-
Something wrong with this record ?
Image processing based automatic diagnosis of glaucoma using wavelet features of segmented optic disc from fundus image
A. Singh, MK. Dutta, M. ParthaSarathi, V. Uher, R. Burget,
Language English Country Ireland
Document type Journal Article, Research Support, Non-U.S. Gov't
- MeSH
- Algorithms * MeSH
- Optic Disk pathology MeSH
- Adult MeSH
- Glaucoma pathology MeSH
- Image Interpretation, Computer-Assisted methods MeSH
- Middle Aged MeSH
- Humans MeSH
- Adolescent MeSH
- Young Adult MeSH
- Reproducibility of Results MeSH
- Retinoscopy methods MeSH
- Pattern Recognition, Automated methods MeSH
- Aged MeSH
- Sensitivity and Specificity MeSH
- Machine Learning MeSH
- Subtraction Technique MeSH
- Wavelet Analysis MeSH
- Image Enhancement methods MeSH
- Check Tag
- Adult MeSH
- Middle Aged MeSH
- Humans MeSH
- Adolescent MeSH
- Young Adult MeSH
- Male MeSH
- Aged MeSH
- Female MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
Glaucoma is a disease of the retina which is one of the most common causes of permanent blindness worldwide. This paper presents an automatic image processing based method for glaucoma diagnosis from the digital fundus image. In this paper wavelet feature extraction has been followed by optimized genetic feature selection combined with several learning algorithms and various parameter settings. Unlike the existing research works where the features are considered from the complete fundus or a sub image of the fundus, this work is based on feature extraction from the segmented and blood vessel removed optic disc to improve the accuracy of identification. The experimental results presented in this paper indicate that the wavelet features of the segmented optic disc image are clinically more significant in comparison to features of the whole or sub fundus image in the detection of glaucoma from fundus image. Accuracy of glaucoma identification achieved in this work is 94.7% and a comparison with existing methods of glaucoma detection from fundus image indicates that the proposed approach has improved accuracy of classification.
Brno University of Technology Faculty of Electrical Engineering Czech Republic
Department of Electronics and Communication Engineering Amity University Noida Uttar Pradesh India
References provided by Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc17000871
- 003
- CZ-PrNML
- 005
- 20170113124932.0
- 007
- ta
- 008
- 170103s2016 ie f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1016/j.cmpb.2015.10.010 $2 doi
- 024 7_
- $a 10.1016/j.cmpb.2015.10.010 $2 doi
- 035 __
- $a (PubMed)26574297
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a ie
- 100 1_
- $a Singh, Anushikha $u Department of Electronics and Communication Engineering, Amity University, Noida, Uttar Pradesh, India. Electronic address: anushikha4june@gmail.com.
- 245 10
- $a Image processing based automatic diagnosis of glaucoma using wavelet features of segmented optic disc from fundus image / $c A. Singh, MK. Dutta, M. ParthaSarathi, V. Uher, R. Burget,
- 520 9_
- $a Glaucoma is a disease of the retina which is one of the most common causes of permanent blindness worldwide. This paper presents an automatic image processing based method for glaucoma diagnosis from the digital fundus image. In this paper wavelet feature extraction has been followed by optimized genetic feature selection combined with several learning algorithms and various parameter settings. Unlike the existing research works where the features are considered from the complete fundus or a sub image of the fundus, this work is based on feature extraction from the segmented and blood vessel removed optic disc to improve the accuracy of identification. The experimental results presented in this paper indicate that the wavelet features of the segmented optic disc image are clinically more significant in comparison to features of the whole or sub fundus image in the detection of glaucoma from fundus image. Accuracy of glaucoma identification achieved in this work is 94.7% and a comparison with existing methods of glaucoma detection from fundus image indicates that the proposed approach has improved accuracy of classification.
- 650 _2
- $a mladiství $7 D000293
- 650 _2
- $a dospělí $7 D000328
- 650 _2
- $a senioři $7 D000368
- 650 12
- $a algoritmy $7 D000465
- 650 _2
- $a ženské pohlaví $7 D005260
- 650 _2
- $a glaukom $x patologie $7 D005901
- 650 _2
- $a lidé $7 D006801
- 650 _2
- $a vylepšení obrazu $x metody $7 D007089
- 650 _2
- $a interpretace obrazu počítačem $x metody $7 D007090
- 650 _2
- $a strojové učení $7 D000069550
- 650 _2
- $a mužské pohlaví $7 D008297
- 650 _2
- $a lidé středního věku $7 D008875
- 650 _2
- $a discus nervi optici $x patologie $7 D009898
- 650 _2
- $a rozpoznávání automatizované $x metody $7 D010363
- 650 _2
- $a reprodukovatelnost výsledků $7 D015203
- 650 _2
- $a retinoskopie $x metody $7 D042262
- 650 _2
- $a senzitivita a specificita $7 D012680
- 650 _2
- $a subtrakční technika $7 D013382
- 650 _2
- $a vlnková analýza $7 D058067
- 650 _2
- $a mladý dospělý $7 D055815
- 655 _2
- $a časopisecké články $7 D016428
- 655 _2
- $a práce podpořená grantem $7 D013485
- 700 1_
- $a Dutta, Malay Kishore $u Department of Electronics and Communication Engineering, Amity University, Noida, Uttar Pradesh, India. Electronic address: malaykishoredutta@gmail.com.
- 700 1_
- $a ParthaSarathi, M $u Department of Electronics and Communication Engineering, Amity University, Noida, Uttar Pradesh, India. Electronic address: infiniti47@gmail.com.
- 700 1_
- $a Uher, Vaclav $u Brno University of Technology, Faculty of Electrical Engineering, Czech Republic. Electronic address: vaclav.uher@phd.feec.vutbr.cz.
- 700 1_
- $a Burget, Radim $u Brno University of Technology, Faculty of Electrical Engineering, Czech Republic. Electronic address: burgetrm@feec.vutbr.cz.
- 773 0_
- $w MED00001214 $t Computer methods and programs in biomedicine $x 1872-7565 $g Roč. 124, č. - (2016), s. 108-20
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/26574297 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y a $z 0
- 990 __
- $a 20170103 $b ABA008
- 991 __
- $a 20170113125032 $b ABA008
- 999 __
- $a ok $b bmc $g 1180011 $s 961438
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2016 $b 124 $c - $d 108-20 $e 20151023 $i 1872-7565 $m Computer methods and programs in biomedicine $n Comput Methods Programs Biomed $x MED00001214
- LZP __
- $a Pubmed-20170103