Perturbation of RNA Polymerase I transcription machinery by ablation of HEATR1 triggers the RPL5/RPL11-MDM2-p53 ribosome biogenesis stress checkpoint pathway in human cells
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
29143558
PubMed Central
PMC5815431
DOI
10.1080/15384101.2017.1403685
Knihovny.cz E-zdroje
- Klíčová slova
- HEATR1, cancer, p53, ribosome biogenesis, ribosome biogenesis stress,
- MeSH
- biogeneze organel * MeSH
- fyziologický stres MeSH
- genetická transkripce * MeSH
- jaderné proteiny metabolismus MeSH
- kontrolní body buněčného cyklu MeSH
- lidé MeSH
- nádorové buněčné linie MeSH
- nádorový supresorový protein p53 metabolismus MeSH
- proliferace buněk MeSH
- proteiny vázající RNA metabolismus MeSH
- protoonkogenní proteiny c-mdm2 metabolismus MeSH
- ribozomální proteiny metabolismus MeSH
- ribozomy metabolismus MeSH
- RNA ribozomální biosyntéza MeSH
- RNA-polymerasa I genetika MeSH
- signální transdukce MeSH
- vedlejší histokompatibilní antigeny metabolismus MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- HEATR1 protein, human MeSH Prohlížeč
- jaderné proteiny MeSH
- MDM2 protein, human MeSH Prohlížeč
- nádorový supresorový protein p53 MeSH
- proteiny vázající RNA MeSH
- protoonkogenní proteiny c-mdm2 MeSH
- ribozomální proteiny MeSH
- RNA ribozomální MeSH
- RNA-polymerasa I MeSH
- vedlejší histokompatibilní antigeny MeSH
Ribosome biogenesis is an energy consuming process which takes place mainly in the nucleolus. By producing ribosomes to fuel protein synthesis, it is tightly connected with cell growth and cell cycle control. Perturbation of ribosome biogenesis leads to the activation of p53 tumor suppressor protein promoting processes like cell cycle arrest, apoptosis or senescence. This ribosome biogenesis stress pathway activates p53 through sequestration of MDM2 by a subset of ribosomal proteins (RPs), thereby stabilizing p53. Here, we identify human HEATR1, as a nucleolar protein which positively regulates ribosomal RNA (rRNA) synthesis. Downregulation of HEATR1 resulted in cell cycle arrest in a manner dependent on p53. Moreover, depletion of HEATR1 also caused disruption of nucleolar structure and activated the ribosomal biogenesis stress pathway - RPL5 / RPL11 dependent stabilization and activation of p53. These findings reveal an important role for HEATR1 in ribosome biogenesis and further support the concept that perturbation of ribosome biosynthesis results in p53-dependent cell cycle checkpoint activation, with implications for human pathologies including cancer.
Zobrazit více v PubMed
Budkevich TV, El'skaya AV, Nierhaus KH. Features of 80S mammalian ribosome and its subunits. Nucleic Acids Res. 2008;36:4736-4744. doi:10.1093/nar/gkn424. PMID:18632761 PubMed DOI PMC
Klinge S, Voigts-Hoffmann F, Leibundgut M, et al.. Atomic structures of the eukaryotic ribosome. Trends Biochem Sci. 2012;37:189–198. doi:10.1016/j.tibs.2012.02.007. PMID:22436288 PubMed DOI
Wilson DN, Doudna Cate JH. The structure and function of the eukaryotic ribosome. Cold Spring Harb Perspect Biol. 2012;4:1–17. doi:10.1101/cshperspect.a011536. PMID:22550233 PubMed DOI PMC
Kressler D, Hurt E, Bassler J. A puzzle of life: crafting ribosomal subunits. Trends Biochem Sci. 2017;42:640–654. doi:10.1016/j.tibs.2017.05.005. PMID:28579196 PubMed DOI
James A, Wang Y, Raje H, et al.. Nucleolar stress with and without p53. Nucleus. 2014;5:402–426. doi:10.4161/nucl.32235. PMID:25482194 PubMed DOI PMC
Derenzini M, Montanaro L, Trere D. Ribosome biogenesis and cancer. Acta Histochem. 2017;119:190–197. doi:10.1016/j.acthis.2017.01.009. PMID:28168996 PubMed DOI
Yang L, Song T, Chen L, et al.. Nucleolar repression facilitates initiation and maintenance of senescence. Cell Cycle. 2015;14:3613–3623. doi:10.1080/15384101.2015.1100777. PMID:26505814 PubMed DOI PMC
Morgado-Palacin L, Llanos S, Urbano-Cuadrado M, et al.. Non-genotoxic activation of p53 through the RPL11-dependent ribosomal stress pathway. Carcinogenesis 2014;35:2822–2830. doi:10.1093/carcin/bgu220. PMID:25344835 PubMed DOI
Bursac S, Donati G, Brdovcak MC, et al.. Activation of the tumor suppressor p53 upon impairment of ribosome biogenesis. Biochim Biophys Acta. 2013;1842:817–830. PMID:24514102 PubMed
Dong Z, Zhu C, Zhan Q, et al.. The roles of RRP15 in nucleolar formation, ribosome biogenesis and checkpoint control in human cells. Oncotarget. 2017;8:13240–13252. PMID:28099941 PubMed PMC
Fumagalli S, Ivanenkov VV, Teng T, et al.. Suprainduction of p53 by disruption of 40S and 60S ribosome biogenesis leads to the activation of a novel G2/M checkpoint. Genes Dev. 2012;26:1028–1240. doi:10.1101/gad.189951.112. PMID:22588717 PubMed DOI PMC
Honda R, Tanaka H, Yasuda H. Oncoprotein MDM2 is a ubiquitin ligase E3 for tumor suppressor p53. FEBS Lett. 1997;420:25–27. doi:10.1016/S0014-5793(97)01480-4. PMID:9450543 PubMed DOI
Michael D, Oren M. The p53-Mdm2 module and the ubiquitin system. Semin Cancer Biol. 2003;13:49–58. doi:10.1016/S1044-579X(02)00099-8. PMID:12507556 PubMed DOI
Haupt Y, Maya R, Kazaz A, et al.. Mdm2 promotes the rapid degradation of p53. Nature. 1997;387:296–299. doi:10.1038/387296a0. PMID:9153395 PubMed DOI
Golomb L, Volarevic S, Oren M. p53 and ribosome biogenesis stress: the essentials. FEBS Lett. 2014;588:2571–2579. doi:10.1016/j.febslet.2014.04.014. PMID:24747423 PubMed DOI
Yoshimura SH, Hirano T. HEAT repeats – versatile arrays of amphiphilic helices working in crowded environments? J Cell Sci. 2016;129:3963–3970. PMID:27802131 PubMed
Gallagher JE, Dunbar DA, Granneman S, et al.. RNA polymerase I transcription and pre-rRNA processing are linked by specific SSU processome components. Genes Dev 2004;18:2506–2517. doi:10.1101/gad.1226604. PMID:15489292 PubMed DOI PMC
Oeffinger M, Dlakic M, Tollervey D. A pre-ribosome-associated HEAT-repeat protein is required for export of both ribosomal subunits. Genes Dev 2004;18:196–209. doi:10.1101/gad.285604. PMID:14729571 PubMed DOI PMC
Dez C, Dlakic M, Tollervey D. Roles of the HEAT repeat proteins Utp10 and Utp20 in 40S ribosome maturation. Rna 2007;13:1516–1527. doi:10.1261/rna.609807. PMID:17652137 PubMed DOI PMC
Krogan NJ, Peng WT, Cagney G, et al.. High-definition macromolecular composition of yeast RNA-processing complexes. Mol Cell. 2004;13:225–239. doi:10.1016/S1097-2765(04)00003-6. PMID:14759368 PubMed DOI
Azuma M, Toyama R, Laver E, et al.. Perturbation of rRNA synthesis in the bap28 mutation leads to apoptosis mediated by p53 in the zebrafish central nervous system. J Biol Chem. 2006;281:13309–13316. doi:10.1074/jbc.M601892200. PMID:16531401 PubMed DOI
Prieto JL, McStay B. Recruitment of factors linking transcription and processing of pre-rRNA to NOR chromatin is UBF-dependent and occurs independent of transcription in human cells. Genes Dev. 2007;21:2041–2054. doi:10.1101/gad.436707. PMID:17699751 PubMed DOI PMC
Wu ZB, Qiu C, Zhang AL, et al.. Glioma-associated antigen HEATR1 induces functional cytotoxic T lymphocytes in patients with glioma. J Immunol Res. 2014;2014:131494. doi:10.1155/2014/131494. PMID:25126583 PubMed DOI PMC
Liu T, Fang Y, Zhang H, et al.. HEATR1 negatively regulates Akt to help sensitize pancreatic cancer cells to chemotherapy. Cancer Res. 2016;76:572–581. doi:10.1158/0008-5472.CAN-15-0671. PMID:26676747 PubMed DOI PMC
Jackson AL, Bartz SR, Schelter J, et al.. Expression profiling reveals off-target gene regulation by RNAi. Nat Biotechnol. 2003;21:635–637. doi:10.1038/nbt831. PMID:12754523 PubMed DOI
Scheffner M, Werness BA, Huibregtse JM, et al.. The E6 oncoprotein encoded by human papillomavirus Type-16 and Type-18 promotes the degradation of P53. Cell. 1990;63:1129–1136. doi:10.1016/0092-8674(90)90409-8. PMID:2175676 PubMed DOI
Werness BA, Levine AJ, Howley PM. Association of human papillomavirus types 16 and 18 E6 proteins with p53. Science 1990;248:76–79. doi:10.1126/science.2157286. PMID:2157286 PubMed DOI
Fumagalli S, Di Cara A, Neb-Gulati A, et al.. Absence of nucleolar disruption after impairment of 40S ribosome biogenesis reveals an rpL11-translation-dependent mechanism of p53 induction. Nat Cell Biol. 2009;11:501–508. doi:10.1038/ncb1858. PMID:19287375 PubMed DOI PMC
Yuan X, Zhou Y, Casanova E, et al.. Genetic inactivation of the transcription factor TIF-IA leads to nucleolar disruption, cell cycle arrest, and p53-mediated apoptosis. Mol Cell. 2005;19:77–87. doi:10.1016/j.molcel.2005.05.023. PMID:15989966 PubMed DOI
Boulon S, Westman BJ, Hutten S, et al.. The nucleolus under stress. Mol Cell. 2010;40:216–227. doi:10.1016/j.molcel.2010.09.024. PMID:20965417 PubMed DOI PMC
Rubbi CP, Milner J. Disruption of the nucleolus mediates stabilization of p53 in response to DNA damage and other stresses. EMBO J. 2003;22:6068–6077. doi:10.1093/emboj/cdg579. PMID:14609953 PubMed DOI PMC
Tajrishi MM, Tuteja R, Tuteja N. Nucleolin: the most abundant multifunctional phosphoprotein of nucleolus. Commun Integr Biol. 2011;4:267–275. doi:10.4161/cib.4.3.14884. PMID:21980556 PubMed DOI PMC
Colombo E, Alcalay M, Pelicci PG. Nucleophosmin and its complex network: a possible therapeutic target in hematological diseases. Oncogene. 2011;30:2595–2609. doi:10.1038/onc.2010.646. PMID:21278791 PubMed DOI
Shav-Tal Y, Blechman J, Darzacq X, et al.. Dynamic sorting of nuclear components into distinct nucleolar caps during transcriptional inhibition. Mol Biol Cell. 2005;16:2395–2413. doi:10.1091/mbc.E04-11-0992. PMID:15758027 PubMed DOI PMC
Jao CY, Salic A. Exploring RNA transcription and turnover in vivo by using click chemistry. P Natl Acad Sci USA. 2008;105:15779–15784. doi:10.1073/pnas.0808480105. PubMed DOI PMC
Burger K, Muhl B, Harasim R T, et al.. Chemotherapeutic drugs inhibit ribosome biogenesis at various levels. J Biol Chem. 2010;285:12416–12425. doi:10.1074/jbc.M109.074211. PMID:20159984 PubMed DOI PMC
Hernandez-Verdun D, Roussel P, Thiry M, et al.. The nucleolus: structure/function relationship in RNA metabolism. Wiley Interdiscip Rev RNA. 2010;1:415–431. doi:10.1002/wrna.39. PMID:21956940 PubMed DOI
Peltonen K, Colis L, Liu H, et al.. A targeting modality for destruction of rna polymerase i that possesses anticancer activity. Cancer Cell. 2014;25:77–90. doi:10.1016/j.ccr.2013.12.009. PMID:24434211 PubMed DOI PMC
Peltonen K, Colis L, Liu H, et al.. Identification of novel p53 pathway activating small-molecule compounds reveals unexpected similarities with known therapeutic agents. Plos One. 2010;5:1–11. doi:10.1371/journal.pone.0012996. PubMed DOI PMC
Kleiblova P, Shaltiel IA, Benada J, et al.. Gain-of-function mutations of PPM1D/Wip1 impair the p53-dependent G1 checkpoint. J Cell Biol. 2013;201:511–521. doi:10.1083/jcb.201210031. PMID:23649806 PubMed DOI PMC
Velimezi G, Liontos M, Vougas K, et al.. Functional interplay between the DNA-damage-response kinase ATM and ARF tumour suppressor protein in human cancer. Nat Cell Biol. 2013;15:967–977. doi:10.1038/ncb2795. PMID:23851489 PubMed DOI
Sherr CJ. Divorcing ARF and p53: an unsettled case. Nat Rev Cancer. 2006;6:663–673. doi:10.1038/nrc1954. PMID:16915296 PubMed DOI
Lessard F, Morin F, Ivanchuk S, et al.. The ARF tumor suppressor controls ribosome biogenesis by regulating the RNA polymerase I transcription factor TTF-I. Mol Cell. 2010;38:539–550. doi:10.1016/j.molcel.2010.03.015. PMID:20513429 PubMed DOI
Badal V, Menendez S, Coomber D, et al.. Regulation of the p14ARF promoter by DNA methylation. Cell Cycle. 2008;7:112–119. doi:10.4161/cc.7.1.5137. PMID:18196972 PubMed DOI
Russo A, Russo G. Ribosomal proteins control or bypass p53 during nucleolar stress. Int J Mol Sci. 2017;18:1–16. doi:10.3390/ijms18010140. PubMed DOI PMC
Donati G, Brighenti E, Vici M, et al.. Selective inhibition of rRNA transcription downregulates E2F-1: a new p53-independent mechanism linking cell growth to cell proliferation. J Cell Sci. 2011;124:3017–3028. doi:10.1242/jcs.086074. PMID:21878508 PubMed DOI
Russo A, Pagliara V, Albano F, et al.. Regulatory role of rpL3 in cell response to nucleolar stress induced by Act D in tumor cells lacking functional p53. Cell Cycle. 2016;15:41–51. doi:10.1080/15384101.2015.1120926. PMID:26636733 PubMed DOI PMC
Russo A, Esposito D, Catillo M, et al.. Human rpL3 induces G(1)/S arrest or apoptosis by modulating p21 (waf1/cip1) levels in a p53-independent manner. Cell Cycle. 2013;12:76–87. doi:10.4161/cc.22963. PMID:23255119 PubMed DOI PMC
Rossetti S, Wierzbicki AJ, Sacchi N. Mammary epithelial morphogenesis and early breast cancer. Evidence of involvement of basal components of the RNA Polymerase I transcription machinery. Cell Cycle. 2016;15:2515–2526. doi:10.1080/15384101.2016.1215385. PMID:27485818 PubMed DOI PMC
Boudra R, Lagrafeuille R, Lours-Calet C, et al.. mTOR transcriptionally and post-transcriptionally regulates Npm1 gene expression to contribute to enhanced proliferation in cells with Pten inactivation. Cell Cycle. 2016;15:1352–1362. doi:10.1080/15384101.2016.1166319. PMID:27050906 PubMed DOI PMC
Orsolic I, Jurada D, Pullen N, et al.. The relationship between the nucleolus and cancer: Current evidence and emerging paradigms. Semin Cancer Biol. 2016;37–38:36–50. doi:10.1016/j.semcancer.2015.12.004. PMID:26721423 PubMed DOI
Stepinski D. Nucleolus-derived mediators in oncogenic stress response and activation of p53-dependent pathways. Histochem Cell Biol. 2016;146:119–139. doi:10.1007/s00418-016-1443-6. PMID:27142852 PubMed DOI
Nakhoul H, Ke J, Zhou X, et al.. Ribosomopathies: mechanisms of disease. Clin Med Insights Blood Disord. 2014;7:7–16. doi:10.4137/CMBD.S16952. PMID:25512719 PubMed DOI PMC
Danilova N, Gazda HT. Ribosomopathies: how a common root can cause a tree of pathologies. Dis Model Mech. 2015;8:1013–1026. doi:10.1242/dmm.020529. PMID:26398160 PubMed DOI PMC
Koch S, Garcia Gonzalez O, Assfalg R, et al.. Cockayne syndrome protein A is a transcription factor of RNA polymerase I and stimulates ribosomal biogenesis and growth. Cell Cycle. 2014;13:2029–2037. doi:10.4161/cc.29018. PMID:24781187 PubMed DOI PMC
Oplustilova L, Wolanin K, Mistrik M, et al.. Evaluation of candidate biomarkers to predict cancer cell sensitivity or resistance to PARP-1 inhibitor treatment. Cell Cycle. 2012;11:3837–3850. doi:10.4161/cc.22026. PMID:22983061 PubMed DOI PMC
Moudry P, Lukas C, Macurek L, et al.. Ubiquitin activating enzyme UBA1 is required for cellular response to DNA damage. Cell Cycle. 2012;11:1573–1582. doi:10.4161/cc.19978. PMID:22456334 PubMed DOI
Brazina J, Svadlenka J, Macurek L, DNA damage-induced regulatory interplay between DAXX, p53, ATM kinase and Wip1 phosphatase. Cell Cycle. 2015;14:375–387. doi:10.4161/15384101.2014.988019. PMID:25659035 PubMed DOI PMC