Aerogels of Polypyrrole/Tannic Acid with Nanofibrillated Cellulose for the Removal of Hexavalent Chromium Ions

. 2024 Jun 22 ; 10 (7) : . [epub] 20240622

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid39057439

Grantová podpora
21-01401S Czech Science Foundation

The preparation of conducting polymer aerogels is an effective strategy to produce innovative materials with enhanced physicochemical properties. Herein, polypyrrole (PPy) aerogels were oxidatively prepared in the presence of tannic acid (TA) with different concentrations (2.5, 5, and 10% mole ratio to pyrrole monomer) under freezing conditions. Nanofibrillated cellulose (NFC) was added during the PPy/TA synthesis to enhance mechanical stability. The effect of TA concentration on the aerogels' morphology, conductivity, thermal stability, and adsorption capacity was investigated. The conductivity of 9.6 ± 1.7 S cm-1 was achieved for PPy/TA prepared with 2.5% TA, which decreased to 0.07 ± 0.01 S cm-1 when 10% TA was used. PPy/TA aerogels have shown high efficacy in removing Cr(VI) ions from aqueous solutions. Adsorption experiments revealed that all the aerogels follow pseudo-second-order kinetics. PPy/TA prepared with NFC has a maximum adsorption capacity of 549.5 mg g-1.

Zobrazit více v PubMed

US EPA Toxic and Priority Pollutants under the Clean Water Act/US EPA. [(accessed on 6 May 2024)];2021 Available online: https://www.epa.gov/eg/toxic-and-priority-pollutants-under-clean-water-act.

Zhitkovich A. Chromium in drinking water: Sources, metabolism, and cancer risks. Chem. Res. Toxicol. 2011;24:1617–1629. doi: 10.1021/tx200251t. PubMed DOI PMC

Zhu S., Zhang Y., Xin L., Oo K.H., Zheng M., Ma S., Guo J., Chen Y. Near-complete recycling of real mix electroplating sludge as valuable metals via Fe/Cr co-crystallization and stepwise extraction route. J. Environ. Manag. 2024;358:120821. doi: 10.1016/j.jenvman.2024.120821. PubMed DOI

Abidli A., Huang Y., Rejeb Z.B., Zaoui A., Park C.B. Sustainable and efficient technologies for removal and recovery of toxic and valuable metals from wastewater: Recent progress, challenges, and future perspectives. Chemosphere. 2022;292:133102. doi: 10.1016/j.chemosphere.2021.133102. PubMed DOI

Dayan A.D., Paine A.J. Mechanisms of chromium toxicity, carcinogenicity and allergenicity: Review of the literature from 1985 to 2000. Hum. Exp. Toxicol. 2001;20:439–451. doi: 10.1191/096032701682693062. PubMed DOI

Bhattacharya A.K., Naiya T.K., Mandal S.N., Das S.K. Adsorption, kinetics and equilibrium studies on removal of Cr (VI) from aqueous solutions using different low-cost adsorbents. Chem. Eng. J. 2008;137:529–541. doi: 10.1016/j.cej.2007.05.021. DOI

Zhao S., Chen Z., Wang B., Shen J., Zhang J., Li D. Cr (VI) removal using different reducing agents combined with fly ash leachate: A comparative study of their efficiency and potential mechanisms. Chemosphere. 2018;213:172–181. doi: 10.1016/j.chemosphere.2018.08.143. PubMed DOI

Ludwig R.D., Su C., Lee T.R., Wilkin R.T., Acree S.D., Ross R.R., Keeley A. In situ chemical reduction of Cr (VI) in groundwater using a combination of ferrous sulfate and sodium dithionite: A field investigation. Environ. Sci. Technol. 2007;41:5299–5305. doi: 10.1021/es070025z. PubMed DOI

Sarbani N.M., Hidayat E., Naito K., Mitoma Y., Harada H. Cr (VI) and Pb (II) removal using crosslinking magnetite-carboxymethyl cellulose-chitosan hydrogel beads. Gels. 2023;9:612. doi: 10.3390/gels9080612. PubMed DOI PMC

Striz R., Minisy I.M., Bober P., Taboubi O., Smilek J., Kovalcik A. Free-standing bacterial cellulose/polypyrrole composites for eco-friendly remediation of hexavalent chromium ions. ACS Appl. Polym. Mater. 2024;6:6383–6392. doi: 10.1021/acsapm.4c00579. DOI

Minisy I.M., Acharya U., Veigel S., Morávková Z., Taboubi O., Hodan J., Breitenbach S., Unterweger C., Gindl-Altmutter W., Bober P. Sponge-like polypyrrole–nanofibrillated cellulose aerogels: Synthesis and application. J. Mater. Chem. C. 2021;9:12615–12623. doi: 10.1039/D1TC03006J. DOI

Xiang L., Niu C.G., Tang N., Lv X.X., Guo H., Li Z.W., Liu H.Y., Lin L.S., Yang Y.Y., Liang C. Polypyrrole coated molybdenum disulfide composites as adsorbent for enhanced removal of Cr (VI) in aqueous solutions by adsorption combined with reduction. Chem. Eng. J. 2021;408:127281. doi: 10.1016/j.cej.2020.127281. DOI

Taghizadeh A., Taghizadeh M., Jouyandeh M., Yazdi M.K., Zarrintaj P., Saeb M.R., Lima E.C., Gupta V.K. Conductive polymers in water treatment: A review. J. Mol. Liq. 2020;312:113447. doi: 10.1016/j.molliq.2020.113447. DOI

Stejskal J., Trchová M. Conducting polypyrrole nanotubes: A review. Chem. Pap. 2018;72:1563–1595. doi: 10.1007/s11696-018-0394-x. PubMed DOI

Eskandari E., Kosari M., Farahani M.H.D.A., Khiavi N.D., Saeedikhani M., Katal R., Zarinejad M. A review on polyaniline-based materials applications in heavy metals removal and catalytic processes. Sep. Purif. Technol. 2020;231:115901. doi: 10.1016/j.seppur.2019.115901. DOI

Minisy I.M., Taboubi O., Hromádková J. One-step accelerated synthesis of conducting polymer/silver composites and their catalytic reduction of Cr (VI) ions and p-nitrophenol. Polymers. 2023;15:2366. doi: 10.3390/polym15102366. PubMed DOI PMC

Bober P., Minisy I.M., Morávková Z., Hlídková H., Hodan J., Hromádková J., Acharya U. Polypyrrole aerogels: Efficient adsorbents of Cr (VI) ions from aqueous solutions. Gels. 2023;9:582. doi: 10.3390/gels9070582. PubMed DOI PMC

Okuda T. Systematics and health effects of chemically distinct tannins in medicinal plants. Phytochemistry. 2005;66:2012–2031. doi: 10.1016/j.phytochem.2005.04.023. PubMed DOI

Qiu H., Ni W., Yang L., Zhang Q. Remarkable ability of Pb (II) capture from water by self-assembled metal-phenolic networks prepared with tannic acid and ferric ions. Chem. Eng. J. 2022;450:138161. doi: 10.1016/j.cej.2022.138161. DOI

Jiang X., Long W., Peng L., Xu T., He F., Tang Y., Zhang W. Reductive immobilization of Cr (VI) in contaminated water by tannic acid. Chemosphere. 2022;297:134081. doi: 10.1016/j.chemosphere.2022.134081. PubMed DOI

Du J., Zhang M., Dong Z., Yang X., Zhao L. Facile fabrication of tannic acid functionalized microcrystalline cellulose for selective recovery of Ga(III) and In(III) from potential leaching solution. Sep. Purif. Technol. 2022;286:120442. doi: 10.1016/j.seppur.2022.120442. DOI

Abdi M.M., Azli N.F.W.M., Lim H.N., Tahir P.M., Karimi G., Hoong Y.B., Khorram M. Polypyrrole/tannin biobased nanocomposite with enhanced electrochemical and physical properties. RSC Adv. 2018;8:2978–2985. doi: 10.1039/C7RA13378B. PubMed DOI PMC

Zhou L., Fan L., Yi X., Zhou Z., Liu C., Fu R., Dai C., Wang Z., Chen X., Yu P., et al. Soft conducting polymer hydrogels cross-linked and doped by tannic acid for spinal cord injury repair. ACS Nano. 2018;12:10957–10967. doi: 10.1021/acsnano.8b04609. PubMed DOI

Dinari R., Hosseini S.H., Tanzifi M., Mansouri M. Comprehensive study of Acid Yellow 42 adsorption by green synthesized polypyrrole/tannic acid/iron nanocomposites. Sep. Sci. Technol. 2023;58:266–286. doi: 10.1080/01496395.2022.2112602. DOI

Nam S., Easson M.W., Condon B.D., Hillyer M.B., Sun L., Xia Z., Nagarajan R. A reinforced thermal barrier coat of a Na–tannic acid complex from the view of thermal kinetics. RSC Adv. 2019;9:10914–10926. doi: 10.1039/C9RA00763F. PubMed DOI PMC

Ranoszek-Soliwoda K., Tomaszewska E., Socha E., Krzyczmonik P., Ignaczak A., Orlowski P., Grobelny J. The role of tannic acid and sodium citrate in the synthesis of silver nanoparticles. J. Nanoparticle Res. 2017;19:273. doi: 10.1007/s11051-017-3973-9. PubMed DOI PMC

Stejskal J., Trchová M., Ananieva I.A., Janča J., Prokeš J., Fedorova S., Sapurina I. Poly(aniline-co-pyrrole): Powders, films, and colloids. Thermophoretic mobility of colloidal particles. Synth. Met. 2004;146:29–36. doi: 10.1016/j.synthmet.2004.06.013. DOI

Pantoja-Castro M.A., González-Rodríguez H. Study by infrared spectroscopy and thermogravimetric analysis of tannins and tannic acid. Rev. Latinoam. De Química. 2011;39:107–112.

Espina A., Sanchez-Cortes S., Jurašeková Z. Vibrational study (Raman, SERS, and IR) of plant gallnut polyphenols related to the fabrication of iron gall inks. Molecules. 2022;27:279. doi: 10.3390/molecules27010279. PubMed DOI PMC

Espina A., Cañamares M.V., Jurašeková Z., Sanchez-Cortes S. Analysis of iron complexes of tannic acid and other related polyphenols as revealed by spectroscopic techniques: Implications in the identification and characterization of iron gall inks in historical manuscripts. ACS Omega. 2022;7:27937–27949. doi: 10.1021/acsomega.2c01679. PubMed DOI PMC

Trchová M., Stejskal J. Resonance Raman spectroscopy of conducting polypyrrole nanotubes: Disordered surface versus ordered body. J. Phys. Chem. A. 2018;122:9298–9306. doi: 10.1021/acs.jpca.8b09794. PubMed DOI

Minisy I.M., Bober P., Acharya U., Trchová M., Hromádková J., Pfleger J., Stejskal J. Cationic dyes as morphology-guiding agents for one-dimensional polypyrrole with improved conductivity. Polymer. 2019;174:11–17. doi: 10.1016/j.polymer.2019.04.045. DOI

Minisy I.M., Acharya U., Kobera L., Trchova M., Unterweger C., Breitenbach S., Brus J., Pfleger J., Stejskal J., Bober P. Highly conducting 1-D polypyrrole prepared in the presence of safranin. J. Mater. Chem. C. 2020;8:12140–12147. doi: 10.1039/D0TC02838J. DOI

Minisy I.M., Bober P. Frozen-state polymerization as a tool in conductivity enhancement of polypyrrole. Macromol. Rapid Commun. 2020;41:2000364. doi: 10.1002/marc.202000364. PubMed DOI

Ho K.S. Effect of phenolic based polymeric secondary dopants on polyaniline. Synth. Met. 2002;126:151–158. doi: 10.1016/S0379-6779(01)00499-4. DOI

Chauke V.P., Maity A., Chetty A. High-performance towards removal of toxic hexavalent chromium from aqueous solution using graphene oxide-alpha cyclodextrin-polypyrrole nanocomposites. J. Mol. Liq. 2015;211:71–77. doi: 10.1016/j.molliq.2015.06.044. DOI

Gong X., Li W., Wang K., Hu J. Study of the adsorption of Cr (VI) by tannic acid immobilised powdered activated carbon from micro-polluted water in the presence of dissolved humic acid. Bioresour. Technol. 2013;141:145–151. doi: 10.1016/j.biortech.2013.01.166. PubMed DOI

Ranjbar D., Raeiszadeh M., Lewis L., MacLachlan M.J., Hatzikiriakos S.G. Adsorptive removal of Congo red by surfactant modified cellulose nanocrystals: A kinetic, equilibrium, and mechanistic investigation. Cellulose. 2020;27:3211–3232. doi: 10.1007/s10570-020-03021-z. DOI

Minisy I.M., Salahuddin N.A., Ayad M.M. Adsorption of methylene blue onto chitosan–montmorillonite/polyaniline nanocomposite. Appl. Clay Sci. 2021;203:105993. doi: 10.1016/j.clay.2021.105993. DOI

Xiong L., Zhang F., Yang Y., Ding Y., Chen S. Preparation of a novel polypyrrole/dolomite composite adsorbent for efficient removal of Cr (VI) from aqueous solution. Environ. Sci. Pollut. Res. 2024;31:21279–21290. doi: 10.1007/s11356-024-32526-4. PubMed DOI

Li L., Yang Q., Shi Y., Zhou L., Li W., Zhao J., Liu Z. Polypyrrole-modified natural eggplant aerogel with high shape recovery for simultaneous efficient clean water generation and heavy metal ion ad-sorption from wastewater. Sep. Purif. Technol. 2024;331:125669. doi: 10.1016/j.seppur.2023.125669. DOI

Li D., Liu H., Wang Z., Zhang Z., Wang C., Zhao B., Pan K. Ultralight and superelastic nanofiber aerogels with in-situ loaded polypyrrole for high-efficient Cr(VI) adsorption. J. Polym. Environ. 2023;31:637–647. doi: 10.1007/s10924-022-02602-2. DOI

Ahmadijokani F., Mohammadkhani R., Ahmadipouya S., Shokrgozar A., Rezakazemi M., Molavi H., Aminabhavi T.M., Arjmand M. Superior chemical stability of UiO-66 metal-organic frameworks (MOFs) for selective dye adsorption. Chem. Eng. J. 2020;399:125346. doi: 10.1016/j.cej.2020.125346. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...