India. Electronic address: infiniti47@gmail.com.
700    1_
$a Uher, Vaclav $u Brno University of Technology, Faculty of Electrical Engineering, Czech Republic. Electronic address: vaclav.uher@phd.feec.vutbr.cz.
700    1_
$a Burget, Radim $u Brno University of Technology, Faculty of Electrical Engineering, Czech Republic. Electronic address: burgetrm@feec.vutbr.cz.
773    0_
$w MED00001214 $t Computer methods and programs in biomedicine $x 1872-7565 $g Roč. 124, č. - (2016), s. 108-20
856    41
$u https://pubmed.ncbi.nlm.nih.gov/26574297 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y a $z 0
990    __
$a 20170103 $b ABA008
991    __
$a 20170113125032 $b ABA008
999    __
$a ok $b bmc $g 1180011 $s 961438
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2016 $b 124 $c - $d 108-20 $e 20151023 $i 1872-7565 $m Computer methods and programs in biomedicine $n Comput Methods Programs Biomed $x MED00001214
LZP    __
$a Pubmed-20170103

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace