Polypyrrole Aerogels: Efficient Adsorbents of Cr(VI) Ions from Aqueous Solutions
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
21-01401S
Czech Science Foundation
PubMed
37504461
PubMed Central
PMC10379293
DOI
10.3390/gels9070582
PII: gels9070582
Knihovny.cz E-zdroje
- Klíčová slova
- adsorbent, aerogel, conductivity, hexavalent chromium, polypyrrole,
- Publikační typ
- časopisecké články MeSH
Three-dimensional and porous polypyrrole (PPy) aerogels were prepared using a facile two-step procedure in which cryogels were synthesized via the cryopolymerization of pyrrole with iron (III) chloride in the presence of supporting water-soluble polymers (poly(N-vinylpyrrolidone), poly(vinyl alcohol), gelatin, methylcellulose or hydroxypropylcellulose), followed by freeze-drying to obtain aerogels. The choice of supporting polymers was found to affect the morphology, porosity, electrical conductivity, and mechanical properties of PPy aerogels. PPy aerogels were successfully used as adsorbents to remove toxic Cr(VI) ions from aqueous solutions.
Zobrazit více v PubMed
Khatri N., Tyagi S. Influences of natural and anthropogenic factors on the surface and groundwater quality in rural and urban areas. Front. Life Sci. 2015;8:23–39. doi: 10.1080/21553769.2014.933716. DOI
Pratush A., Kumar A., Hu Z. Adverse effect of heavy metals (As, Pb, Hg, and Cr) on health and their bioremediation strategies: A review. Int. Microbiol. 2018;21:97–106. doi: 10.1007/s10123-018-0012-3. PubMed DOI
Marcovecchio J.E., Botté S.E., Domini C.E., Freije R.H. Handbook Water Analysis. CRC Press; Boca Raton, FL, USA: 2011. Heavy metals, major metals, trace elements.
Zaghlol S., Amer W.A., Shaaban M.H., Ayad M.M., Bober P., Stejskal J. Conducting macroporous polyaniline/poly(vinyl alcohol) aerogels for the removal of chromium(VI) from aqueous media. Chem. Pap. 2020;74:3183–3193. doi: 10.1007/s11696-020-01151-z. DOI
Qiu L.G., Wang Y.J., Sui R., Zhu C.X., Yang W.W., Yu Y.H., Li J.M. Preparation of a novel metal-free polypyrrole-red phosphorus adsorbent for efficient removal of Cr(VI) from aqueous solution. Environ. Res. 2023;224:115458. doi: 10.1016/j.envres.2023.115458. PubMed DOI
Yu L., Li D., Xu Z.Y., Zheng S.R. Polyaniline coated Pt/CNT as highly stable and active catalyst for catalytic hydrogenation reduction of Cr(VI) Chemosphere. 2023;310:136685. doi: 10.1016/j.chemosphere.2022.136685. PubMed DOI
Minisy I.M., Acharya U., Veigel S., Morávková Z., Taboubi O., Hodan J., Breitenbach S., Unterweger C., Gindl-Altmutterc W., Bober P. Sponge-like polypyrrole-nanofibrillated cellulose aerogels: Synthesis and application. J. Mater. Chem. C. 2021;9:12615–12623. doi: 10.1039/D1TC03006J. DOI
Wang Y., Liang C., Fan C., Chen J., Zhang Z., Liu H. Composite modification of carbon fiber cathode with tree-like branched polypyrrole-microwires and polyaniline-nanorods for enhancing hexavalent chromium reduction. Environ. Sci. Nano. 2023;10:891–901. doi: 10.1039/D2EN01128J. DOI
Koysuren O., Koysuren H.N. Application of CuO and its composite with polyaniline on the photocatalytic degradation of methylene blue and the Cr(VI) photoreduction under visible light. J. Sol-Gel Sci. Technol. 2023;106:131–148. doi: 10.1007/s10971-023-06049-2. DOI
Kavitha E., Sowmya A., Prabhakar S., Jain P., Surya R., Rajesh M.P. Removal and recovery of heavy metals through size enhanced ultrafiltration using chitosan derivatives and optimization with response surface modeling. Int. J. Biol. Macromol. 2019;132:278–288. doi: 10.1016/j.ijbiomac.2019.03.128. PubMed DOI
Abdullah N., Yusof N., Lau W.J., Jaafar J., Ismail A.F. Recent trends of heavy metal removal from water/wastewater by membrane technologies. J. Ind. Eng. Chem. 2019;76:17–38. doi: 10.1016/j.jiec.2019.03.029. DOI
Sandu T., Andrei Sârbu A., Căprărescu S., Stoica E.-B., Iordache T.-V., Chiriac A.-L. Polymer Membranes as Innovative Means of Quality Restoring for Wastewater Bearing Heavy Metals. Membranes. 2022;12:1179. doi: 10.3390/membranes12121179. PubMed DOI PMC
Gupta S., Zasońska B.A., Acharya U., Konefał M., Pokorný V., Petrovsky E., Breitenbach S., Unterweger C., Bober P. Magnetoconductive poly(3,4-ethylenedioxythiophene)/maghemite adsorbent for the removal of Reactive Black 5 from aqueous media. Mater. Chem. Phys. 2022;292:126753. doi: 10.1016/j.matchemphys.2022.126753. DOI
Bober P., Minisy I.M., Acharya U., Pfleger J., Babayan V., Kazantseva N., Hodan J., Stejskal J. Conducting polymer composite aerogel with magnetic properties for organic dye removal. Synth. Met. 2020;260:116266. doi: 10.1016/j.synthmet.2019.116266. DOI
Chen M., Yan Z., Luan J., Sun X., Liu W., Ke X. π-π electron-donor-acceptor (EDA) interaction enhancing adsorption of tetracycline on 3D PPY/CMC aerogels. Chem. Eng. J. 2023;454:140300. doi: 10.1016/j.cej.2022.140300. DOI
Silvestri S., Burgo T.A.L., Dias-Ferreira C., Labrincha J.A., Tobaldi D.M. Polypyrrole-TiO2 composite for removal of 4-chlorophenol and diclofenac. React. Funct. Polym. 2020;146:104401. doi: 10.1016/j.reactfunctpolym.2019.104401. DOI
Acharya U., Bober P., Trchová M., Zhigunov A., Stejskal J., Pfleger J. Synergistic conductivity increase in polypyrrole/molybdenum disulfide composite. Polymer. 2018;150:130–137. doi: 10.1016/j.polymer.2018.07.004. DOI
Gao S., Liu Z., Yan Q., Wei P., Li Y., Ji J., Li L. Facile Synthesis of Polypyrrole/Reduced Graphene Oxide Composite Hydrogel for Cr(VI) Removal. J. Inorg. Organomet. Polym. 2021;31:3677–3685. doi: 10.1007/s10904-021-02037-7. DOI
Li D., Liu H., Wang Z., Zhang Z., Wang C., Zhao B., Pan K. Ultralight and Superelastic Nanofiber Aerogels with In-Situ Loaded Polypyrrole for High-Efficient Cr (VI) Adsorption. J. Polym. Environ. 2023;31:637–647. doi: 10.1007/s10924-022-02602-2. DOI
Milakin K.A., Taboubi O., Acharya U., Lhotka M., Pokorný V., Konefał M., Kočková O., Hromádková J., Hodan J., Bober P. Polypyrrole-Barium Ferrite Magnetic Cryogels for Water Purification. Gels. 2023;9:92. doi: 10.3390/gels9020092. PubMed DOI PMC
Omastová M., Bober P., Morávková Z., Peřinka N., Kaplanová M., Syrový T., Hromádková J., Trchová M., Stejskal J. Towards conducting inks: Polypyrrole-silver colloids. Electrochim. Acta. 2014;122:296–302. doi: 10.1016/j.electacta.2013.11.037. DOI
Stejskal J., Trchová M., Bober P., Morávková Z., Kopecký D., Vrňata M., Prokeš J., Varga M., Watzlová E. Polypyrrole salts and bases: Superior conductivity of nanotubes and their stability towards the loss of conductivity by deprotonation. RSC Adv. 2016;6:88382–88391. doi: 10.1039/C6RA19461C. DOI
Omastová M., Trchová M., Kovářová J., Stejskal J. Synthesis and structural study of polypyrroles prepared in the presence of surfactants. Synth. Met. 2003;138:447–455. doi: 10.1016/S0379-6779(02)00498-8. DOI
Blinova N.V., Stejskal J., Trchová M., Prokeš J., Omastová M. Polyaniline and polypyrrole: A comparative study of the preparation. Eur. Polym. J. 2007;43:2331–2341. doi: 10.1016/j.eurpolymj.2007.03.045. DOI
Milakin K.A., Acharya U., Trchová M., Zasońska B.A., Stejskal J. Polypyrrole/gelatin cryogel as a precursor for a macroporous conducting polymer. React. Funct. Polym. 2020;157:104751. doi: 10.1016/j.reactfunctpolym.2020.104751. DOI
Socrates G. Infrared and Raman Characteristic Group Frequencies: Tables and Charts. 3rd ed. John Wiley& Sons, Ltd; Chichester, UK: 2001.
Ibrahim M., Osman O., Mahmoud A.A. Spectroscopic Analyses of Cellulose and Chitosan: FTIR and Modeling Approach. J. Comp. Theor. Nanosci. 2011;8:117–123. doi: 10.1166/jctn.2011.1668. DOI
Karthikeyan T., Rajgopal S., Miranda L.R. Chromium (VI) adsorption from aqueous solution by Hevea Brasilinesis sawdust activated carbon. J. Hazard. Mater. 2005;124:192–199. doi: 10.1016/j.jhazmat.2005.05.003. PubMed DOI
Kera N.H., Bhaumik M., Pillay K., Ray S.S., Maity A. Selective removal of toxic Cr(VI) from aqueous solution by adsorption combined with reduction at a magnetic nanocomposite surface. J. Colloid Interface Sci. 2017;503:214–228. doi: 10.1016/j.jcis.2017.05.018. PubMed DOI
Zhang L., Niu W., Sun J., Zhou Q. Efficient removal of Cr(VI) from water by the uniform fiber ball loaded with polypyrrole: Static adsorption, dynamic adsorption and mechanism studies. Chemosphere. 2020;248:126102. doi: 10.1016/j.chemosphere.2020.126102. PubMed DOI
Chingombe P., Saha B., Wakeman R.J. Sorption of atrazine on conventional and surface modified activated carbons. J. Colloid Interface Sci. 2006;302:408–416. doi: 10.1016/j.jcis.2006.06.065. PubMed DOI
Minisy I.M., Salahuddin N.A., Ayad M.M. Adsorption of methylene blue onto chitosan–montmorillonite/polyaniline nanocomposite. Appl. Clay Sci. 2021;203:105993. doi: 10.1016/j.clay.2021.105993. DOI
Han X., Gai L., Jiang H., Zhao L., Liu H., Zhang W. Core–shell structured Fe3O4/PANI microspheres and their Cr(VI) ion removal properties. Synth. Met. 2013;171:1–6. doi: 10.1016/j.synthmet.2013.02.025. DOI
Choe J.N., Ji J.M., Yu J.H., Jang K.J., Yun J., Choe S.J., Rim Y.I., Jo C.N. Adsorption of Cr(VI) in aqueous solution by polypyrrole nanotube and polypyrrole nanoparticle; Kinetics, isotherm equilibrium, and thermodynamics. Inorg. Chem. Commun. 2022;145:109981. doi: 10.1016/j.inoche.2022.109981. DOI
Hosseinkhani A., Forouzesh Rad B., Baghdadi M. Efficient removal of hexavalent chromium from electroplating wastewater using polypyrrole coated on cellulose sulfate fibers. J. Environ. Manag. 2020;274:111153. doi: 10.1016/j.jenvman.2020.111153. PubMed DOI
Shao Y., Fan Z., Zhong M., Xu W., He C., Zhang Z. Polypyrrole/bacterial cellulose nanofiber composites for hexavalent chromium removal. Cellulose. 2021;28:2229–2240. doi: 10.1007/s10570-020-03660-2. DOI
Raji C., Anirudhan T.S. Batch Cr (VI) removal by polyacrylamide-grafted sawdust: Kinetics and thermodynamics. Water Res. 1998;32:3772–3780. doi: 10.1016/S0043-1354(98)00150-X. DOI
Hoang B.N., Nguyen T.T., Bui Q.P.T., Bach L.G., Vo D.V.N., Trinh C.D., Bui X.T., Nguyen T.D. Enhanced selective adsorption of cation organic dyes on polyvinyl alcohol/agar/maltodextrin water-resistance biomembrane. J. Appl. Polym. Sci. 2020;137:48904. doi: 10.1002/app.48904. DOI
Ji J., Xiong H., Zhu Z., Li L., Huang Y., Yu X. Fabrication of polypyrrole/chitosan nanocomposite aerogel monolith for removal of Cr (VI) J. Polym. Environ. 2018;26:1979–1985. doi: 10.1007/s10924-017-1095-1. DOI
Liang Q., Luo H., Geng J., Chen J. Facile one-pot preparation of nitrogen-doped ultra-light graphene oxide aerogel and its prominent adsorption performance of Cr (VI) Chem. Eng. J. 2018;338:62–71. doi: 10.1016/j.cej.2017.12.145. DOI
Johnston C.P., Chrysochoou M. Investigation of Chromate Coordination on Ferrihydrite by in Situ ATR-FTIR Spectroscopy and Theoretical Frequency Calculations. Environ. Sci. Technol. 2012;46:5851–5858. doi: 10.1021/es300660r. PubMed DOI
Johnston C.P., Chrysochoou M. Mechanisms of chromate adsorption on hematite. Geochim. Cosmochim. Acta. 2014;138:146–157. doi: 10.1016/j.gca.2014.04.030. DOI