TbUTP10, a protein involved in early stages of pre-18S rRNA processing in Trypanosoma brucei
Jazyk angličtina Země Nizozemsko Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
Grantová podpora
R01 GM084065
NIGMS NIH HHS - United States
PubMed
30248370
PubMed Central
PMC6556232
DOI
10.1016/j.molbiopara.2018.09.003
PII: S0166-6851(18)30162-2
Knihovny.cz E-zdroje
- Klíčová slova
- Pre-18S rRNA processing, Ribosomal RNA, Trypanosoma, U3 snoRNA, UTP10,
- MeSH
- esenciální geny * MeSH
- malá jadérková RNA metabolismus MeSH
- posttranskripční úpravy RNA * MeSH
- proteiny vázající RNA genetika metabolismus MeSH
- protozoální proteiny genetika metabolismus MeSH
- RNA ribozomální 18S metabolismus MeSH
- Trypanosoma brucei brucei enzymologie metabolismus MeSH
- umlčování genů MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- malá jadérková RNA MeSH
- proteiny vázající RNA MeSH
- protozoální proteiny MeSH
- RNA ribozomální 18S MeSH
Ribosome biosynthesis, best studied in opisthokonts, is a highly complex process involving numerous protein and RNA factors. Yet, very little is known about the early stages of pre-18S rRNA processing even in these model organisms, let alone the conservation of this mechanism in other eukaryotes. Here we extend our knowledge of this process by identifying and characterizing the essential protein TbUTP10, a homolog of yeast U3 small nucleolar RNA-associated protein 10 - UTP10 (HEATR1 in human), in the excavate parasitic protist Trypanosoma brucei. We show that TbUTP10 localizes to the nucleolus and that its ablation by RNAi knock-down in two different T. brucei life cycle stages results in similar phenotypes: a disruption of pre-18S rRNA processing, exemplified by the accumulation of rRNA precursors, a reduction of mature 18S rRNA, and also a decrease in the level of U3 snoRNA. Moreover, polysome profiles of the RNAi-induced knock-down cells show a complete disappearance of the 40S ribosomal subunit, and a prominent accumulation of the 60S large ribosomal subunit, reflecting impaired ribosome assembly. Thus, TbUTP10 is an important protein in the processing of 18S rRNA.
Zobrazit více v PubMed
Klinge S, Voigts-Hoffmann F, Leibundgut M, Ban N, Atomic structures of the ribosome, 2018eukaryotic ribosome, Trends Biochem. Sci 37 (2012) 189–198. PubMed
Wilson DN, Doudna Cate JH, The structure and function of the eukaryotic ribosome, Cold Spring Harb. Perspect. Biol (2012) 4. PubMed PMC
Melnikov S, Ben-Shem A, Garreau de Loubresse N, Jenner L, Yusupova G, Yusupov M, One core, two shells: bacterial and eukaryotic ribosomes, Nat. Struct. Mol. Biol 19 (2012) 560–567. PubMed
Tschochner H, Hurt E, Pre-ribosomes on the road from the nucleolus to the cytoplasm, Trends Cell Biol. 13 (2003) 255–263. PubMed
Venema J, Tollervey D, Ribosome synthesis in Saccharomyces cerevisiae, Ann. Rev. Genet 33 (1999) 261–311. PubMed
Bernstein KA, Gallagher Jennifer EG, Mitchell BM, Granneman S, Baserga SJ, The small-subunit processome is a ribosome assembly intermediate, Eukaryot. Cell 3 (2004) 1619–1626. PubMed PMC
Dragon F, Gallagher JE, Compagnone-Post PA, Mitchell BM, Porwancher KA, Wehner KA, Wormsley S, Settlage RE, Shabanowitz J, Osheim Y, Beyer AL, Hunt DF, Baserga SJ, A large nucleolar U3 ribonucleoprotein required for 18S ribosomal RNA biogenesis, Nature 417 (2002) 967–970. PubMed
Pöll G, Li S, Ohmayer U, Hierlmeier T, Milkereit P, Perez-Fernandez J, In vitro reconstitution of yeast tUTP/UTP A and UTP B subcomplexes provides new insights into their modular architecture, PLoS One 9 (2014) e114898. PubMed PMC
Sun Q, Zhu X, Qi J, An W, Lan P, Tan D, Chen R, Wang B, Zheng S, Zhang C, Chen X, Zhang W, Chen J, Dong MQ, Ye K, Molecular architecture of the 90S small subunit pre-ribosome, eLife 6 (2017) e22086. PubMed PMC
Hunziker M, Barandun J, Petfalski E, Tan D, Delan-Forino C, Molloy KR, Kim KH, Dunn-Davies H, Shi Y, Chaker-Margot M, Chait BT, Walz T, Tollervey D, Klinge S, UtpA and UtpB chaperone nascent pre-ribosomal RNA and U3 snoRNA to initiate eukaryotic ribosome assembly, Nat. Commun 7 (2016) 12090. PubMed PMC
Chaker-Margot M, Assembly of the small ribosomal subunit in yeast: mechanism and regulation, 2018 regulation, RNA 24 (2018) 881–891. PubMed PMC
Pérez-Fernández J, Román A, De Las Rivas J, Bustelo XR, Dosil M, The 90S preribosome is a multimodular structure that is assembled through a hierarchical mechanism, Mol. Cell. Biol 27 (2007) 5414–5429. PubMed PMC
Gallagher JE, Dunbar DA, Granneman S, Mitchell BM, Osheim Y, Beyer AL, Baserga SJ, RNA polymerase I transcription and pre-rRNA processing are linked by specific SSU processome components, Genes Dev. 18 (2004) 2506–2517. PubMed PMC
Hampl V, Hug L, Leigh JW, Dacks JB, Lang BF, Simpson AG, Roger AJ, Phylogenomic analyses support the monophyly of Excavata and resolve relationships among eukaryotic “supergroups, Proc. Natl. Acad. Sci. U. S. A 106 (2009) 3859–3864. PubMed PMC
Campbell DA, Kubo K, Clark CG, Boothroyd JC, Precise identification of cleavage sites involved in the unusual processing of trypanosome ribosomal RNA, J. Mol. Biol 196 (1987) 113–124. PubMed
White TC, Rudenko G, Borst P, Three small RNAs within the 10 kb trypanosome rRNA transcription unit are analogous to Domain VII of other eukaryotic 28S rRNAs, Nucleic Acids Res. 14 (1986) 9471–9489. PubMed PMC
Michaeli S, rRNA biogenesis in trypanosomes, in: Bindereif A (Ed.), Nucleic Acids and Molecular Biology, vol. 28, 2011, pp. 123–148.
Hartshorne T, Distinct regions of U3 snoRNA interact at two sites within the 5éxternal transcribed spacer of pre-rRNAs in Trypanosoma brucei cells, Nucleic Acids Res. 26 (1998) 2541–2553. PubMed PMC
Hartshorne T, Toyofuku W, Two 5-ETS regions implicated in interactions with U3 snoRNA are required for small subunit rRNA maturation in Trypanosoma brucei, Nucl. Acids Res 27 (1999) 3300–3309. PubMed PMC
Hartshorne T, Toyofuku W, Hollenbaugh J, Trypanosoma brucei 5’ETS A’-cleavage is directed by 3’-adjacent sequences, but not two U3 snoRNA-binding elements, which are all required for subsequent pre-small subunit rRNA processing events, J. Mol. Biol 313 (2001) 733–749. PubMed
Gupta SK, Hury A, Ziporen Y, Shi H, Ullu E, Michaeli S, Small nucleolar RNA interference in Trypanosoma brucei: mechanism and utilization for elucidating the function of snoRNAs, Nucleic Acids Res. 38 (2010) 7236–7247. PubMed PMC
Jensen BC, Wang Q, Kifer CT, Parsons M, The NOG1 GTP-binding protein is required for biogenesis of the 60 S ribosomal subunit, J. Biol. Chem 278 (2003) 32204–32211. PubMed
Umaer K, Ciganda M, Williams N, Ribosome biogenesis in African trypanosomes requires conserved and trypanosome-specific factors, Eukaryot. Cell 13 (2014) 727–737. PubMed PMC
Sakyiama J, Zimmer SL, Ciganda M, Williams N, Read LK, Ribosome biogenesis requires a highly diverged XRN family 5’-&3’ exoribonuclease for rRNA processing in Trypanosoma brucei, RNA 19 (2013) 1419–1431. PubMed PMC
Kala S, Mehta V, Yip CW, Moshiri H, Najafabadi HS, Ma R, Nikpour N, Zimmer SL, Salavati R, The interaction of a Trypanosoma brucei KH-domain protein with a ribonuclease is implicated in ribosome processing, Mol. Biochem. Parasitol 211 (2017) 94–103. PubMed
Barth S, Shalem B, Hury A, Tkacz ID, Liang XH, Uliel S, Myslyuk I, Doniger T, Salmon-Divon M, Unger R, Michaeli S, Elucidating the role of C/D snoRNA in rRNA processing and modification in Trypanosoma brucei, Eukaryot. Cell 7 (2008) 86–101. PubMed PMC
Söding J, Biegert A, Lupas AN, The HHpred interactive server for protein homology detection and structure prediction, Nucleic Acids Res. 33 (2005) W244–248. PubMed PMC
Aslett M, Aurrecoechea C, Berriman M, Brestelli J, Brunk BP, Carrington M, Depledge DP, Fischer S, Gajria B, Gao X, Gardner MJ, Gingle A, Grant G, Harb OS, Heiges M, Hertz-Fowler C, Houston R, Innamorato F, Iodice J, Kissinger JC, Kraemer E, Li W, Logan FJ, Miller JA, Mitra S, Myler PJ, Nayak V, Pennington C, Phan I, Pinney DF, Ramasamy G, Rogers MB, Roos DS, Ross C, Sivam D, Smith DF, Srinivasamoorthy G, Stoeckert CJ Jr, Subramanian S, Thibodeau R, Tivey A, Treatman C, Velarde G, Wang H, TriTrypDB: a functional genomic resource for the Trypanosomatidae, Nucleic Acids Res. 38 (2009) D457–462. PubMed PMC
Turi Z, Senkyrikova M, Mistrik M, Bartek J, Moudry P, Perturbation of RNA polymerase I transcription machinery by ablation of HEATR1 triggers the RPL5/RPL11-MDM2-p53 ribosome biogenesis stress checkpoint pathway in human cells, Cell Cycle 17 (2018) 92–101. PubMed PMC
Biasini M, Bienert S, Waterhouse A, Arnold K, Studer G, Schmidt T, Kiefer F, Gallo Cassarino T, Bertoni M, Bordoli L, Schwede T, SWISS-MODEL: modelling protein tertiary and quaternary structure using evolutionary information, Nucleic Acids Res. 42 (2014) W252–258. PubMed PMC
Azuma M, Toyama R, Laver E, Dawid IB, Perturbation of rRNA Synthesis in the bap28 Mutation leads to apoptosis mediated by p53 in the zebrafish central nervous system, J. Biol. Chem 281 (2006) 13309–13316. PubMed
Prieto JL, McStay B, Recruitment of factors linking transcription and processing of pre-rRNA to NOR chromatin is UBF-dependent and occurs independent of transcription in human cells, Genes Dev. 21 (2007) 2041–2054. PubMed PMC
Huang Z, Kaltenbrunner S, Šimková E, Stanĕk D, Lukeš J, Hashimi H, Dynamics of mitochondrial RNA-binding protein complex in Trypanosoma brucei and its petite mutant under optimized immobilization conditions, Eukaryot. Cell 13 (2014) 1232–1240. PubMed PMC
Hashem Y, des Georges A, Fu J, Buss SN, Jossinet F, Jobe A, Zhang Q, Liao HY, Grassucci RA, Bajaj C, Westhof E, Madison-Antenucci S, Frank J, High-resolution cryo-electron microscopy structure of the Trypanosoma brucei ribosome, Nature 494 (2013) 385–389. PubMed PMC
Kornprobst M, Turk M, Kellner N, Cheng J, Flemming D, Koš-Braun I, Koš M, Thoms M, Berninghausen O, Beckmann R, Hurt E, Architecture of the 90S preribosome: a structural view on the birth of the eukaryotic ribosome, Cell 166 (2016) 380–393. PubMed
Barandun J, Chaker-Margot M, Hunziker M, Molloy KR, Chait BT, Klinge S, The complete structure of the small-subunit processome, Nat. Struct. Mol. Biol 24 (2017) 944–953. PubMed
Alsford S, Turner DJ, Obado SO, Sanchez-Flores A, Glover L, Berriman M, Hertz-Fowler C, Horn D, High-throughput phenotyping using parallel sequencing of RNA interference targets in the African trypanosome, Genome Res. 21 (2011) 915–924. PubMed PMC
Wu ZB, Qiu C, Zhang AL, Cai L, Lin SJ, Yao Y, Tang QS, Xu M, Hua W, Chu YW, Mao Y, Zhu JH, Xu J, Zhou LF, Glioma-associated antigen HEATR1 induces functional cytotoxic T lymphocytes in patients with glioma, J. Immunol. Res. (2014) 131494. PubMed PMC
Katoh K, Standley DM, MAFFT multiple sequence alignment software version 7: improvements in performance and usability, Mol. Biol. Evol 30 (2013) 772–780. PubMed PMC
Gouy M, Guindon S, Gascuel O, SeaView version 4: a multiplatform graphical user interface for sequence alignment and phylogenetic tree building, Mol. Biol. Evol 27 (2010) 221–224. PubMed
Nguyen LT, Schmidt HA, Von Haeseler A, Minh BQ, IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies, Mol. Biol. Evol 32 (2015) 268–274. PubMed PMC
Poon SK, Peacock L, Gibson W, Gull K, Kelly S, A modular and optimized single marker system for generating Trypanosoma brucei cell lines expressing T7 RNA polymerase and the tetracycline repressor, Open Biol. 2 (2012) 110037. PubMed PMC
Brun R, Schönenberger M, Cultivation and in vitro cloning or procyclic culture forms of Trypanosoma brucei in a semi-defined medium. Short communication, Acta Trop. 36 (1979) 289–292. PubMed
Wirtz E, Leal S, Ochatt C, Cross GA, A tightly regulated inducible expression system for conditional gene knock-outs and dominant-negative genetics in Trypanosoma brucei, Mol. Biochem. Parasitol 99 (1999) 89–101. PubMed
Dean S, Sunter JD, Wheeler Richard J, Hodkinson I, Gluenz E, Gull K, A toolkit enabling efficient, scalable and reproducible gene tagging in trypanosomatids, Open Biol. 5 (2015) 140197. PubMed PMC
Wickstead B, Ersfeld K, Gull K, Targeting of a tetracycline-inducible expression system to the transcriptionally silent minichromosomes of Trypanosoma brucei, Mol. Biochem. Parasitol 125 (2002) 211–216. PubMed
Merritt C, Stuart K, Identification of essential and non-essential protein kinases by a fusion PCR method for efficient production of transgenic Trypanosoma brucei, Mol. Biochem. Parasitol 190 (2013) 44–49. PubMed PMC
Vondrušková E, van den Burg J, Zíková A, Ernst NL, Stuart K, Benne R, Lukeš J, RNA interference analyses suggest a transcript-specific regulatory role for mitochondrial RNA-binding proteins MRP1 and MRP2 in RNA editing and other RNA processing in Trypanosoma brucei, J. Biol. Chem 280 (2005) 2429–2438. PubMed
Fleming IM, Paris Z, Gaston KW, Balakrishnan R, Fredrick K, Rubio MA, Alfonzo JD, A tRNA methyltransferase paralog is important for ribosome stability and cell division in Trypanosoma brucei, Sci. Rep 6 (2016) 21438. PubMed PMC