• This record comes from PubMed

Biometal Dyshomeostasis in Olfactory Mucosa of Alzheimer's Disease Patients

. 2022 Apr 08 ; 23 (8) : . [epub] 20220408

Language English Country Switzerland Media electronic

Document type Journal Article

Grant support
295425 Academy of Finland
N/A Sigrid Jusélius Foundation
N/A University of Eastern Finland

Olfactory function, orchestrated by the cells of the olfactory mucosa at the rooftop of the nasal cavity, is disturbed early in the pathogenesis of Alzheimer's disease (AD). Biometals including zinc and calcium are known to be important for sense of smell and to be altered in the brains of AD patients. Little is known about elemental homeostasis in the AD patient olfactory mucosa. Here we aimed to assess whether the disease-related alterations to biometal homeostasis observed in the brain are also reflected in the olfactory mucosa. We applied RNA sequencing to discover gene expression changes related to metals in olfactory mucosal cells of cognitively healthy controls, individuals with mild cognitive impairment and AD patients, and performed analysis of the elemental content to determine metal levels. Results demonstrate that the levels of zinc, calcium and sodium are increased in the AD olfactory mucosa concomitantly with alterations to 17 genes related to metal-ion binding or metal-related function of the protein product. A significant elevation in alpha-2-macroglobulin, a known metal-binding biomarker correlated with brain disease burden, was observed on the gene and protein levels in the olfactory mucosa cells of AD patients. These data demonstrate that the olfactory mucosa cells derived from AD patients recapitulate certain impairments of biometal homeostasis observed in the brains of patients.

See more in PubMed

Scheltens P., de Strooper B., Kivipelto M., Holstege H., Chételat G., Teunissen C.E., Cummings J., van der Flier W.M. Alzheimer’s Disease. Lancet. 2021;397:1577–1590. doi: 10.1016/S0140-6736(20)32205-4. PubMed DOI PMC

Lane C.A., Hardy J., Schott J.M. Alzheimer’s Disease. Eur. J. Neurol. 2018;25:59–70. doi: 10.1111/ene.13439. PubMed DOI

Jack C.R., Knopman D.S., Jagust W.J., Shaw L.M., Aisen P.S., Weiner M.W., Petersen R.C., Trojanowski J.Q. Hypothetical Model of Dynamic Biomarkers of the Alzheimer’s Pathological Cascade. Lancet Neurol. 2010;9:119–128. doi: 10.1016/S1474-4422(09)70299-6. PubMed DOI PMC

Sohrabi H.R., Bates K.A., Rodrigues M., Taddei K., Laws S.M., Lautenschlager N.T., Dhaliwal S.S., Johnston A.N.B., MacKay-Sim A., Gandy S., et al. Olfactory Dysfunction Is Associated with Subjective Memory Complaints in Community-Dwelling Elderly Individuals. J. Alzheimers Dis. 2009;17:135–142. doi: 10.3233/JAD-2009-1020. PubMed DOI

Sohrabi H.R., Bates K.A., Weinborn M.G., Johnston A.N.B., Bahramian A., Taddei K., Laws S.M., Rodrigues M., Morici M., Howard M., et al. Olfactory Discrimination Predicts Cognitive Decline among Community-Dwelling Older Adults. Transl. Psychiatry. 2012;2:e118. doi: 10.1038/tp.2012.43. PubMed DOI PMC

Jung H.J., Shin I.S., Lee J.E. Olfactory Function in Mild Cognitive Impairment and Alzheimer’s Disease: A Meta-Analysis. Laryngoscope. 2019;129:362–369. doi: 10.1002/lary.27399. PubMed DOI

Lampinen R., Feroze Fazaludeen M., Avesani S., Örd T., Penttilä E., Lehtola J.-M., Saari T., Hannonen S., Saveleva L., Kaartinen E., et al. Single-Cell RNA-Seq Analysis of Olfactory Mucosal Cells of Alzheimer’s Disease Patients. Cells. 2022;11:676. doi: 10.3390/cells11040676. PubMed DOI PMC

Fasae K.D., Abolaji A.O., Faloye T.R., Odunsi A.Y., Oyetayo B.O., Enya J.I., Rotimi J.A., Akinyemi R.O., Whitworth A.J., Aschner M. Metallobiology and Therapeutic Chelation of Biometals (Copper, Zinc and Iron) in Alzheimer’s Disease: Limitations, and Current and Future Perspectives. J. Trace Elem. Med. Biol. 2021;67:126779. doi: 10.1016/j.jtemb.2021.126779. PubMed DOI

Samudralwar D.L., Diprete C.C., Ni B.F., Ehmann W.D., Markesbery W.R. Elemental Imbalances in the Olfactory Pathway in Alzheimer’s Disease. J. Neurol. Sci. 1995;130:139–145. doi: 10.1016/0022-510X(95)00018-W. PubMed DOI

Ono S.I., Cherian G.M. Regional Distribution of Metallothionein, Zinc, and Copper in the Brain of Different Strains of Rats. Biol. Trace Elem. Res. 1999;69:151–159. doi: 10.1007/BF02783866. PubMed DOI

Sastre M., Ritchie C.W., Hajji N. Metal Ions in Alzheimer’s Disease Brain. JSM Alzheimers Dis. Related Dementia. 2015;2:1014.

Tamano H., Takeda A. Age-Dependent Modification of Intracellular Zn2+ Buffering in the Hippocampus and Its Impact. Biol. Pharm. Bull. 2019;42:1070–1075. doi: 10.1248/bpb.b18-00631. PubMed DOI

Zaręba N., Kepinska M. The Function of Transthyretin Complexes with Metallothionein in Alzheimer’s Disease. Int. J. Mol. Sci. 2020;21:9003. doi: 10.3390/ijms21239003. PubMed DOI PMC

Wood J.A., Wood P.L., Ryan R., Graff-Radford N.R., Pilapil C., Robitaille Y., Quirion R. Cytokine Indices in Alzheimer’s Temporal Cortex: No Changes in Mature IL-1 Beta or IL-1RA but Increases in the Associated Acute Phase Proteins IL-6, Alpha 2-Macroglobulin and C-Reactive Protein. Brain Res. 1993;629:245–252. doi: 10.1016/0006-8993(93)91327-O. PubMed DOI

Kiddle S.J., Sattlecker M., Proitsi P., Simmons A., Westman E., Bazenet C., Nelson S.K., Williams S., Hodges A., Johnston C., et al. Candidate Blood Proteome Markers of Alzheimer’s Disease Onset and Progression: A Systematic Review and Replication Study. J. Alzheimers Dis. 2014;38:515–531. doi: 10.3233/JAD-130380. PubMed DOI

Ulgen E., Ozisik O., Sezerman O.U. PathfindR: An R Package for Comprehensive Identification of Enriched Pathways in Omics Data through Active Subnetworks. Front. Genet. 2019;10:858. doi: 10.3389/fgene.2019.00858. PubMed DOI PMC

Shibata N., Ohnuma T., Higashi S., Higashi M., Usui C., Ohkubo T., Watanabe T., Kawashima R., Kitajima A., Ueki A., et al. Genetic Association between Notch4 Polymorphisms and Alzheimer’s Disease in the Japanese Population. J. Gerontol. A Biol. Sci. Med. Sci. 2007;62:350–351. doi: 10.1093/gerona/62.4.350. PubMed DOI

Kapoor A., Nation D.A. Role of Notch Signaling in Neurovascular Aging and Alzheimer’s Disease. Semin. Cell Dev. Biol. 2021;116:90–97. doi: 10.1016/j.semcdb.2020.12.011. PubMed DOI PMC

Seyfried N.T., Dammer E.B., Swarup V., Geschwind D.H., Lah J.J., Levey A.I. A Multi-Network Approach Identifies Protein-Specific Co-Expression in Asymptomatic and Symptomatic Alzheimer’s Disease. Cell Syst. 2017;4:60–72. doi: 10.1016/j.cels.2016.11.006. PubMed DOI PMC

Kim Y.H., Beak S.H., Charidimou A., Song M. Discovering New Genes in the Pathways of Common Sporadic Neurodegenerative Diseases: A Bioinformatics Approach. J. Alzheimers Dis. 2016;51:293–312. doi: 10.3233/JAD-150769. PubMed DOI

Hondius D.C., van Nierop P., Li K.W., Hoozemans J.J.M., van der Schors R.C., van Haastert E.S., van der Vies S.M., Rozemuller A.J.M., Smit A.B. Profiling the Human Hippocampal Proteome at All Pathologic Stages of Alzheimer’s Disease. Alzheimers Dement. 2016;12:654–668. doi: 10.1016/j.jalz.2015.11.002. PubMed DOI

Huat T.J., Camats-Perna J., Newcombe E.A., Valmas N., Kitazawa M., Medeiros R. Metal Toxicity Links to Alzheimer’s Disease and Neuroinflammation. J. Mol. Biol. 2019;431:1843–1868. doi: 10.1016/j.jmb.2019.01.018. PubMed DOI PMC

Burnet F.M. A Possible Role of Zinc in the Pathology of Dementia. Lancet. 1981;317:186–188. doi: 10.1016/S0140-6736(81)90062-3. PubMed DOI

Witt B., Schaumlöffel D., Schwerdtle T. Subcellular Localization of Copper-Cellular Bioimaging with Focus on Neurological Disorders. Int. J. Mol. Sci. 2020;21:2341. doi: 10.3390/ijms21072341. PubMed DOI PMC

Lindeque J.Z., Levanets O., Louw R., van der Westhuizen F.H. The Involvement of Metallothioneins in Mitochondrial Function and Disease. Curr. Protein Pept. Sci. 2010;11:292–309. doi: 10.2174/138920310791233378. PubMed DOI

Huiliang Z., Mengzhe Y., Xiaochuan W., Hui W., Min D., Mengqi W., Jianzhi W., Zhongshan C., Caixia P., Rong L. Zinc Induces Reactive Astrogliosis through ERK-Dependent Activation of Stat3 and Promotes Synaptic Degeneration. J. Neurochem. 2021;159:1016–1027. doi: 10.1111/jnc.15531. PubMed DOI

Lengyel I., Flinn J.M., Peto T., Linkous D.H., Cano K., Bird A.C., Lanzirotti A., Frederickson C.J., van Kuijk F.J.G.M. High Concentration of Zinc in Sub-Retinal Pigment Epithelial Deposits. Exp. Eye Res. 2007;84:772–780. doi: 10.1016/j.exer.2006.12.015. PubMed DOI

Kaarniranta K., Salminen A., Haapasalo A., Soininen H., Hiltunen M. Age-Related Macular Degeneration (AMD): Alzheimer’s Disease in the Eye? J. Alzheimers Dis. 2011;24:615–631. doi: 10.3233/JAD-2011-101908. PubMed DOI

LaFerla F.M. Calcium Dyshomeostasis and Intracellular Signalling in Alzheimer’s Disease. Nat. Rev. Neurosci. 2002;3:862–872. doi: 10.1038/nrn960. PubMed DOI

Block E., Batista V.S., Matsunami H., Zhuang H., Ahmed L. The Role of Metals in Mammalian Olfaction of Low Molecular Weight Organosulfur Compounds. Nat. Prod. Rep. 2017;34:529–557. doi: 10.1039/C7NP00016B. PubMed DOI PMC

Sunderman F.W., Jr. Nasal Toxicity, Carcinogenicity, and Olfactory Uptake of Metals. Ann. Clin. Lab. Sci. 2001;31:3–24. PubMed

McBride K., Slotnick B., Margolis F.L. Does Intranasal Application of Zinc Sulfate Produce Anosmia in the Mouse? An Olfactometric and Anatomical Study. Chem. Senses. 2003;28:659–670. doi: 10.1093/chemse/bjg053. PubMed DOI

Davidson T.M., Smith W.M. The Bradford Hill Criteria and Zinc-Induced Anosmia: A Causality Analysis. Arch. Otolaryngol. Head Neck Surg. 2010;136:673–676. doi: 10.1001/archoto.2010.111. PubMed DOI

Whitcroft K.L., Ezzat M., Cuevas M., Andrews P., Hummel T. The Effect of Intranasal Sodium Citrate on Olfaction in Post-Infectious Loss: Results from a Prospective, Placebo-Controlled Trial in 49 Patients. Clin. Otolaryngol. 2017;42:557–563. doi: 10.1111/coa.12789. PubMed DOI

Bush A.I., Pettingell W.H., Multhaup G., Paradis M.D., Vonsattel J.P., Gusella J.F., Beyreuther K., Masters C.L., Tanzi R.E. Rapid Induction of Alzheimer A Beta Amyloid Formation by Zinc. Science. 1994;265:1464–1467. doi: 10.1126/science.8073293. PubMed DOI

Wang L., Yin Y.L., Liu X.Z., Shen P., Zheng Y.G., Lan X.R., Lu C.B., Wang J.Z. Current Understanding of Metal Ions in the Pathogenesis of Alzheimer’s Disease. Transl. Neurodegener. 2020;9:10. doi: 10.1186/s40035-020-00189-z. PubMed DOI PMC

Wang C.Y., Wang T., Zheng W., Zhao B.L., Danscher G., Chen Y.H., Wang Z.Y. Zinc Overload Enhances APP Cleavage and Aβ Deposition in the Alzheimer Mouse Brain. PLoS ONE. 2010;5:e15349. doi: 10.1371/journal.pone.0015349. PubMed DOI PMC

Ryan K.C., Ashkavand Z., Norman K.R. The Role of Mitochondrial Calcium Homeostasis in Alzheimer’s and Related Diseases. Int. J. Mol. Sci. 2020;21:9153. doi: 10.3390/ijms21239153. PubMed DOI PMC

Tooyama I., Kawamata T., Akiyama H., Moestrup S.K., Gliemann J., McGeer P.L. Immunohistochemical Study of Alpha 2 Macroglobulin Receptor in Alzheimer and Control Postmortem Human Brain. Mol. Chem. Neuropathol. 1993;18:153–160. doi: 10.1007/BF03160029. PubMed DOI

Du Y., Ni B., Glinn M., Dodel R.C., Bales K.R., Zhang Z., Hyslop P.A., Paul S.M. Alpha2-Macroglobulin as a Beta-Amyloid Peptide-Binding Plasma Protein. J. Neurochem. 1997;69:299–305. doi: 10.1046/j.1471-4159.1997.69010299.x. PubMed DOI

Narita M., Holtzman D.M., Schwartz A.L., Bu G. Alpha2-Macroglobulin Complexes with and Mediates the Endocytosis of Beta-Amyloid Peptide via Cell Surface Low-Density Lipoprotein Receptor-Related Protein. J. Neurochem. 1997;69:1904–1911. doi: 10.1046/j.1471-4159.1997.69051904.x. PubMed DOI

Blacker D., Wilcox M.A., Laird N.M., Rodes L., Horvath S.M., Go R.C.P., Perry R., Watson B., Bassett S.S., McInnis M.G., et al. Alpha-2 Macroglobulin Is Genetically Associated with Alzheimer Disease. Nat. Genet. 1998;19:357–360. doi: 10.1038/1243. PubMed DOI

Westwood S., Leoni E., Hye A., Lynham S., Khondoker M.R., Ashton N.J., Kiddle S.J., Baird A.L., Sainz-Fuertes R., Leung R., et al. Blood-Based Biomarker Candidates of Cerebral Amyloid Using PiB PET in Non-Demented Elderly. J. Alzheimers Dis. 2016;52:561–572. doi: 10.3233/JAD-151155. PubMed DOI PMC

Eke C.S., Jammeh E., Li X., Carroll C., Pearson S., Ifeachor E. Early Detection of Alzheimer’s Disease with Blood Plasma Proteins Using Support Vector Machines. IEEE J. Biomed. Health Inform. 2021;25:218–226. doi: 10.1109/JBHI.2020.2984355. PubMed DOI

Poller W., Barth J., Voss B. Detection of an Alteration of the Alpha 2-Macroglobulin Gene in a Patient with Chronic Lung Disease and Serum Alpha 2-Macroglobulin Deficiency. Hum. Genet. 1989;83:93–96. doi: 10.1007/BF00274157. PubMed DOI

Ho A.S., Cheng C.C., Lee S.C., Liu M.L., Lee J.Y., Wang W.M., Wang C.C. Novel Biomarkers Predict Liver Fibrosis in Hepatitis C Patients: Alpha 2 Macroglobulin, Vitamin D Binding Protein and Apolipoprotein AI. J. Biomed. Sci. 2010;17:58. doi: 10.1186/1423-0127-17-58. PubMed DOI PMC

Tripodi A., Chantarangkul V., de Stefano V., Mannucci P. Alpha(2)-Macroglobulin Levels Are High in Adult Patients with Congenital Antithrombin Deficiency. Thromb. Res. 2000;98:117–122. doi: 10.1016/S0049-3848(99)00217-0. PubMed DOI

Kanoh Y., Ohtani N., Mashiko T., Ohtani S., Nishikawa T., Egawa S., Baba S., Ohtani H. Levels of Alpha 2 Macroglobulin Can Predict Bone Metastases in Prostate Cancer. Anticancer Res. 2001;21:551–556. PubMed

El Haj M., Gandolphe M.C., Gallouj K., Kapogiannis D., Antoine P. From Nose to Memory: The Involuntary Nature of Odor-Evoked Autobiographical Memories in Alzheimer’s Disease. Chem. Senses. 2018;43:27–34. doi: 10.1093/chemse/bjx064. PubMed DOI PMC

O’Bryant S.E., Lacritz L.H., Hall J., Waring S.C., Chan W., Khodr Z.G., Massman P.J., Hobson V., Cullum C.M. Validation of the New Interpretive Guidelines for the Clinical Dementia Rating Scale Sum of Boxes Score in the National Alzheimer’s Coordinating Center Database. Arch. Neurol. 2010;67:746–749. doi: 10.1001/archneurol.2010.115. PubMed DOI PMC

Welsh K.A., Butters N., Hughes J.P., Mohs R.C., Heyman A. Detection and Staging of Dementia in Alzheimer’s Disease. Use of the Neuropsychological Measures Developed for the Consortium to Establish a Registry for Alzheimer’s Disease. Arch. Neurol. 1992;49:448–452. doi: 10.1001/archneur.1992.00530290030008. PubMed DOI

Chandler M.J., Lacritz L.H., Hynan L.S., Barnard H.D., Allen G., Deschner M., Weiner M.F., Cullum C.M. A Total Score for the CERAD Neuropsychological Battery. Neurology. 2005;65:102–106. doi: 10.1212/01.wnl.0000167607.63000.38. PubMed DOI

McKhann G.M., Knopman D.S., Chertkow H., Hyman B.T., Jack C.R., Kawas C.H., Klunk W.E., Koroshetz W.J., Manly J.J., Mayeux R., et al. The Diagnosis of Dementia Due to Alzheimer’s Disease: Recommendations from the National Institute on Aging-Alzheimer’s Association Workgroups on Diagnostic Guidelines for Alzheimer’s Disease. Alzheimers Dement. 2011;7:263–269. doi: 10.1016/j.jalz.2011.03.005. PubMed DOI PMC

Chew S., Lampinen R., Saveleva L., Korhonen P., Mikhailov N., Grubman A., Grubman A., Grubman A., Polo J.M., Polo J.M., et al. Urban Air Particulate Matter Induces Mitochondrial Dysfunction in Human Olfactory Mucosal Cells. Part. Fibre Toxicol. 2020;17:18. doi: 10.1186/s12989-020-00352-4. PubMed DOI PMC

Bolger A.M., Lohse M., Usadel B. Trimmomatic: A Flexible Trimmer for Illumina Sequence Data. Bioinformatics. 2014;30:2114–2120. doi: 10.1093/bioinformatics/btu170. PubMed DOI PMC

Frankish A., Diekhans M., Jungreis I., Lagarde J., Loveland J.E., Mudge J.M., Sisu C., Wright J.C., Armstrong J., Barnes I., et al. GENCODE 2021. Nucleic Acids Res. 2021;49:D916–D923. doi: 10.1093/nar/gkaa1087. PubMed DOI PMC

Dobin A., Davis C.A., Schlesinger F., Drenkow J., Zaleski C., Jha S., Batut P., Chaisson M., Gingeras T.R. STAR: Ultrafast Universal RNA-Seq Aligner. Bioinformatics. 2013;29:15–21. doi: 10.1093/bioinformatics/bts635. PubMed DOI PMC

Liao Y., Smyth G.K., Shi W. FeatureCounts: An Efficient General Purpose Program for Assigning Sequence Reads to Genomic Features. Bioinformatics. 2014;30:923–930. doi: 10.1093/bioinformatics/btt656. PubMed DOI

Liao Y., Smyth G.K., Shi W. The Subread Aligner: Fast, Accurate and Scalable Read Mapping by Seed-and-Vote. Nucleic Acids Res. 2013;41:e108. doi: 10.1093/nar/gkt214. PubMed DOI PMC

Love M.I., Huber W., Anders S. Moderated Estimation of Fold Change and Dispersion for RNA-Seq Data with DESeq2. Genome Biol. 2014;15:550. doi: 10.1186/s13059-014-0550-8. PubMed DOI PMC

Huber W., Carey V.J., Gentleman R., Anders S., Carlson M., Carvalho B.S., Bravo H.C., Davis S., Gatto L., Girke T., et al. Orchestrating High-Throughput Genomic Analysis with Bioconductor. Nat. Methods. 2015;12:115–121. doi: 10.1038/nmeth.3252. PubMed DOI PMC

Stephens M. False Discovery Rates: A New Deal. Biostatistics. 2017;18:275. doi: 10.1093/biostatistics/kxw041. PubMed DOI PMC

Raudvere U., Kolberg L., Kuzmin I., Arak T., Adler P., Peterson H., Vilo J. G:Profiler: A Web Server for Functional Enrichment Analysis and Conversions of Gene Lists (2019 Update) Nucleic Acids Res. 2019;47:W191–W198. doi: 10.1093/nar/gkz369. PubMed DOI PMC

Ashburner M., Ball C.A., Blake J.A., Botstein D., Butler H., Cherry J.M., Davis A.P., Dolinski K., Dwight S.S., Eppig J.T., et al. Gene Ontology: Tool for the Unification of Biology. The Gene Ontology Consortium. Nat. Genet. 2000;25:25–29. doi: 10.1038/75556. PubMed DOI PMC

Carbon S., Douglass E., Good B.M., Unni D.R., Harris N.L., Mungall C.J., Basu S., Chisholm R.L., Dodson R.J., Hartline E., et al. The Gene Ontology Resource: Enriching a GOld Mine. Nucleic Acids Res. 2021;49:D325–D334. PubMed PMC

Giurgiu M., Reinhard J., Brauner B., Dunger-Kaltenbach I., Fobo G., Frishman G., Montrone C., Ruepp A. CORUM: The Comprehensive Resource of Mammalian Protein Complexes-2019. Nucleic Acids Res. 2019;47:D559–D563. doi: 10.1093/nar/gky973. PubMed DOI PMC

Kanninen K.M., Grubman A., Meyerowitz J., Duncan C., Tan J.L., Parker S.J., Crouch P.J., Paterson B.M., Hickey J.L., Donnelly P.S., et al. Increased Zinc and Manganese in Parallel with Neurodegeneration, Synaptic Protein Changes and Activation of Akt/GSK3 Signaling in Ovine CLN6 Neuronal Ceroid Lipofuscinosis. PLoS ONE. 2013;8:e58644. doi: 10.1371/journal.pone.0058644. PubMed DOI PMC

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...