Deep Insights into the Specific Evolution of Fungal Hybrid B Heme Peroxidases
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
P 31707
Austrian Science Fund FWF - Austria
PubMed
35336832
PubMed Central
PMC8945051
DOI
10.3390/biology11030459
PII: biology11030459
Knihovny.cz E-zdroje
- Klíčová slova
- ancestral sequence reconstruction, enzymatic antioxidant, hybrid B heme peroxidase, oxidative stress, peroxidase–catalase superfamily,
- Publikační typ
- časopisecké články MeSH
In this study, we focus on a detailed bioinformatics analysis of hyBpox genes, mainly within the genomes of Sclerotiniaceae (Ascomycota, Leotiomycetes), which is a specifically evolved fungal family of necrotrophic host generalists and saprophytic or biotrophic host specialists. Members of the genus Sclerotium produce only sclerotia and no fruiting bodies or spores. Thus, their physiological role for peroxidases remains open. A representative species, S. cepivorum, is a dangerous plant pathogen causing white rot in Allium species, particularly in onions, leeks, and garlic. On a worldwide basis, the white rot caused by this soil-borne fungus is apparently the most serious threat to Allium-crop production. We have also found very similar peroxidase sequences in the related fungus S. sclerotiorum, although with minor yet important modifications in the architecture of its active centre. The presence of ScephyBpox1-specific mRNA was confirmed by transcriptomic analysis. The presence of Hybrid B peroxidase at the protein level as the sole extracellular peroxidase of this fungus was confirmed in the secretome of S. cepivorum through detailed proteomic analyses. This prompted us to systematically search for all available genes coding for Hybrid B heme peroxidases in the whole fungal family of Sclerotiniaceae. We present here a reconstruction of their molecular phylogeny and analyse the unique aspects of their conserved-sequence features and structural folds in corresponding ancestral sequences.
Zobrazit více v PubMed
Vitale G.A., Coppola D., Esposito F.P., Buonocore C., Ausuri J., Tortorella E., de Pascale D. Antioxidant Molecules from Marine Fungi: Methodologies and Perspecitves. Antioxidants. 2020;9:1183. doi: 10.3390/antiox9121183. PubMed DOI PMC
Zámocký M., Kamlárová A., Maresch D., Chovanová K., Harichová J., Furtmüller P.G. Hybrid Heme Peroxidases from Rice Blast Fungus Magnaporthe oryzae Involved in Defence against Oxidative Stress. Antioxidants. 2020;9:655. doi: 10.3390/antiox9080655. PubMed DOI PMC
Ciesielska S., Slezak-Prochazka I., Bil P., Rzeszowska-Wolny J. Micro RNAs in Regulation of Cellular Redox Homeostasis. Int. J. Mol. Sci. 2021;22:6022. doi: 10.3390/ijms22116022. PubMed DOI PMC
Galasso M., Gambino S., Romanelli M.G., Donadelli M., Scupoli M.T. Browsing the oldest antioxidant enzyme: Catalase and its multiple regulation in cancer. Free Redic. Biol. Med. 2021;172:264–272. doi: 10.1016/j.freeradbiomed.2021.06.010. PubMed DOI
Andrew M., Barua R., Short S.M., Kohn L.M. Evidence for a Common Toolbox Based on Necrotrophy in a Fungal Lineage Spanning Necrotrophs, Biotrophs, Endophytes, Host Generalists and Specialists. PLoS ONE. 2012;7:e29943. doi: 10.1371/journal.pone.0029943. PubMed DOI PMC
Hovius M.H.Y., Mc Donald M.R. Management of Allium White rot [Sclerotium cepivorum] in Onions on Organic Soil with Soil-Applied Diallyl Disulfide and di-N-propyl Disulfide. Can. J. Plant. Pathol. 2002;24:281–286. doi: 10.1080/07060660209507010. DOI
Davis R.M., Hao J.J., Romberg M.K., Nunez J.J., Smith R.F. Efficacy of Germination Stimulants of Sclerotia of Sclerotium cepivorum for Management of White Rot of Garlic. Plant Dis. 2007;91:204–208. doi: 10.1094/PDIS-91-2-0204. PubMed DOI
Tyson J.L., Ridgway H.J., Fullerton R.A., Stewart A. Genetic Diversity in New Zealand Populations of Sclerotium cepivorum. N. Z. J. Crop Horticult. Sci. 2002;30:37–48. doi: 10.1080/01140671.2002.9514197. DOI
Valero-Jiménez C.A., Steentjes M.B.F., Slot J.C., Shi-Kunne X., Scholten O.E., van Kan J.A.L. Dynamics of Secondary Metabolite Gene Clusters in Otherwise Highly Syntenic and Stable Genomes in the Fungal Genus Botrytis. Genome Biol. Evol. 2020;12:2491–2507. doi: 10.1093/gbe/evaa218. PubMed DOI PMC
Licona-Juárez K.C., Acosta-García G., Humberto Ramírez-Medina H., Wilson Huanca-Mamani W., Guevara-Olvera L. Rapid and Accurate Pcr-based and Boiling DNA Isolation Methodology for Specific Detection of Sclerotium cepivorum in Garlic (Allium sativum) Cloves. Interciencia. 2019;44:71–74.
Hall T.A. BioEdit: A User-friendly Biological Sequence Alignment Editor and Analysis Program for Windows. Nucl. Acids. Symp. Ser. 1999;41:95–98.
Koontz L. TCA Precipitation. Methods Enzymol. 2014;541:3–10. PubMed
Škodová-Sveráková I., Záhonová K., Juricová V., Danchenko M., Moos M., Baráth P., Prokopchuk G., Butenko A., Lukáčová V., Kohútová L., et al. Highly Flexible Metabolism of the Marine Euglenozoan Protist Diplonema papillatum. BMC Biol. 2021;19:251. doi: 10.1186/s12915-021-01186-y. PubMed DOI PMC
Tyanova S., Temu T., Cox J. The MaxQuant Computational Platform for Mass Spectrometry-based Shotgun Proteomics. Nature. 2016;11:2301–2319. doi: 10.1038/nprot.2016.136. PubMed DOI
Tyanova S., Temu T., Sinitcyn P., Carlson A., Hein M.Y., Geiger T., Mann M., Cox J. The Perseus Computational Platform for Comprehensive Analysis of (Prote)omics Data. Nat. Methods. 2016;13:731–740. doi: 10.1038/nmeth.3901. PubMed DOI
Edgar R.C. MUSCLE: Multiple sequence alignment with high accuracy and high throughput. Nucl. Acids Res. 2004;32:1792–1797. doi: 10.1093/nar/gkh340. PubMed DOI PMC
Kumar S., Stecher G., Li M., Knyaz C., Tamura K. MEGA X: Molecular Eolutionary Genetics Analysis across Computing Platforms. Mol. Biol. Evol. 2018;35:1547–1549. doi: 10.1093/molbev/msy096. PubMed DOI PMC
Teufel F., Armenteros J.J.A., Johansen A.R., Gíslason M.H., Pihl S.I., Tsirigos K.D., Winther O., Brunak S., Von Heijne G., Nielsen H. SignalP 6.0 Predicts all Five Types of Signal Peptides Using Protein Language Models. Nat. Biotechnol. 2022:1–3. doi: 10.1038/s41587-021-01156-3. PubMed DOI PMC
Whelan S., Goldman N. A General Empirical Model of Protein Evolution Derived from Multiple Protein Families Using a Maximum-likelihood Approach. Mol. Biol. Evol. 2001;18:691–699. doi: 10.1093/oxfordjournals.molbev.a003851. PubMed DOI
Musil M., Khan R.T., Beier A., Stourac J., Konegger H., Damborsky J., Bednar D. FireProtASR: A Web Server for Fully Automated Ancestral Sequence Reconstruction. Brief. Bioinform. 2021;22:bbaa337. doi: 10.1093/bib/bbaa337. PubMed DOI PMC
Nguyen L.-T., Schmidt H.A., von Haseler A., Minh B.Q. IQ-TREE: A Fast and Effective Stochastic Algorithm for Estimating Maximum-likelihood Phylogenies. Mol. Biol. Evol. 2015;32:268–274. doi: 10.1093/molbev/msu300. PubMed DOI PMC
Stamatakis A. RaxML Version 8: A Tool for Phylogenetic Analysis and Post-analysis of Large Phylogenies. Bioinformatics. 2014;30:1312–1313. doi: 10.1093/bioinformatics/btu033. PubMed DOI PMC
Yang Z. PAML 4: Phylogenetic Analysis by Maximum Likelihood. Mol. Biol. Evol. 2007;24:1586–1591. doi: 10.1093/molbev/msm088. PubMed DOI
Hanson-Smith V., Kolaczkowski B., Thornton J.W. Robustness of Ancestral Sequence Reconstruction to Phylogenetic Uncertainity. Mol. Biol. Evol. 2010;27:1988–1999. doi: 10.1093/molbev/msq081. PubMed DOI PMC
Jumper J., Evans R., Pritzel A., Green T., Figurnov M., Ronneberger O., Tunyasuvunakool K., Bates R., Žídek A., Potapenko A., et al. Highly Accurate Protein Structure Prediction with AlphaFold. Nature. 2021;596:583–589. doi: 10.1038/s41586-021-03819-2. PubMed DOI PMC
Bhattacharya D., Nowotny J., Cao R., Cheng J. 3Drefine: An Interactive Web Server for Efficient Protein Structure Refinement. Nucleic Acids Res. 2016;44:W406–W409. doi: 10.1093/nar/gkw336. PubMed DOI PMC
Chovancová E., Pavelka A., Beneš P., Strnad O., Brezovský J., Kozlíková B., Gora A., Šustr V., Klvaňa M., Medek P., et al. CAVER 3.0: A Tool for the Analysis of Transport Pathways in Dynamic Protein Structures. PLoS Comput. Biol. 2012;8:e1002708. doi: 10.1371/journal.pcbi.1002708. PubMed DOI PMC
Eberhardt J., Santos-Martins D., Tillack A.F., Forli S. AutoDock Vina 1.2.0: New Docking Methods, Expanded Force Field, and Phython bindings. J. Chem. Inf. Model. 2021;61:3891–3898. doi: 10.1021/acs.jcim.1c00203. PubMed DOI PMC
Adak S., Datta A.K. Leishmania major encodes an unusual peroxidase that is a close homologue of plant ascorbate peroxidase: A novel role of the transmembrane domain. Biochem. J. 2005;390:465–474. doi: 10.1042/BJ20050311. PubMed DOI PMC
Zámocký M., Janeček Š., Obinger C. Fungal Hybrid B Heme Peroxidases-Unique Fusions of a Heme Peroxidase Domain with a Carbohydrate-binding Domain. Sci. Rep. 2017;7:9393. doi: 10.1038/s41598-017-09581-8. PubMed DOI PMC
Taylor T.N., Krings M., Taylor E.L. Fossil Fungi. Elsevier; Amsterdam, The Netherlands: 2015. Chytridiomycota; pp. 41–67. Chapter 4. DOI
Chang Y., Wang S., Sekimoto S., Aerts A.L., Choi C., Clum A., LaButti K.M., Lindquist E.A., Ngan C.Y., Ohm R.A., et al. Phylogenomic Analyses Indicate that Early Fungi Evolved Digesting Cell Walls of Algal Ancestors of Land Plants. Genome Biol. Evol. 2015;7:1590–1601. doi: 10.1093/gbe/evv090. PubMed DOI PMC
Shoff C.J., Perfect J.R. Encyclopedia of Mycology. Volume 1. Elsevier; Amsterdam, The Netherlands: 2021. Uncommon Yeasts and Molds Causing Human Disease; pp. 813–834.
Morin E., Kohler A., Baker A.R., Foulongne-Oriol M., Lombard V., Nagy L.G., Ohm R.A., Patyshakuliyeva A., Brun A., Aerts A.L., et al. Genome sequence of the button mushroom Agaricus bisporus reveals mechanisms governing adaptation to a humic-rich ecological niche. Proc. Natl. Acad. Sci. USA. 2012;10:17501–17506. doi: 10.1073/pnas.1206847109. PubMed DOI PMC
Hess J., Skrede I., Wolfe B.E., LaButti K., Ohm R.A., Grigoriev I.V., Pringle A. Transposable Element Dynamics among Asymbiotic and Ectomycorrhizal Amanita Fungi. Genome Biol. Evol. 2014;6:1564–1578. doi: 10.1093/gbe/evu121. PubMed DOI PMC
Zámocký M., Hofbauer S., Schaffner I., Gasselhuber B., Nicolussi A., Soudi M., Pirker K.F., Furtmüller P.G., Obinger C. Independent Evolution of Four Heme Peroxidase Superfamilies. Arch. Biochem. Biophys. 2015;574:108–119. doi: 10.1016/j.abb.2014.12.025. PubMed DOI PMC
Nigro A.P., Goodin D.B. Reaction of N-hydroxyguanidine with the Ferrous-oxy State of a Heme Peroxidase Cavity Mutant: A Model for the Reactions of Nitric Oxide Synthase. Arch. Biochem. Biophys. 2010;500:66–73. doi: 10.1016/j.abb.2010.03.012. PubMed DOI PMC
Howes B.D., Feist A., Raimondi L., Indiani C., Smulevich G. The Critical Role of the Proximal Calcium Ion in the Structural Properties of Horseradish Peroxidase. J. Biol. Chem. 2001;276:40704–40711. doi: 10.1074/jbc.M107489200. PubMed DOI
Semba Y., Ishida M., Yokobori S., Yamagishi A. Ancestral Amino Acid Substitution Improves the Thermal Staiblity of Recombinant Lignin Peroxidase from White-Rot Fungi, Phanerochaete chrysosporium Strain UAMH 3641. Protein Eng. Des. Sel. 2015;28:221–230. doi: 10.1093/protein/gzv023. PubMed DOI
Ayuso-Fernández I., Martínez A.T., Ruiz-Duenas F.J. Experimental Recreation of the Evolution of Lignin-degrading Enzymes from the Jurassic to Date. Biotechnol. Biofuels. 2017;10:67. doi: 10.1186/s13068-017-0744-x. PubMed DOI PMC
Verna J., Lodder A., Lee K., Vagts A., Ballester R. A Family of Genes Required for Maintenance of Cell Wall Integrity and for the Stress Response in Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. USA. 1997;94:13804–13809. doi: 10.1073/pnas.94.25.13804. PubMed DOI PMC
Jasion V.S., Polanco V.A., Meharenna Y.T., Li H., Poulos T.L. Crystal Structure of Leishmania major Peroxidase and Characterization of the Compound I Tryptophan Radical. J. Biol. Chem. 2011;286:24608–24615. doi: 10.1074/jbc.M111.230524. PubMed DOI PMC
Sanchez-Ruiz M.I., Ayuso-Fernández I., Rencoret J., González-Ramirez A.M., Linde D., Davó-Siguero I., Romero A., Gutiérrez A., Martinez A.T., Ruiz-Duenas F.J. Agaricales Mushroom Lignin Peroxidase: From Structure-Function to Degradative Capabilities. Antioxidants. 2021;10:1446. doi: 10.3390/antiox10091446. PubMed DOI PMC
Sáez-Jiménez V., Fernández-Fueyo E., Medrano F.J., Romero A., Martínez A.T., Ruiz-Duenas F.J. Improving the pH-stability of Versatile Peroxidase by Comparative Structural Analysis with a Naturally-Stable Manganese Peroxidase. PLoS ONE. 2015;10:e0140984. doi: 10.1371/journal.pone.0140984. PubMed DOI PMC
Zámocký M., Garcia-Fernandez Q., Gasselhuber B., Jakopitsch C., Furtmüller P.G., Loewen P.C., Fita I., Obinger C., Carpena X. High Conformational Stability of Secreted Eukaryotic Catalase-peroxidases: Answers from First Crytal Structure and Unfolding Studies. J. Biol. Chem. 2012;287:32254–32262. doi: 10.1074/jbc.M112.384271. PubMed DOI PMC
Ayuso-Fernández I., De Lacey A.L., Canada F.J., Ruiz-Duenas F.J., Martínez A.T. Increase of Redox Potential during the Evolution of Enzymes Degrading Recalcitrant Lignin. Chem. Eur. J. 2019;25:2708–2712. doi: 10.1002/chem.201805679. PubMed DOI PMC