Biometal Dyshomeostasis in Olfactory Mucosa of Alzheimer's Disease Patients
Language English Country Switzerland Media electronic
Document type Journal Article
Grant support
295425
Academy of Finland
N/A
Sigrid Jusélius Foundation
N/A
University of Eastern Finland
PubMed
35456941
PubMed Central
PMC9032618
DOI
10.3390/ijms23084123
PII: ijms23084123
Knihovny.cz E-resources
- Keywords
- Alzheimer’s disease, alpha-2-macroglobulin, biometals, calcium, olfactory dysfunction, olfactory mucosa cells, sodium, zinc,
- MeSH
- Alzheimer Disease * metabolism MeSH
- Chelating Agents metabolism MeSH
- Olfactory Mucosa metabolism MeSH
- Humans MeSH
- Trace Elements * metabolism MeSH
- Calcium metabolism MeSH
- Zinc metabolism MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Chelating Agents MeSH
- Trace Elements * MeSH
- Calcium MeSH
- Zinc MeSH
Olfactory function, orchestrated by the cells of the olfactory mucosa at the rooftop of the nasal cavity, is disturbed early in the pathogenesis of Alzheimer's disease (AD). Biometals including zinc and calcium are known to be important for sense of smell and to be altered in the brains of AD patients. Little is known about elemental homeostasis in the AD patient olfactory mucosa. Here we aimed to assess whether the disease-related alterations to biometal homeostasis observed in the brain are also reflected in the olfactory mucosa. We applied RNA sequencing to discover gene expression changes related to metals in olfactory mucosal cells of cognitively healthy controls, individuals with mild cognitive impairment and AD patients, and performed analysis of the elemental content to determine metal levels. Results demonstrate that the levels of zinc, calcium and sodium are increased in the AD olfactory mucosa concomitantly with alterations to 17 genes related to metal-ion binding or metal-related function of the protein product. A significant elevation in alpha-2-macroglobulin, a known metal-binding biomarker correlated with brain disease burden, was observed on the gene and protein levels in the olfactory mucosa cells of AD patients. These data demonstrate that the olfactory mucosa cells derived from AD patients recapitulate certain impairments of biometal homeostasis observed in the brains of patients.
A 1 Virtanen Institute for Molecular Sciences University of Eastern Finland 70210 Kuopio Finland
Department of Biochemistry and Pharmacology The University of Melbourne Melbourne VIC 3010 Australia
Department of Computer Science University of Verona 37134 Verona Italy
Department of Neurology NeuroCentre Kuopio University Hospital 70210 Kuopio Finland
See more in PubMed
Scheltens P., de Strooper B., Kivipelto M., Holstege H., Chételat G., Teunissen C.E., Cummings J., van der Flier W.M. Alzheimer’s Disease. Lancet. 2021;397:1577–1590. doi: 10.1016/S0140-6736(20)32205-4. PubMed DOI PMC
Lane C.A., Hardy J., Schott J.M. Alzheimer’s Disease. Eur. J. Neurol. 2018;25:59–70. doi: 10.1111/ene.13439. PubMed DOI
Jack C.R., Knopman D.S., Jagust W.J., Shaw L.M., Aisen P.S., Weiner M.W., Petersen R.C., Trojanowski J.Q. Hypothetical Model of Dynamic Biomarkers of the Alzheimer’s Pathological Cascade. Lancet Neurol. 2010;9:119–128. doi: 10.1016/S1474-4422(09)70299-6. PubMed DOI PMC
Sohrabi H.R., Bates K.A., Rodrigues M., Taddei K., Laws S.M., Lautenschlager N.T., Dhaliwal S.S., Johnston A.N.B., MacKay-Sim A., Gandy S., et al. Olfactory Dysfunction Is Associated with Subjective Memory Complaints in Community-Dwelling Elderly Individuals. J. Alzheimers Dis. 2009;17:135–142. doi: 10.3233/JAD-2009-1020. PubMed DOI
Sohrabi H.R., Bates K.A., Weinborn M.G., Johnston A.N.B., Bahramian A., Taddei K., Laws S.M., Rodrigues M., Morici M., Howard M., et al. Olfactory Discrimination Predicts Cognitive Decline among Community-Dwelling Older Adults. Transl. Psychiatry. 2012;2:e118. doi: 10.1038/tp.2012.43. PubMed DOI PMC
Jung H.J., Shin I.S., Lee J.E. Olfactory Function in Mild Cognitive Impairment and Alzheimer’s Disease: A Meta-Analysis. Laryngoscope. 2019;129:362–369. doi: 10.1002/lary.27399. PubMed DOI
Lampinen R., Feroze Fazaludeen M., Avesani S., Örd T., Penttilä E., Lehtola J.-M., Saari T., Hannonen S., Saveleva L., Kaartinen E., et al. Single-Cell RNA-Seq Analysis of Olfactory Mucosal Cells of Alzheimer’s Disease Patients. Cells. 2022;11:676. doi: 10.3390/cells11040676. PubMed DOI PMC
Fasae K.D., Abolaji A.O., Faloye T.R., Odunsi A.Y., Oyetayo B.O., Enya J.I., Rotimi J.A., Akinyemi R.O., Whitworth A.J., Aschner M. Metallobiology and Therapeutic Chelation of Biometals (Copper, Zinc and Iron) in Alzheimer’s Disease: Limitations, and Current and Future Perspectives. J. Trace Elem. Med. Biol. 2021;67:126779. doi: 10.1016/j.jtemb.2021.126779. PubMed DOI
Samudralwar D.L., Diprete C.C., Ni B.F., Ehmann W.D., Markesbery W.R. Elemental Imbalances in the Olfactory Pathway in Alzheimer’s Disease. J. Neurol. Sci. 1995;130:139–145. doi: 10.1016/0022-510X(95)00018-W. PubMed DOI
Ono S.I., Cherian G.M. Regional Distribution of Metallothionein, Zinc, and Copper in the Brain of Different Strains of Rats. Biol. Trace Elem. Res. 1999;69:151–159. doi: 10.1007/BF02783866. PubMed DOI
Sastre M., Ritchie C.W., Hajji N. Metal Ions in Alzheimer’s Disease Brain. JSM Alzheimers Dis. Related Dementia. 2015;2:1014.
Tamano H., Takeda A. Age-Dependent Modification of Intracellular Zn2+ Buffering in the Hippocampus and Its Impact. Biol. Pharm. Bull. 2019;42:1070–1075. doi: 10.1248/bpb.b18-00631. PubMed DOI
Zaręba N., Kepinska M. The Function of Transthyretin Complexes with Metallothionein in Alzheimer’s Disease. Int. J. Mol. Sci. 2020;21:9003. doi: 10.3390/ijms21239003. PubMed DOI PMC
Wood J.A., Wood P.L., Ryan R., Graff-Radford N.R., Pilapil C., Robitaille Y., Quirion R. Cytokine Indices in Alzheimer’s Temporal Cortex: No Changes in Mature IL-1 Beta or IL-1RA but Increases in the Associated Acute Phase Proteins IL-6, Alpha 2-Macroglobulin and C-Reactive Protein. Brain Res. 1993;629:245–252. doi: 10.1016/0006-8993(93)91327-O. PubMed DOI
Kiddle S.J., Sattlecker M., Proitsi P., Simmons A., Westman E., Bazenet C., Nelson S.K., Williams S., Hodges A., Johnston C., et al. Candidate Blood Proteome Markers of Alzheimer’s Disease Onset and Progression: A Systematic Review and Replication Study. J. Alzheimers Dis. 2014;38:515–531. doi: 10.3233/JAD-130380. PubMed DOI
Ulgen E., Ozisik O., Sezerman O.U. PathfindR: An R Package for Comprehensive Identification of Enriched Pathways in Omics Data through Active Subnetworks. Front. Genet. 2019;10:858. doi: 10.3389/fgene.2019.00858. PubMed DOI PMC
Shibata N., Ohnuma T., Higashi S., Higashi M., Usui C., Ohkubo T., Watanabe T., Kawashima R., Kitajima A., Ueki A., et al. Genetic Association between Notch4 Polymorphisms and Alzheimer’s Disease in the Japanese Population. J. Gerontol. A Biol. Sci. Med. Sci. 2007;62:350–351. doi: 10.1093/gerona/62.4.350. PubMed DOI
Kapoor A., Nation D.A. Role of Notch Signaling in Neurovascular Aging and Alzheimer’s Disease. Semin. Cell Dev. Biol. 2021;116:90–97. doi: 10.1016/j.semcdb.2020.12.011. PubMed DOI PMC
Seyfried N.T., Dammer E.B., Swarup V., Geschwind D.H., Lah J.J., Levey A.I. A Multi-Network Approach Identifies Protein-Specific Co-Expression in Asymptomatic and Symptomatic Alzheimer’s Disease. Cell Syst. 2017;4:60–72. doi: 10.1016/j.cels.2016.11.006. PubMed DOI PMC
Kim Y.H., Beak S.H., Charidimou A., Song M. Discovering New Genes in the Pathways of Common Sporadic Neurodegenerative Diseases: A Bioinformatics Approach. J. Alzheimers Dis. 2016;51:293–312. doi: 10.3233/JAD-150769. PubMed DOI
Hondius D.C., van Nierop P., Li K.W., Hoozemans J.J.M., van der Schors R.C., van Haastert E.S., van der Vies S.M., Rozemuller A.J.M., Smit A.B. Profiling the Human Hippocampal Proteome at All Pathologic Stages of Alzheimer’s Disease. Alzheimers Dement. 2016;12:654–668. doi: 10.1016/j.jalz.2015.11.002. PubMed DOI
Huat T.J., Camats-Perna J., Newcombe E.A., Valmas N., Kitazawa M., Medeiros R. Metal Toxicity Links to Alzheimer’s Disease and Neuroinflammation. J. Mol. Biol. 2019;431:1843–1868. doi: 10.1016/j.jmb.2019.01.018. PubMed DOI PMC
Burnet F.M. A Possible Role of Zinc in the Pathology of Dementia. Lancet. 1981;317:186–188. doi: 10.1016/S0140-6736(81)90062-3. PubMed DOI
Witt B., Schaumlöffel D., Schwerdtle T. Subcellular Localization of Copper-Cellular Bioimaging with Focus on Neurological Disorders. Int. J. Mol. Sci. 2020;21:2341. doi: 10.3390/ijms21072341. PubMed DOI PMC
Lindeque J.Z., Levanets O., Louw R., van der Westhuizen F.H. The Involvement of Metallothioneins in Mitochondrial Function and Disease. Curr. Protein Pept. Sci. 2010;11:292–309. doi: 10.2174/138920310791233378. PubMed DOI
Huiliang Z., Mengzhe Y., Xiaochuan W., Hui W., Min D., Mengqi W., Jianzhi W., Zhongshan C., Caixia P., Rong L. Zinc Induces Reactive Astrogliosis through ERK-Dependent Activation of Stat3 and Promotes Synaptic Degeneration. J. Neurochem. 2021;159:1016–1027. doi: 10.1111/jnc.15531. PubMed DOI
Lengyel I., Flinn J.M., Peto T., Linkous D.H., Cano K., Bird A.C., Lanzirotti A., Frederickson C.J., van Kuijk F.J.G.M. High Concentration of Zinc in Sub-Retinal Pigment Epithelial Deposits. Exp. Eye Res. 2007;84:772–780. doi: 10.1016/j.exer.2006.12.015. PubMed DOI
Kaarniranta K., Salminen A., Haapasalo A., Soininen H., Hiltunen M. Age-Related Macular Degeneration (AMD): Alzheimer’s Disease in the Eye? J. Alzheimers Dis. 2011;24:615–631. doi: 10.3233/JAD-2011-101908. PubMed DOI
LaFerla F.M. Calcium Dyshomeostasis and Intracellular Signalling in Alzheimer’s Disease. Nat. Rev. Neurosci. 2002;3:862–872. doi: 10.1038/nrn960. PubMed DOI
Block E., Batista V.S., Matsunami H., Zhuang H., Ahmed L. The Role of Metals in Mammalian Olfaction of Low Molecular Weight Organosulfur Compounds. Nat. Prod. Rep. 2017;34:529–557. doi: 10.1039/C7NP00016B. PubMed DOI PMC
Sunderman F.W., Jr. Nasal Toxicity, Carcinogenicity, and Olfactory Uptake of Metals. Ann. Clin. Lab. Sci. 2001;31:3–24. PubMed
McBride K., Slotnick B., Margolis F.L. Does Intranasal Application of Zinc Sulfate Produce Anosmia in the Mouse? An Olfactometric and Anatomical Study. Chem. Senses. 2003;28:659–670. doi: 10.1093/chemse/bjg053. PubMed DOI
Davidson T.M., Smith W.M. The Bradford Hill Criteria and Zinc-Induced Anosmia: A Causality Analysis. Arch. Otolaryngol. Head Neck Surg. 2010;136:673–676. doi: 10.1001/archoto.2010.111. PubMed DOI
Whitcroft K.L., Ezzat M., Cuevas M., Andrews P., Hummel T. The Effect of Intranasal Sodium Citrate on Olfaction in Post-Infectious Loss: Results from a Prospective, Placebo-Controlled Trial in 49 Patients. Clin. Otolaryngol. 2017;42:557–563. doi: 10.1111/coa.12789. PubMed DOI
Bush A.I., Pettingell W.H., Multhaup G., Paradis M.D., Vonsattel J.P., Gusella J.F., Beyreuther K., Masters C.L., Tanzi R.E. Rapid Induction of Alzheimer A Beta Amyloid Formation by Zinc. Science. 1994;265:1464–1467. doi: 10.1126/science.8073293. PubMed DOI
Wang L., Yin Y.L., Liu X.Z., Shen P., Zheng Y.G., Lan X.R., Lu C.B., Wang J.Z. Current Understanding of Metal Ions in the Pathogenesis of Alzheimer’s Disease. Transl. Neurodegener. 2020;9:10. doi: 10.1186/s40035-020-00189-z. PubMed DOI PMC
Wang C.Y., Wang T., Zheng W., Zhao B.L., Danscher G., Chen Y.H., Wang Z.Y. Zinc Overload Enhances APP Cleavage and Aβ Deposition in the Alzheimer Mouse Brain. PLoS ONE. 2010;5:e15349. doi: 10.1371/journal.pone.0015349. PubMed DOI PMC
Ryan K.C., Ashkavand Z., Norman K.R. The Role of Mitochondrial Calcium Homeostasis in Alzheimer’s and Related Diseases. Int. J. Mol. Sci. 2020;21:9153. doi: 10.3390/ijms21239153. PubMed DOI PMC
Tooyama I., Kawamata T., Akiyama H., Moestrup S.K., Gliemann J., McGeer P.L. Immunohistochemical Study of Alpha 2 Macroglobulin Receptor in Alzheimer and Control Postmortem Human Brain. Mol. Chem. Neuropathol. 1993;18:153–160. doi: 10.1007/BF03160029. PubMed DOI
Du Y., Ni B., Glinn M., Dodel R.C., Bales K.R., Zhang Z., Hyslop P.A., Paul S.M. Alpha2-Macroglobulin as a Beta-Amyloid Peptide-Binding Plasma Protein. J. Neurochem. 1997;69:299–305. doi: 10.1046/j.1471-4159.1997.69010299.x. PubMed DOI
Narita M., Holtzman D.M., Schwartz A.L., Bu G. Alpha2-Macroglobulin Complexes with and Mediates the Endocytosis of Beta-Amyloid Peptide via Cell Surface Low-Density Lipoprotein Receptor-Related Protein. J. Neurochem. 1997;69:1904–1911. doi: 10.1046/j.1471-4159.1997.69051904.x. PubMed DOI
Blacker D., Wilcox M.A., Laird N.M., Rodes L., Horvath S.M., Go R.C.P., Perry R., Watson B., Bassett S.S., McInnis M.G., et al. Alpha-2 Macroglobulin Is Genetically Associated with Alzheimer Disease. Nat. Genet. 1998;19:357–360. doi: 10.1038/1243. PubMed DOI
Westwood S., Leoni E., Hye A., Lynham S., Khondoker M.R., Ashton N.J., Kiddle S.J., Baird A.L., Sainz-Fuertes R., Leung R., et al. Blood-Based Biomarker Candidates of Cerebral Amyloid Using PiB PET in Non-Demented Elderly. J. Alzheimers Dis. 2016;52:561–572. doi: 10.3233/JAD-151155. PubMed DOI PMC
Eke C.S., Jammeh E., Li X., Carroll C., Pearson S., Ifeachor E. Early Detection of Alzheimer’s Disease with Blood Plasma Proteins Using Support Vector Machines. IEEE J. Biomed. Health Inform. 2021;25:218–226. doi: 10.1109/JBHI.2020.2984355. PubMed DOI
Poller W., Barth J., Voss B. Detection of an Alteration of the Alpha 2-Macroglobulin Gene in a Patient with Chronic Lung Disease and Serum Alpha 2-Macroglobulin Deficiency. Hum. Genet. 1989;83:93–96. doi: 10.1007/BF00274157. PubMed DOI
Ho A.S., Cheng C.C., Lee S.C., Liu M.L., Lee J.Y., Wang W.M., Wang C.C. Novel Biomarkers Predict Liver Fibrosis in Hepatitis C Patients: Alpha 2 Macroglobulin, Vitamin D Binding Protein and Apolipoprotein AI. J. Biomed. Sci. 2010;17:58. doi: 10.1186/1423-0127-17-58. PubMed DOI PMC
Tripodi A., Chantarangkul V., de Stefano V., Mannucci P. Alpha(2)-Macroglobulin Levels Are High in Adult Patients with Congenital Antithrombin Deficiency. Thromb. Res. 2000;98:117–122. doi: 10.1016/S0049-3848(99)00217-0. PubMed DOI
Kanoh Y., Ohtani N., Mashiko T., Ohtani S., Nishikawa T., Egawa S., Baba S., Ohtani H. Levels of Alpha 2 Macroglobulin Can Predict Bone Metastases in Prostate Cancer. Anticancer Res. 2001;21:551–556. PubMed
El Haj M., Gandolphe M.C., Gallouj K., Kapogiannis D., Antoine P. From Nose to Memory: The Involuntary Nature of Odor-Evoked Autobiographical Memories in Alzheimer’s Disease. Chem. Senses. 2018;43:27–34. doi: 10.1093/chemse/bjx064. PubMed DOI PMC
O’Bryant S.E., Lacritz L.H., Hall J., Waring S.C., Chan W., Khodr Z.G., Massman P.J., Hobson V., Cullum C.M. Validation of the New Interpretive Guidelines for the Clinical Dementia Rating Scale Sum of Boxes Score in the National Alzheimer’s Coordinating Center Database. Arch. Neurol. 2010;67:746–749. doi: 10.1001/archneurol.2010.115. PubMed DOI PMC
Welsh K.A., Butters N., Hughes J.P., Mohs R.C., Heyman A. Detection and Staging of Dementia in Alzheimer’s Disease. Use of the Neuropsychological Measures Developed for the Consortium to Establish a Registry for Alzheimer’s Disease. Arch. Neurol. 1992;49:448–452. doi: 10.1001/archneur.1992.00530290030008. PubMed DOI
Chandler M.J., Lacritz L.H., Hynan L.S., Barnard H.D., Allen G., Deschner M., Weiner M.F., Cullum C.M. A Total Score for the CERAD Neuropsychological Battery. Neurology. 2005;65:102–106. doi: 10.1212/01.wnl.0000167607.63000.38. PubMed DOI
McKhann G.M., Knopman D.S., Chertkow H., Hyman B.T., Jack C.R., Kawas C.H., Klunk W.E., Koroshetz W.J., Manly J.J., Mayeux R., et al. The Diagnosis of Dementia Due to Alzheimer’s Disease: Recommendations from the National Institute on Aging-Alzheimer’s Association Workgroups on Diagnostic Guidelines for Alzheimer’s Disease. Alzheimers Dement. 2011;7:263–269. doi: 10.1016/j.jalz.2011.03.005. PubMed DOI PMC
Chew S., Lampinen R., Saveleva L., Korhonen P., Mikhailov N., Grubman A., Grubman A., Grubman A., Polo J.M., Polo J.M., et al. Urban Air Particulate Matter Induces Mitochondrial Dysfunction in Human Olfactory Mucosal Cells. Part. Fibre Toxicol. 2020;17:18. doi: 10.1186/s12989-020-00352-4. PubMed DOI PMC
Bolger A.M., Lohse M., Usadel B. Trimmomatic: A Flexible Trimmer for Illumina Sequence Data. Bioinformatics. 2014;30:2114–2120. doi: 10.1093/bioinformatics/btu170. PubMed DOI PMC
Frankish A., Diekhans M., Jungreis I., Lagarde J., Loveland J.E., Mudge J.M., Sisu C., Wright J.C., Armstrong J., Barnes I., et al. GENCODE 2021. Nucleic Acids Res. 2021;49:D916–D923. doi: 10.1093/nar/gkaa1087. PubMed DOI PMC
Dobin A., Davis C.A., Schlesinger F., Drenkow J., Zaleski C., Jha S., Batut P., Chaisson M., Gingeras T.R. STAR: Ultrafast Universal RNA-Seq Aligner. Bioinformatics. 2013;29:15–21. doi: 10.1093/bioinformatics/bts635. PubMed DOI PMC
Liao Y., Smyth G.K., Shi W. FeatureCounts: An Efficient General Purpose Program for Assigning Sequence Reads to Genomic Features. Bioinformatics. 2014;30:923–930. doi: 10.1093/bioinformatics/btt656. PubMed DOI
Liao Y., Smyth G.K., Shi W. The Subread Aligner: Fast, Accurate and Scalable Read Mapping by Seed-and-Vote. Nucleic Acids Res. 2013;41:e108. doi: 10.1093/nar/gkt214. PubMed DOI PMC
Love M.I., Huber W., Anders S. Moderated Estimation of Fold Change and Dispersion for RNA-Seq Data with DESeq2. Genome Biol. 2014;15:550. doi: 10.1186/s13059-014-0550-8. PubMed DOI PMC
Huber W., Carey V.J., Gentleman R., Anders S., Carlson M., Carvalho B.S., Bravo H.C., Davis S., Gatto L., Girke T., et al. Orchestrating High-Throughput Genomic Analysis with Bioconductor. Nat. Methods. 2015;12:115–121. doi: 10.1038/nmeth.3252. PubMed DOI PMC
Stephens M. False Discovery Rates: A New Deal. Biostatistics. 2017;18:275. doi: 10.1093/biostatistics/kxw041. PubMed DOI PMC
Raudvere U., Kolberg L., Kuzmin I., Arak T., Adler P., Peterson H., Vilo J. G:Profiler: A Web Server for Functional Enrichment Analysis and Conversions of Gene Lists (2019 Update) Nucleic Acids Res. 2019;47:W191–W198. doi: 10.1093/nar/gkz369. PubMed DOI PMC
Ashburner M., Ball C.A., Blake J.A., Botstein D., Butler H., Cherry J.M., Davis A.P., Dolinski K., Dwight S.S., Eppig J.T., et al. Gene Ontology: Tool for the Unification of Biology. The Gene Ontology Consortium. Nat. Genet. 2000;25:25–29. doi: 10.1038/75556. PubMed DOI PMC
Carbon S., Douglass E., Good B.M., Unni D.R., Harris N.L., Mungall C.J., Basu S., Chisholm R.L., Dodson R.J., Hartline E., et al. The Gene Ontology Resource: Enriching a GOld Mine. Nucleic Acids Res. 2021;49:D325–D334. PubMed PMC
Giurgiu M., Reinhard J., Brauner B., Dunger-Kaltenbach I., Fobo G., Frishman G., Montrone C., Ruepp A. CORUM: The Comprehensive Resource of Mammalian Protein Complexes-2019. Nucleic Acids Res. 2019;47:D559–D563. doi: 10.1093/nar/gky973. PubMed DOI PMC
Kanninen K.M., Grubman A., Meyerowitz J., Duncan C., Tan J.L., Parker S.J., Crouch P.J., Paterson B.M., Hickey J.L., Donnelly P.S., et al. Increased Zinc and Manganese in Parallel with Neurodegeneration, Synaptic Protein Changes and Activation of Akt/GSK3 Signaling in Ovine CLN6 Neuronal Ceroid Lipofuscinosis. PLoS ONE. 2013;8:e58644. doi: 10.1371/journal.pone.0058644. PubMed DOI PMC