Aerogels of Polypyrrole/Tannic Acid with Nanofibrillated Cellulose for the Removal of Hexavalent Chromium Ions
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
21-01401S
Czech Science Foundation
PubMed
39057439
PubMed Central
PMC11275629
DOI
10.3390/gels10070415
PII: gels10070415
Knihovny.cz E-zdroje
- Klíčová slova
- adsorption, aerogels, hexavalent chromium ions, polypyrrole, tannic acid,
- Publikační typ
- časopisecké články MeSH
The preparation of conducting polymer aerogels is an effective strategy to produce innovative materials with enhanced physicochemical properties. Herein, polypyrrole (PPy) aerogels were oxidatively prepared in the presence of tannic acid (TA) with different concentrations (2.5, 5, and 10% mole ratio to pyrrole monomer) under freezing conditions. Nanofibrillated cellulose (NFC) was added during the PPy/TA synthesis to enhance mechanical stability. The effect of TA concentration on the aerogels' morphology, conductivity, thermal stability, and adsorption capacity was investigated. The conductivity of 9.6 ± 1.7 S cm-1 was achieved for PPy/TA prepared with 2.5% TA, which decreased to 0.07 ± 0.01 S cm-1 when 10% TA was used. PPy/TA aerogels have shown high efficacy in removing Cr(VI) ions from aqueous solutions. Adsorption experiments revealed that all the aerogels follow pseudo-second-order kinetics. PPy/TA prepared with NFC has a maximum adsorption capacity of 549.5 mg g-1.
Zobrazit více v PubMed
US EPA Toxic and Priority Pollutants under the Clean Water Act/US EPA. [(accessed on 6 May 2024)];2021 Available online: https://www.epa.gov/eg/toxic-and-priority-pollutants-under-clean-water-act.
Zhitkovich A. Chromium in drinking water: Sources, metabolism, and cancer risks. Chem. Res. Toxicol. 2011;24:1617–1629. doi: 10.1021/tx200251t. PubMed DOI PMC
Zhu S., Zhang Y., Xin L., Oo K.H., Zheng M., Ma S., Guo J., Chen Y. Near-complete recycling of real mix electroplating sludge as valuable metals via Fe/Cr co-crystallization and stepwise extraction route. J. Environ. Manag. 2024;358:120821. doi: 10.1016/j.jenvman.2024.120821. PubMed DOI
Abidli A., Huang Y., Rejeb Z.B., Zaoui A., Park C.B. Sustainable and efficient technologies for removal and recovery of toxic and valuable metals from wastewater: Recent progress, challenges, and future perspectives. Chemosphere. 2022;292:133102. doi: 10.1016/j.chemosphere.2021.133102. PubMed DOI
Dayan A.D., Paine A.J. Mechanisms of chromium toxicity, carcinogenicity and allergenicity: Review of the literature from 1985 to 2000. Hum. Exp. Toxicol. 2001;20:439–451. doi: 10.1191/096032701682693062. PubMed DOI
Bhattacharya A.K., Naiya T.K., Mandal S.N., Das S.K. Adsorption, kinetics and equilibrium studies on removal of Cr (VI) from aqueous solutions using different low-cost adsorbents. Chem. Eng. J. 2008;137:529–541. doi: 10.1016/j.cej.2007.05.021. DOI
Zhao S., Chen Z., Wang B., Shen J., Zhang J., Li D. Cr (VI) removal using different reducing agents combined with fly ash leachate: A comparative study of their efficiency and potential mechanisms. Chemosphere. 2018;213:172–181. doi: 10.1016/j.chemosphere.2018.08.143. PubMed DOI
Ludwig R.D., Su C., Lee T.R., Wilkin R.T., Acree S.D., Ross R.R., Keeley A. In situ chemical reduction of Cr (VI) in groundwater using a combination of ferrous sulfate and sodium dithionite: A field investigation. Environ. Sci. Technol. 2007;41:5299–5305. doi: 10.1021/es070025z. PubMed DOI
Sarbani N.M., Hidayat E., Naito K., Mitoma Y., Harada H. Cr (VI) and Pb (II) removal using crosslinking magnetite-carboxymethyl cellulose-chitosan hydrogel beads. Gels. 2023;9:612. doi: 10.3390/gels9080612. PubMed DOI PMC
Striz R., Minisy I.M., Bober P., Taboubi O., Smilek J., Kovalcik A. Free-standing bacterial cellulose/polypyrrole composites for eco-friendly remediation of hexavalent chromium ions. ACS Appl. Polym. Mater. 2024;6:6383–6392. doi: 10.1021/acsapm.4c00579. DOI
Minisy I.M., Acharya U., Veigel S., Morávková Z., Taboubi O., Hodan J., Breitenbach S., Unterweger C., Gindl-Altmutter W., Bober P. Sponge-like polypyrrole–nanofibrillated cellulose aerogels: Synthesis and application. J. Mater. Chem. C. 2021;9:12615–12623. doi: 10.1039/D1TC03006J. DOI
Xiang L., Niu C.G., Tang N., Lv X.X., Guo H., Li Z.W., Liu H.Y., Lin L.S., Yang Y.Y., Liang C. Polypyrrole coated molybdenum disulfide composites as adsorbent for enhanced removal of Cr (VI) in aqueous solutions by adsorption combined with reduction. Chem. Eng. J. 2021;408:127281. doi: 10.1016/j.cej.2020.127281. DOI
Taghizadeh A., Taghizadeh M., Jouyandeh M., Yazdi M.K., Zarrintaj P., Saeb M.R., Lima E.C., Gupta V.K. Conductive polymers in water treatment: A review. J. Mol. Liq. 2020;312:113447. doi: 10.1016/j.molliq.2020.113447. DOI
Stejskal J., Trchová M. Conducting polypyrrole nanotubes: A review. Chem. Pap. 2018;72:1563–1595. doi: 10.1007/s11696-018-0394-x. PubMed DOI
Eskandari E., Kosari M., Farahani M.H.D.A., Khiavi N.D., Saeedikhani M., Katal R., Zarinejad M. A review on polyaniline-based materials applications in heavy metals removal and catalytic processes. Sep. Purif. Technol. 2020;231:115901. doi: 10.1016/j.seppur.2019.115901. DOI
Minisy I.M., Taboubi O., Hromádková J. One-step accelerated synthesis of conducting polymer/silver composites and their catalytic reduction of Cr (VI) ions and p-nitrophenol. Polymers. 2023;15:2366. doi: 10.3390/polym15102366. PubMed DOI PMC
Bober P., Minisy I.M., Morávková Z., Hlídková H., Hodan J., Hromádková J., Acharya U. Polypyrrole aerogels: Efficient adsorbents of Cr (VI) ions from aqueous solutions. Gels. 2023;9:582. doi: 10.3390/gels9070582. PubMed DOI PMC
Okuda T. Systematics and health effects of chemically distinct tannins in medicinal plants. Phytochemistry. 2005;66:2012–2031. doi: 10.1016/j.phytochem.2005.04.023. PubMed DOI
Qiu H., Ni W., Yang L., Zhang Q. Remarkable ability of Pb (II) capture from water by self-assembled metal-phenolic networks prepared with tannic acid and ferric ions. Chem. Eng. J. 2022;450:138161. doi: 10.1016/j.cej.2022.138161. DOI
Jiang X., Long W., Peng L., Xu T., He F., Tang Y., Zhang W. Reductive immobilization of Cr (VI) in contaminated water by tannic acid. Chemosphere. 2022;297:134081. doi: 10.1016/j.chemosphere.2022.134081. PubMed DOI
Du J., Zhang M., Dong Z., Yang X., Zhao L. Facile fabrication of tannic acid functionalized microcrystalline cellulose for selective recovery of Ga(III) and In(III) from potential leaching solution. Sep. Purif. Technol. 2022;286:120442. doi: 10.1016/j.seppur.2022.120442. DOI
Abdi M.M., Azli N.F.W.M., Lim H.N., Tahir P.M., Karimi G., Hoong Y.B., Khorram M. Polypyrrole/tannin biobased nanocomposite with enhanced electrochemical and physical properties. RSC Adv. 2018;8:2978–2985. doi: 10.1039/C7RA13378B. PubMed DOI PMC
Zhou L., Fan L., Yi X., Zhou Z., Liu C., Fu R., Dai C., Wang Z., Chen X., Yu P., et al. Soft conducting polymer hydrogels cross-linked and doped by tannic acid for spinal cord injury repair. ACS Nano. 2018;12:10957–10967. doi: 10.1021/acsnano.8b04609. PubMed DOI
Dinari R., Hosseini S.H., Tanzifi M., Mansouri M. Comprehensive study of Acid Yellow 42 adsorption by green synthesized polypyrrole/tannic acid/iron nanocomposites. Sep. Sci. Technol. 2023;58:266–286. doi: 10.1080/01496395.2022.2112602. DOI
Nam S., Easson M.W., Condon B.D., Hillyer M.B., Sun L., Xia Z., Nagarajan R. A reinforced thermal barrier coat of a Na–tannic acid complex from the view of thermal kinetics. RSC Adv. 2019;9:10914–10926. doi: 10.1039/C9RA00763F. PubMed DOI PMC
Ranoszek-Soliwoda K., Tomaszewska E., Socha E., Krzyczmonik P., Ignaczak A., Orlowski P., Grobelny J. The role of tannic acid and sodium citrate in the synthesis of silver nanoparticles. J. Nanoparticle Res. 2017;19:273. doi: 10.1007/s11051-017-3973-9. PubMed DOI PMC
Stejskal J., Trchová M., Ananieva I.A., Janča J., Prokeš J., Fedorova S., Sapurina I. Poly(aniline-co-pyrrole): Powders, films, and colloids. Thermophoretic mobility of colloidal particles. Synth. Met. 2004;146:29–36. doi: 10.1016/j.synthmet.2004.06.013. DOI
Pantoja-Castro M.A., González-Rodríguez H. Study by infrared spectroscopy and thermogravimetric analysis of tannins and tannic acid. Rev. Latinoam. De Química. 2011;39:107–112.
Espina A., Sanchez-Cortes S., Jurašeková Z. Vibrational study (Raman, SERS, and IR) of plant gallnut polyphenols related to the fabrication of iron gall inks. Molecules. 2022;27:279. doi: 10.3390/molecules27010279. PubMed DOI PMC
Espina A., Cañamares M.V., Jurašeková Z., Sanchez-Cortes S. Analysis of iron complexes of tannic acid and other related polyphenols as revealed by spectroscopic techniques: Implications in the identification and characterization of iron gall inks in historical manuscripts. ACS Omega. 2022;7:27937–27949. doi: 10.1021/acsomega.2c01679. PubMed DOI PMC
Trchová M., Stejskal J. Resonance Raman spectroscopy of conducting polypyrrole nanotubes: Disordered surface versus ordered body. J. Phys. Chem. A. 2018;122:9298–9306. doi: 10.1021/acs.jpca.8b09794. PubMed DOI
Minisy I.M., Bober P., Acharya U., Trchová M., Hromádková J., Pfleger J., Stejskal J. Cationic dyes as morphology-guiding agents for one-dimensional polypyrrole with improved conductivity. Polymer. 2019;174:11–17. doi: 10.1016/j.polymer.2019.04.045. DOI
Minisy I.M., Acharya U., Kobera L., Trchova M., Unterweger C., Breitenbach S., Brus J., Pfleger J., Stejskal J., Bober P. Highly conducting 1-D polypyrrole prepared in the presence of safranin. J. Mater. Chem. C. 2020;8:12140–12147. doi: 10.1039/D0TC02838J. DOI
Minisy I.M., Bober P. Frozen-state polymerization as a tool in conductivity enhancement of polypyrrole. Macromol. Rapid Commun. 2020;41:2000364. doi: 10.1002/marc.202000364. PubMed DOI
Ho K.S. Effect of phenolic based polymeric secondary dopants on polyaniline. Synth. Met. 2002;126:151–158. doi: 10.1016/S0379-6779(01)00499-4. DOI
Chauke V.P., Maity A., Chetty A. High-performance towards removal of toxic hexavalent chromium from aqueous solution using graphene oxide-alpha cyclodextrin-polypyrrole nanocomposites. J. Mol. Liq. 2015;211:71–77. doi: 10.1016/j.molliq.2015.06.044. DOI
Gong X., Li W., Wang K., Hu J. Study of the adsorption of Cr (VI) by tannic acid immobilised powdered activated carbon from micro-polluted water in the presence of dissolved humic acid. Bioresour. Technol. 2013;141:145–151. doi: 10.1016/j.biortech.2013.01.166. PubMed DOI
Ranjbar D., Raeiszadeh M., Lewis L., MacLachlan M.J., Hatzikiriakos S.G. Adsorptive removal of Congo red by surfactant modified cellulose nanocrystals: A kinetic, equilibrium, and mechanistic investigation. Cellulose. 2020;27:3211–3232. doi: 10.1007/s10570-020-03021-z. DOI
Minisy I.M., Salahuddin N.A., Ayad M.M. Adsorption of methylene blue onto chitosan–montmorillonite/polyaniline nanocomposite. Appl. Clay Sci. 2021;203:105993. doi: 10.1016/j.clay.2021.105993. DOI
Xiong L., Zhang F., Yang Y., Ding Y., Chen S. Preparation of a novel polypyrrole/dolomite composite adsorbent for efficient removal of Cr (VI) from aqueous solution. Environ. Sci. Pollut. Res. 2024;31:21279–21290. doi: 10.1007/s11356-024-32526-4. PubMed DOI
Li L., Yang Q., Shi Y., Zhou L., Li W., Zhao J., Liu Z. Polypyrrole-modified natural eggplant aerogel with high shape recovery for simultaneous efficient clean water generation and heavy metal ion ad-sorption from wastewater. Sep. Purif. Technol. 2024;331:125669. doi: 10.1016/j.seppur.2023.125669. DOI
Li D., Liu H., Wang Z., Zhang Z., Wang C., Zhao B., Pan K. Ultralight and superelastic nanofiber aerogels with in-situ loaded polypyrrole for high-efficient Cr(VI) adsorption. J. Polym. Environ. 2023;31:637–647. doi: 10.1007/s10924-022-02602-2. DOI
Ahmadijokani F., Mohammadkhani R., Ahmadipouya S., Shokrgozar A., Rezakazemi M., Molavi H., Aminabhavi T.M., Arjmand M. Superior chemical stability of UiO-66 metal-organic frameworks (MOFs) for selective dye adsorption. Chem. Eng. J. 2020;399:125346. doi: 10.1016/j.cej.2020.125346. DOI