Comparison of Fungal Thermophilic and Mesophilic Catalase-Peroxidases for Their Antioxidative Properties
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
APVV-20-0284
Slovak Research and Development Agency
PubMed
37507921
PubMed Central
PMC10376177
DOI
10.3390/antiox12071382
PII: antiox12071382
Knihovny.cz E-zdroje
- Klíčová slova
- bifunctional enzyme, heme catalase, oxidative stress, peroxidase–catalase superfamily, reactive oxygen species,
- Publikační typ
- časopisecké články MeSH
Catalase-peroxidases (KatGs) are unique bifunctional oxidoreductases that contain heme in their active centers allowing both the peroxidatic and catalatic reaction modes. These originally bacterial enzymes are broadly distributed among various fungi allowing them to cope with reactive oxygen species present in the environment or inside the cells. We used various biophysical, biochemical, and bioinformatics methods to investigate differences between catalase-peroxidases originating in thermophilic and mesophilic fungi from different habitats. Our results indicate that the architecture of the active center with a specific post-translational modification is highly similar in mesophilic and thermophilic KatG and also the peroxidatic acitivity with ABTS, guaiacol, and L-DOPA. However, only the thermophilic variant CthedisKatG reveals increased manganese peroxidase activity at elevated temperatures. The catalatic activity releasing molecular oxygen is comparable between CthedisKatG and mesophilic MagKatG1 over a broad temperature range. Two constructed point mutations in the active center were performed selectively blocking the formation of described post-translational modification in the active center. They exhibited a total loss of catalatic activity and changes in the peroxidatic activity. Our results indicate the capacity of bifunctional heme enzymes in the variable reactivity for potential biotech applications.
Zobrazit více v PubMed
Baker A., Lin C.-C., Lett C., Karpinska B., Wright M.H., Foyer C.H. Catalase: A critical node in the regulation of cell fate. Free Radic. Biol. Med. 2023;199:56–66. doi: 10.1016/j.freeradbiomed.2023.02.009. PubMed DOI
Veitch N.C. Horseradish peroxidase: A modern view of a classic enzyme. Phytochemistry. 2004;65:249–259. doi: 10.1016/j.phytochem.2003.10.022. PubMed DOI
Ivancich A., Donald L.J., Villanueva J., Wiseman B., Fita I., Loewen P.C. Spectroscopic and Kinetic Investigation of the Reactions of Peroxyacetic Acid with Burkholderia pseudomallei Catalase-Peroxidase, KatG. Biochemistry. 2013;52:7271–7282. doi: 10.1021/bi400963j. PubMed DOI
Savelli B., Li Q., Webber M., Jemmat A.M., Robitaille A., Zamocky M., Mathé C., Dunand C. RedoxiBase: A database for ROS homeostasis regulated proteins. Redox Biol. 2019;26:101247. doi: 10.1016/j.redox.2019.101247. PubMed DOI PMC
Zamocky M., Furtmüller P.G., Bellei M., Battistuzzi G., Stadlmann J., Vlasits J., Obinger C. Intracellular catalase/peroxidase from the phytopathogenic rice blast fungus Magnaporthe grisea: Expression analysis and biochemical characterization of the recombinant protein. Biochem. J. 2009;418:443–451. doi: 10.1042/BJ20081478. PubMed DOI
Chelikani P., Fita I., Loewen P.C. Diversity of structures and properties among catalases. Cell. Mol. Life Sci. 2004;61:192–208. doi: 10.1007/s00018-003-3206-5. PubMed DOI PMC
Passardi F., Bakalovic N., Teixeira F.K., Margis-Pinheiro M., Penel C., Dunand C. Prokaryotic origins of the non-animal peroxidase superfamily and organelle-mediated transmission to eukaryotes. Genomics. 2007;89:567–579. doi: 10.1016/j.ygeno.2007.01.006. PubMed DOI
Passardi F., Zamocky M., Favet J., Jakopitsch C., Penel C., Obinger C., Dunand C. Phylogenetic distribution of catalase-peroxidases: Are there patches of order in chaos? Gene. 2007;397:101–113. doi: 10.1016/j.gene.2007.04.016. PubMed DOI
Zámocký M., Furtmüller P.G., Obinger C. Two distinct groups of fungal catalase/peroxidases. Biochem. Soc. Trans. 2009;37:772–777. doi: 10.1042/BST0370772. PubMed DOI PMC
Jakopitsch C., Kolarich D., Petutschnig G., Furtmüller P.G., Obinger C. Distal side tryptophan, tyrosine and methionine in catalase-peroxidases are covalently linked in solution. FEBS Lett. 2003;552:135–140. doi: 10.1016/S0014-5793(03)00901-3. PubMed DOI
Zámocký M., García-Fernández Q., Gasselhuber B., Jakopitsch C., Furtmüller P.G., Loewen P.C., Fita I., Obinger C., Carpena X. High Conformational Stability of Secreted Eukaryotic Catalase-peroxidases. J. Biol. Chem. 2012;287:32254–32262. doi: 10.1074/jbc.M112.384271. PubMed DOI PMC
Wingfield P.T. Protein Precipitation Using Ammonium Sulfate. Curr. Protoc. Protein Sci. 1998;13:A.3F.1–A.3F.8. doi: 10.1002/0471140864.psa03fs13. PubMed DOI PMC
Magnusson A.O., Szekrenyi A., Joosten H., Finnigan J., Charnock S., Fessner W. nanoDSF as screening tool for enzyme libraries and biotechnology development. FEBS J. 2019;286:184–204. doi: 10.1111/febs.14696. PubMed DOI PMC
Michalski A., Damoc E., Lange O., Denisov E., Nolting D., Müller M., Viner R., Schwartz J., Remes P., Belford M., et al. Ultra High Resolution Linear Ion Trap Orbitrap Mass Spectrometer (Orbitrap Elite) Facilitates Top Down LC MS/MS and Versatile Peptide Fragmentation Modes. Mol. Cell. Proteom. 2012;11:O111.013698. doi: 10.1074/mcp.O111.013698. PubMed DOI PMC
Cox J., Mann M. MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification. Nat. Biotechnol. 2008;26:1367–1372. doi: 10.1038/nbt.1511. PubMed DOI
Barr D., Aust S. On the Mechanism of Peroxidase-Catalyzed Oxygen Production. Arch. Biochem. Biophys. 1993;303:377–382. doi: 10.1006/abbi.1993.1298. PubMed DOI
Mutsuda M., Ishikawa T., Takeda T., Shigeoka S. The catalase-peroxidase of Synechococcus PCC 7942: Purification, nucleotide sequence analysis and expression in Escherichia coli. Biochem. J. 1996;316:251–257. doi: 10.1042/bj3160251. PubMed DOI PMC
Rodríguez-López J., Bañón-Arnao M., Martinez-Ortiz F., Tudela J., Acosta M., Varón R., García-Cánovas F. Catalytic oxidation of 2,4,5-trihydroxyphenylalanine by tyrosinase: Identification and evolution of intermediates. Biochim. Biophys. Acta (BBA)-Protein Struct. Mol. Enzym. 1992;1160:221–228. doi: 10.1016/0167-4838(92)90011-2. PubMed DOI
Martinez M.J., Ruiz-Duenas F.J., Guillen F., Martinez A.T. Purification and Catalytic Properties of Two Manganese Peroxidase Isoenzymes from Pleurotus eryngii. JBIC J. Biol. Inorg. Chem. 1996;237:424–432. doi: 10.1111/j.1432-1033.1996.0424k.x. PubMed DOI
Hildebrandt A.G., Roots I. Reduced nicotinamide adenine dinucleotide phosphate (NADPH)-dependent formation and breakdown of hydrogen peroxide during mixed function oxidation reactions in liver microsomes. Arch. Biochem. Biophys. 1975;171:385–397. doi: 10.1016/0003-9861(75)90047-8. PubMed DOI
Hekkelman M.L., de Vries I., Joosten R.P., Perrakis A. AlphaFill: Enriching AlphaFold models with ligands and cofactors. Nat. Methods. 2023;20:205–213. doi: 10.1038/s41592-022-01685-y. PubMed DOI PMC
Jumper J., Evans R., Pritzel A., Green T., Figurnov M., Ronneberger O., Tunyasuvunakool K., Bates R., Žídek A., Potapenko A., et al. Highly accurate protein structure prediction with AlphaFold. Nature. 2021;596:583–589. doi: 10.1038/s41586-021-03819-2. PubMed DOI PMC
Drozdetskiy A., Cole C., Procter J., Barton G.J. JPred4: A protein secondary structure prediction server. Nucleic Acids Res. 2015;43:W389–W394. doi: 10.1093/nar/gkv332. PubMed DOI PMC
Bhattacharya D., Nowotny J., Cao R., Cheng J. 3Drefine: An interactive web server for efficient protein structure refinement. Nucleic Acids Res. 2016;44:W406–W409. doi: 10.1093/nar/gkw336. PubMed DOI PMC
Stourac J., Vavra O., Kokkonen P., Filipovic J., Pinto G., Brezovsky J., Damborsky J., Bednar D. Caver Web 1.0: Identification of tunnels and channels in proteins and analysis of ligand transport. Nucleic Acids Res. 2019;47:W414–W422. doi: 10.1093/nar/gkz378. PubMed DOI PMC
Chovancova E., Pavelka A., Benes P., Strnad O., Brezovsky J., Kozlikova B., Gora A., Sustr V., Klvana M., Medek P., et al. CAVER 3.0: A Tool for the Analysis of Transport Pathways in Dynamic Protein Structures. PLOS Comput. Biol. 2012;8:e1002708. doi: 10.1371/journal.pcbi.1002708. PubMed DOI PMC
Vavra O., Filipovic J., Plhak J., Bednar D., Marques S.M., Brezovsky J., Stourac J., Matyska L., Damborsky J. CaverDock: A molecular docking-based tool to analyse ligand transport through protein tunnels and channels. Bioinformatics. 2019;35:4986–4993. doi: 10.1093/bioinformatics/btz386. PubMed DOI
Yuan F., Yin S., Xu Y., Xiang L., Wang H., Li Z., Fan K., Pan G. The Richness and Diversity of Catalases in Bacteria. Front. Microbiol. 2021;12:645477. doi: 10.3389/fmicb.2021.645477. PubMed DOI PMC
Ślesak I., Kula M., Ślesak H., Miszalski Z., Strzałka K. How to define obligatory anaerobiosis? An evolutionary view on the antioxidant response system and the early stages of the evolution of life on Earth. Free. Radic. Biol. Med. 2019;140:61–73. doi: 10.1016/j.freeradbiomed.2019.03.004. PubMed DOI
Salar R. Thermophilic Fungi: Basic Concepts and Biotechnological Applications. CRC Press; Boca Raton, FL, USA: 2018.
Gold M.H., Youngs H.L., Gelpke M.D. Manganese peroxidase. Met. Ions Biol. Syst. 2000;37:559–586. PubMed
Colin J., Wiseman B., Switala J., Loewen P.C., Ivancich A. Distinct Role of Specific Tryptophans in Facilitating Electron Transfer or as [Fe(IV)=O Trp•] Intermediates in the Peroxidase Reaction of Bulkholderia pseudomallei Catalase-Peroxidase: A Multifrequency EPR Spectroscopy Investigation. J. Am. Chem. Soc. 2009;131:8557–8563. doi: 10.1021/ja901402v. PubMed DOI
Casella L., Monzani E., Nicolis S. In: Potential Applications of Peroxidases in the Fine Chemical Industries BT–Biocatalysis Based on Heme Peroxidases: Peroxidases as Potential Industrial Biocatalysts. Torres E., Ayala M., editors. Springer; Berlin/Heidelberg, Germany: 2010. pp. 111–153.
Farkas Z., Puškárová A., Šišková A.O., Poljovka A., Zámocký M., Vadkerti E., Urík M., Farkas B., Bučková M., Kraková L., et al. Evaluation of enzymatic stamp removal strategies on handmade (cellulose-based) and machine-made (lignin-containing) papers. Int. J. Biol. Macromol. 2023;242:124599. doi: 10.1016/j.ijbiomac.2023.124599. PubMed DOI
Zámocký M., Kamlárová A., Maresch D., Chovanová K., Harichová J., Furtmüller P.G. Hybrid Heme Peroxidases from Rice Blast Fungus Magnaporthe oryzae Involved in Defence against Oxidative Stress. Antioxidants. 2020;9:655. doi: 10.3390/antiox9080655. PubMed DOI PMC
Zámocký M., Musil M., Danchenko M., Ferianc P., Chovanová K., Baráth P., Poljovka A., Bednář D. Deep Insights into the Specific Evolution of Fungal Hybrid B Heme Peroxidases. Biology. 2022;11:459. doi: 10.3390/biology11030459. PubMed DOI PMC
Zámocký M., Harichová J. Evolution of Heme Peroxygenases: Ancient Roots and Later Evolved Branches. Antioxidants. 2022;11:1011. doi: 10.3390/antiox11051011. PubMed DOI PMC