One-Step Accelerated Synthesis of Conducting Polymer/Silver Composites and Their Catalytic Reduction of Cr(VI) Ions and p-Nitrophenol
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
21-01401S
Czech Science Foundation
PubMed
37242941
PubMed Central
PMC10221340
DOI
10.3390/polym15102366
PII: polym15102366
Knihovny.cz E-zdroje
- Klíčová slova
- catalysis, composites, conducting polymers, hexavalent chromium ions, p-nitrophenol, silver nanoparticles,
- Publikační typ
- časopisecké články MeSH
In this paper, silver nitrate was used as an oxidant to prepare polyaniline, polypyrrole, and poly(3,4-ethylene dioxythiophene)/silver composites through a simultaneous oxidation/reduction process. In addition, p-phenylenediamine was added with 1 mole% relative to the concentrations of the monomers to accelerate the polymerization reaction. The prepared conducting polymer/silver composites were characterized by scanning and transmission electron microscopies to study their morphologies; Fourier-transform infrared and Raman spectroscopies to confirm their molecular structures; and thermogravimetric analysis (TGA) to study their thermal stabilities. The silver content in the composites was estimated by energy-dispersive X-ray spectroscopy, ash analysis, and TGA. The conducting polymer/silver composites were utilized for the remediation of water pollutants through catalytic reduction. Hexavalent chromium ions (Cr(VI)) were photocatalytically reduced to trivalent chromium ions, and p-nitrophenol was catalytically reduced to p-aminophenol. The catalytic reduction reactions were found to follow the first-order kinetic model. Among the prepared composites, polyaniline/silver composite has shown the highest activity for the photocatalytic reduction of Cr(VI) ions with an apparent rate constant of 0.226 min-1 and efficiency of 100% within 20 min. Additionally, poly(3,4-ethylene dioxythiophene)/silver composite showed the highest catalytic activity towards the reduction of p-nitrophenol with an apparent rate constant of 0.445 min-1 and efficiency of 99.8% within 12 min.
Zobrazit více v PubMed
Epstein A.J. Physical Properties of Polymers Handbook. Springer; Berlin/Heidelberg, Germany: 2007. Conducting polymers: Electrical conductivity; pp. 725–755.
Inzelt G., Inzelt G. Conducting Polymers: A New Era in Electrochemistry. Springer; Berlin/Heidelberg, Germany: 2012. Chemical and electrochemical syntheses of conducting polymers; pp. 149–171.
Freund M.S., Deore B.A. Self-Doped Conducting Polymers. John Wiley & Sons; Hoboken, NJ, USA: 2007.
Stejskal J., Prokeš J. Conductivity and morphology of polyaniline and polypyrrole prepared in the presence of organic dyes. Synth. Met. 2020;264:116373. doi: 10.1016/j.synthmet.2020.116373. DOI
Minisy I.M., Bober P., Acharya U., Trchová M., Hromádková J., Pfleger J., Stejskal J. Cationic dyes as morphology-guiding agents for one-dimensional polypyrrole with improved conductivity. Polymer. 2019;174:11–17. doi: 10.1016/j.polymer.2019.04.045. DOI
Minisy I.M., Acharya U., Kobera L., Trchová M., Unterweger C., Breitenbach S., Brus J., Pfleger J., Stejskal J., Bober P. Highly conducting 1-D polypyrrole prepared in the presence of safranin. J. Mater. Chem. C. 2020;8:12140–12147. doi: 10.1039/D0TC02838J. DOI
Pringle J.M., Winther-Jensen O., Lynam C., Wallace G.G., Forsyth M., MacFarlane D.R. One-Step Synthesis of Conducting Polymer–Noble Metal Nanoparticle Composites using an Ionic Liquid. Adv. Funct. Mater. 2008;18:2031–2040. doi: 10.1002/adfm.200701147. DOI
Omastová M., Mosnáčková K., Fedorko P., Trchová M., Stejskal J. Polypyrrole/silver composites prepared by single-step synthesis. Synth. Met. 2013;166:57–62. doi: 10.1016/j.synthmet.2013.01.015. DOI
Blinova N.V., Stejskal J., Trchova M., Sapurina I., Ćirić-Marjanović G. The oxidation of aniline with silver nitrate to polyaniline–silver composites. Polymer. 2009;50:50–56. doi: 10.1016/j.polymer.2008.10.040. DOI
Blinova N.V., Bober P., Hromádková J., Trchová M., Stejskal J., Prokeš J. Polyaniline–silver composites are prepared by the oxidation of aniline with silver nitrate in acetic acid solutions. Polym. Int. 2010;59:437–446. doi: 10.1002/pi.2718. DOI
Yang X., Lu Y. Preparation of polypyrrole-coated silver nanoparticles by one-step UV-induced polymerization. Mater. Lett. 2005;59:2484–2487. doi: 10.1016/j.matlet.2005.03.033. DOI
Muñoz-Rojas D., Oró-Solé J., Ayyad O., Gómez-Romero P. Facile one-pot synthesis of self-assembled silver@polypyrrole core/shell nanosnakes. Small. 2008;4:1301–1306. doi: 10.1002/smll.200701199. PubMed DOI
Wang S., Shi G. Uniform silver/polypyrrole core-shell nanoparticles synthesized by hydrothermal reaction. Mater. Chem. Phys. 2007;102:255–259. doi: 10.1016/j.matchemphys.2006.12.014. DOI
Moreno K.J., Moggio I., Arias E., Llarena I., Moya S.E., Ziolo R.F., Barrientos H. Silver nanoparticles functionalized in situ with the conjugated polymer (PEDOT: PSS) J. Nanosci. Nanotechnol. 2009;9:3987–3992. doi: 10.1166/jnn.2009.215. PubMed DOI
Melendez R.G., Moreno K.J., Moggio I., Arias E., Ponce A., Llanera I., Moya S.E. On the influence of silver nanoparticles size in the electrical conductivity of PEDOT: PSS. Mater. Sci. Forum. 2010;644:85–90. doi: 10.4028/www.scientific.net/MSF.644.85. DOI
Cui Z., Coletta C., Bahry T., Marignier J.L., Guigner J.M., Gervais M., Baiz S., Goubard F., Remita S. A novel radiation chemistry-based methodology for the synthesis of PEDOT/Ag nanocomposites. Mater. Chem. Front. 2017;1:879–892. doi: 10.1039/C6QM00202A. DOI
Wang Y., Pang F.F., Liu D.D., Han G.Z. In situ synthesis of PEDOT: PSS@ AgNPs nanocomposites. Synth. Met. 2017;230:1–6. doi: 10.1016/j.synthmet.2017.05.011. DOI
Balamurugan A., Ho K.C., Chen S.M. One-pot synthesis of highly stable silver nanoparticles-conducting polymer nanocomposite and its catalytic application. Synth. Met. 2009;159:2544–2549. doi: 10.1016/j.synthmet.2009.09.004. DOI
Balamurugan A., Chen S.M. Silver nanograins incorporated PEDOT modified electrode for electrocatalytic sensing of hydrogen peroxide. Electroanalysis. 2009;21:1419–1423. doi: 10.1002/elan.200804543. DOI
Du J., Liu Z., Han B., Li Z., Zhang J., Huang Y. One-pot synthesis of the macroporous polyaniline microspheres and Ag/polyaniline core-shell particles. Microporous Mesoporous Mater. 2005;84:254–260. doi: 10.1016/j.micromeso.2005.05.036. DOI
Li X., Gao Y., Liu F., Gong J., Qu L. Synthesis of polyaniline/Ag composite nanospheres through UV rays irradiation method. Mater. Lett. 2009;63:467–469. doi: 10.1016/j.matlet.2008.11.027. DOI
De Barros R.A., De Azevedo W.M. Polyaniline/silver nanocomposite preparation under extreme or non-classical conditions. Synth. Met. 2008;158:922–926. doi: 10.1016/j.synthmet.2008.06.021. DOI
Bober P., Stejskal J., Trchova M., Prokeš J., Sapurina I. Oxidation of aniline with silver nitrate accelerated by p-phenylenediamine: A new route to conducting composites. Macromolecules. 2010;43:10406–10413. doi: 10.1021/ma101474j. DOI
Beyene H.D., Werkneh A.A., Bezabh H.K., Ambaye T.G. Synthesis paradigm and applications of silver nanoparticles (AgNPs), a review. Sustain. Mater. Technol. 2017;13:18–23. doi: 10.1016/j.susmat.2017.08.001. DOI
He T., Luo L., Yang J., Liu Y., Liu S., Zhang X. Self-healing and high reusability of Au nanoparticles catalyst based on supramolecular hydrogel. Colloids Surf. A Physicochem. Eng. Asp. 2019;583:123954. doi: 10.1016/j.colsurfa.2019.123954. DOI
Mane S.S., Patil S.M., Pawar K.K., Salgaonkar M.D., Jagdale P., Kamble T., Agharkar M. Biogenic synthesized silver nanoparticles decorated polypyrrole nanotubes as promising photocatalyst for methyl violet dye degradation. Mater. Today Proc. 2020;28:2311–2317. doi: 10.1016/j.matpr.2020.04.583. DOI
Ghosh S., Teillout A.L., Floresyona D., de Oliveira P., Hagège A., Remita H. Conducting polymer-supported palladium nanoplates for applications in direct alcohol oxidation. Int. J. Hydrogen Energy. 2015;40:4951–4959. doi: 10.1016/j.ijhydene.2015.01.101. DOI
Riaz U., Ashraf S.M., Kashyap J. Role of conducting polymers in enhancing TiO2-based photocatalytic dye degradation: A short review. Polym. Plast. Technol. Eng. 2015;54:1850–1870. doi: 10.1080/03602559.2015.1021485. DOI
Minisy I.M., Salahuddin N.A., Ayad M.M. Adsorption of methylene blue onto chitosan–montmorillonite/polyaniline nanocomposite. Appl. Clay Sci. 2021;203:105993. doi: 10.1016/j.clay.2021.105993. DOI
Minisy I.M., Zasońska B.A., Petrovský E., Veverka P., Šeděnková I., Hromádková J., Bober P. Poly(p-phenylenediamine)/maghemite composite as highly effective adsorbent for anionic dye removal. React. Funct. Polym. 2020;146:104436. doi: 10.1016/j.reactfunctpolym.2019.104436. DOI
Taghizadeh A., Taghizadeh M., Jouyandeh M., Yazdi M.K., Zarrintaj P., Saeb M.R., Lima E.C., Gupta V.K. Conductive polymers in water treatment: A review. J. Mol. Liq. 2020;312:113447. doi: 10.1016/j.molliq.2020.113447. DOI
Haleem A., Shafiq A., Chen S.Q., Nazar M. A comprehensive review on adsorption, photocatalytic and chemical degradation of dyes and nitro-compounds over different kinds of porous and composite materials. Molecules. 2023;28:1081. doi: 10.3390/molecules28031081. PubMed DOI PMC
Rengaraj S., Li X.Z. Enhanced photocatalytic reduction reaction over Bi3+–TiO2 nanoparticles in presence of formic acid as a hole scavenger. Chemosphere. 2007;66:930–938. doi: 10.1016/j.chemosphere.2006.06.007. PubMed DOI
Greenwood N.N., Earnshaw A. Chemistry of the Elements. Elsevier; Amsterdam, The Netherlands: 2012.
Babu K.F., Dhandapani P., Maruthamuthu S., Kulandainathan M.A. One pot synthesis of polypyrrole silver nanocomposite on cotton fabrics for multifunctional property. Carbohydr. Polym. 2012;90:1557–1563. doi: 10.1016/j.carbpol.2012.07.030. PubMed DOI
Xing S., Zhao G. One-step synthesis of polypyrrole-Ag nanofiber composites in dilute mixed CTAB/SDS aqueous solution. Mater. Lett. 2007;61:2040–2044. doi: 10.1016/j.matlet.2006.08.011. DOI
Safenaz M.R., Sheikha M. Synthesis and electrical properties of polyaniline composite with silver nanoparticles. Adv. Mater. Phys. Chem. 2012;2:19972.
Stejskal J. Polymers of phenylenediamines. Prog. Polym. Sci. 2015;41:1–31. doi: 10.1016/j.progpolymsci.2014.10.007. DOI
Shinde S.S., Gund G.S., Dubal D.P., Jambure S.B., Lokhande C.D. Morphological modulation of polypyrrole thin films through oxidizing agents and their concurrent effect on supercapacitor performance. Electrochim. Acta. 2014;119:1–10. doi: 10.1016/j.electacta.2013.10.174. DOI
Zhao Q., Jamal R., Zhang L., Wang M., Abdiryim T. The structure and properties of PEDOT synthesized by template-free solution method. Nanoscale Res. Lett. 2014;9:557. doi: 10.1186/1556-276X-9-557. PubMed DOI PMC
Stejskal J., Trchová M. Aniline oligomers versus polyaniline. Polym. Int. 2012;61:149–336. doi: 10.1002/pi.3179. DOI
Trchová M., Stejskal J. Resonance Raman spectroscopy of conducting polypyrrole nanotubes: Disordered surface versus ordered body. J. Phys. Chem. A. 2018;122:9298–9306. doi: 10.1021/acs.jpca.8b09794. PubMed DOI
Garreau S., Louam G., Lefrant S., Buisson J.P., Froyer G. Optical study and vibrational analysis of the poly(3,4-ethylenedioxythiophene) (PEDT) Synth. Met. 1999;101:312–313. doi: 10.1016/S0379-6779(98)01146-1. DOI
Moraes B.R., Campos N.S., Izumi C.M. Surface-enhanced Raman scattering of EDOT and PEDOT on silver and gold nanoparticles. Vib. Spectrosc. 2018;96:137–142. doi: 10.1016/j.vibspec.2018.04.006. DOI
Minisy I.M., Acharya U., Veigel S., Morávková Z., Taboubi O., Hodan J., Breitenbach S., Unterweger C., Gindl-Altmutter W., Bober P. Sponge-like polypyrrole–nanofibrillated cellulose aerogels: Synthesis and application. J. Mater. Chem. C. 2021;9:12615–12623. doi: 10.1039/D1TC03006J. DOI
Jiang Y., Liu Z., Zeng G., Liu Y., Shao B., Li Z., Liu Y., Zhang W., He Q. Polyaniline-based adsorbents for removal of hexavalent chromium from aqueous solution: A mini review. Environ. Sci. Pollut. Res. 2018;25:6158–6174. doi: 10.1007/s11356-017-1188-3. PubMed DOI
Mahmud H.N.M.E., Huq A.K.O., Yahya R.B. The removal of heavy metal ions from wastewater/aqueous solution using polypyrrole-based adsorbents: A review. RSC Adv. 2016;6:14778–14791. doi: 10.1039/C5RA24358K. DOI
Sulowska A., Borzyszkowska A.F., Cysewska K., Siwińska-Ciesielczyk K., Nikiforow K., Trykowski G., Zielińska-Jurek A. The effect of PEDOT morphology on hexavalent chromium reduction over 2D TiO2/PEDOT photocatalyst under UV–vis light. Mater. Chem. Phys. 2023;299:127430. doi: 10.1016/j.matchemphys.2023.127430. DOI
Sumi M.B., Devadiga A., Shetty K.V., Saidutta M.B. Solar photocatalytically active, engineered silver nanoparticle synthesis using aqueous extract of mesocarp of Cocos nucifera (Red Spicata Dwarf) J. Exp. Nanosci. 2017;12:14–32. doi: 10.1080/17458080.2016.1251622. DOI
Bu Y., Chen Z. Role of polyaniline on the photocatalytic degradation and stability performance of the polyaniline/silver/silver phosphate composite under visible light. ACS Appl. Mater. Interfaces. 2014;6:17589–17598. doi: 10.1021/am503578s. PubMed DOI
Ngo A.B., Nguyen H.L., Hollmann D. Critical assessment of the photocatalytic reduction of Cr (VI) over Au/TiO2. Catalysts. 2018;8:606. doi: 10.3390/catal8120606. DOI
Bhatti Z.I., Toda H., Furukawa K. p-Nitrophenol degradation by activated sludge attached on nonwovens. Water Res. 2002;36:1135–1142. doi: 10.1016/S0043-1354(01)00292-5. PubMed DOI
Guo P., Tang L., Tang J., Zeng G., Huang B., Dong H., Zhang Y., Zhou Y., Deng Y., Ma L., et al. Catalytic reduction–adsorption for removal of p-nitrophenol and its conversion p-aminophenol from water by gold nanoparticles supported on oxidized mesoporous carbon. J. Colloid Interface Sci. 2016;469:78–85. doi: 10.1016/j.jcis.2016.01.063. PubMed DOI
Kundu S., Lau S., Liang H. Shape-controlled catalysis by cetyltrimethylammonium bromide terminated gold nanospheres, nanorods, and nanoprisms. J. Phys. Chem. C. 2009;113:5150–5156. doi: 10.1021/jp811331z. DOI
Haleem A., Chen J., Guo X.X., Wang J.Y., Li H.J., Li P.Y., Chen S.Q., He W.D. Hybrid cryogels composed of P (NIPAM-co-AMPS) and metal nanoparticles for rapid reduction of p-nitrophenol. Polymer. 2020;193:122352. doi: 10.1016/j.polymer.2020.122352. DOI
Zhou Q., Qian G., Li Y., Zhao G., Chao Y., Zheng J. Two-dimensional assembly of silver nanoparticles for catalytic reduction of 4-nitroaniline. Thin Solid Film. 2008;516:953–956. doi: 10.1016/j.tsf.2007.06.012. DOI
Celebioglu A., Ranjith K.S., Eren H., Biyikli N., Uyar T. Surface decoration of Pt nanoparticles via ALD with TiO2 protective layer on polymeric nanofibers as flexible and reusable heterogeneous nanocatalysts. Sci. Rep. 2017;7:13401. doi: 10.1038/s41598-017-13805-2. PubMed DOI PMC