Polypyrrole-Barium Ferrite Magnetic Cryogels for Water Purification
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
21-01401S
Czech Science Foundation
PubMed
36826262
PubMed Central
PMC9957020
DOI
10.3390/gels9020092
PII: gels9020092
Knihovny.cz E-zdroje
- Klíčová slova
- adsorption, barium ferrite, cryogel, dye, polypyrrole,
- Publikační typ
- časopisecké články MeSH
Magnetic polypyrrole-gelatin-barium ferrite (PPy-G-BaFe) cryogels/aerogels were synthesized by one-step oxidative cryopolymerization of pyrrole in the presence of various fractions of barium ferrite (BaFe) nanoparticles, dispersed in aqueous gelatin solution. The successful incorporation of BaFe into the composites was confirmed by elemental analysis and scanning electron microscopy paired with an energy-dispersive X-ray detector. The maximum achieved content of BaFe in the resulting material was 3.9 wt%. The aerogels with incorporated BaFe had significantly higher specific surface area and conductivity, reaching 19.3 m2 g-1 and 4 × 10-4 S cm-1, respectively, compared to PPy-G aerogel, prepared in the absence of BaFe (7.3 m2 g-1 and 1 × 10-5 S cm-1). The model adsorption experiment using an anionic dye, Reactive Black 5, showed that magnetic PPy-G-BaFe aerogel, prepared at 10 wt% BaFe fraction, had significantly higher adsorption rate and higher adsorption capacity, compared to PPy-G (dye removal fraction 99.6% and 89.1%, respectively, after 23 h). Therefore, the prepared PPy-G-BaFe aerogels are attractive adsorbents for water purification due to their enhanced adsorption performance and the possibility of facilitated separation from solution by a magnetic field.
Zobrazit více v PubMed
Mekonnen M.M., Hoekstra A.Y. Four billion people facing severe water scarcity. Sci. Adv. 2016;2:e1500323. doi: 10.1126/sciadv.1500323. PubMed DOI PMC
Taghizadeh A., Taghizadeh M., Jouyandeh M., Yazdi M.K., Zarrintaj P., Saeb M.R., Lima E.C., Gupta V.K. Conductive polymers in water treatment: A review. J. Mol. Liq. 2020;312:113447. doi: 10.1016/j.molliq.2020.113447. DOI
Ghaedi M., Ansari A., Bahari F., Ghaedi A.M., Vafaei A. A hybrid artificial neural network and particle swarm optimization for prediction of removal of hazardous dye brilliant green from aqueous solution using zinc sulfide nanoparticle loaded on activated carbon. Spectrochim. Acta Part A. 2015;137:1004–1015. doi: 10.1016/j.saa.2014.08.011. PubMed DOI
Al-Tohamy R., Ali S.S., Li F.H., Okasha K.M., Mahmoud Y.A.G., Elsamahy T., Jiao H.X., Fu Y.Y., Sun J.Z. A critical review on the treatment of dye-containing wastewater: Ecotoxicological and health concerns of textile dyes and possible remediation approaches for environmental safety. Ecotoxicol. Environ. Saf. 2022;231:113160. doi: 10.1016/j.ecoenv.2021.113160. PubMed DOI
Singh N.B., Nagpal G., Agrawal S., Rachna Water purification by using Adsorbents: A Review. Environ. Technol. Innov. 2018;11:187–240. doi: 10.1016/j.eti.2018.05.006. DOI
Choi W.S., Lee H.J. Nanostructured Materials for Water Purification: Adsorption of Heavy Metal Ions and Organic Dyes. Polymers. 2022;14:2183. doi: 10.3390/polym14112183. PubMed DOI PMC
Barakan S., Aghazadeh V. The advantages of clay mineral modification methods for enhancing adsorption efficiency in wastewater treatment: A review. Environ. Sci. Pollut. Res. 2021;28:2572–2599. doi: 10.1007/s11356-020-10985-9. PubMed DOI
Wang S.B., Peng Y.L. Natural zeolites as effective adsorbents in water and wastewater treatment. Chem. Eng. J. 2010;156:11–24. doi: 10.1016/j.cej.2009.10.029. DOI
Ihsanullah I. Applications of MOFs as adsorbents in water purification: Progress, challenges and outlook. Curr. Opin. Environ. Sci. Health. 2022;26:100335. doi: 10.1016/j.coesh.2022.100335. DOI
Sajid M., Nazal M.K., Ihsanullah, Baig N., Osman A.M. Removal of heavy metals and organic pollutants from water using dendritic polymers based adsorbents: A critical review. Sep. Purif. Technol. 2018;191:400–423. doi: 10.1016/j.seppur.2017.09.011. DOI
Qi F.F., Ma T.Y., Liu Y., Fan Y.M., Li J.Q., Yu Y., Chu L.L. 3D superhydrophilic polypyrrole nanofiber mat for highly efficient adsorption of anionic azo dyes. Microchem. J. 2020;159:105389. doi: 10.1016/j.microc.2020.105389. DOI
Yan Y.Y., Zhou P.Z., Zhang S., Yin X.Y., Zeng X.J., Pi P.H., Nong Y.J., Wen X.F. Facile preparation of ultralong polypyrrole nanowires-coated membrane for switchable emulsions separation and dyes adsorption. J. Water Process Eng. 2022;49:102942. doi: 10.1016/j.jwpe.2022.102942. DOI
Stejskal J. Recent Advances in the Removal of Organic Dyes from Aqueous Media with Conducting Polymers, Polyaniline and Polypyrrole, and Their Composites. Polymers. 2022;14:4243. doi: 10.3390/polym14194243. PubMed DOI PMC
Zhou J., Lu Q.F., Luo J.J. Efficient removal of organic dyes from aqueous solution by rapid adsorption onto polypyrrole-based composites. J. Clean. Prod. 2017;167:739–748. doi: 10.1016/j.jclepro.2017.08.196. DOI
Ayad M.M., Amer W.A., Zaghlol S., Minisy I.M., Bober P., Stejskal J. Polypyrrole-coated cotton textile as adsorbent of methylene blue dye. Chem. Pap. 2018;72:1605–1618. doi: 10.1007/s11696-018-0442-6. DOI
Pang A.L., Arsad A., Ahmadipour M. Synthesis and factor affecting on the conductivity of polypyrrole: A short review. Polym. Adv. Technol. 2021;32:1428–1454. doi: 10.1002/pat.5201. DOI
Milakin K.A., Capáková Z., Acharya U., Vajďák J., Morávková Z., Hodan J., Humpolíček P., Bober P. Biocompatible and antibacterial gelatin-based polypyrrole cryogels. Polymer. 2020;197:122491. doi: 10.1016/j.polymer.2020.122491. DOI
Bober P., Capáková Z., Acharya U., Zasońska B.A., Humpolíček P., Hodan J., Hromádková J., Stejskal J. Highly conducting and biocompatible polypyrrole/poly(vinyl alcohol) cryogels. Synth. Met. 2019;252:122–126. doi: 10.1016/j.synthmet.2019.04.015. DOI
Sadeghnezhad M., Ghorbani M., Nikzad M. Synthesis of magnetic polypyrrole modified sodium alginate nanocomposite with excellent antibacterial properties and optimization of dye removal performance using. Ind. Crops Prod. 2022;186:115192. doi: 10.1016/j.indcrop.2022.115192. DOI
Ali H., Ismail A.M. Fabrication of Magnetic Fe3O4/Polypyrrole/Carbon Black Nanocomposite for Effective Uptake of Congo Red and Methylene Blue Dye: Adsorption Investigation and Mechanism. J. Polym. Environ. 2022 doi: 10.1007/s10924-022-02663-3. DOI
Shanehsaz M., Seidi S., Ghorbani Y., Shoja S.M.R., Rouhani S. Polypyrrole-coated magnetic nanoparticles as an efficient adsorbent for RB19 synthetic textile dye: Removal and kinetic study. Spectrochim. Acta Part A. 2015;149:481–486. doi: 10.1016/j.saa.2015.04.114. PubMed DOI
Bober P., Minisy I.M., Acharya U., Pfleger J., Babayan V., Kazantseva N., Hodan J., Stejskal J. Conducting polymer composite aerogel with magnetic properties for organic dye removal. Synth. Met. 2020;260:116266. doi: 10.1016/j.synthmet.2019.116266. DOI
Pei Q., Qian R. Protonation and deprotonation of polypyrrole chain in aqueous-solutions. Synth. Met. 1991;45:35–48. doi: 10.1016/0379-6779(91)91845-2. DOI
Smela E., Lu W., Mattes B.R. Polyaniline actuators—Part 1. PANI(AMPS) in HCl. Synth. Met. 2005;151:25–42. doi: 10.1016/j.synthmet.2005.03.009. DOI
Balcioglu I.A., Arslan I., Sacan M.T. Homogenous and heterogenous advanced oxidation of two commercial reactive dyes. Environ. Technol. 2001;22:813–822. doi: 10.1080/095933322086180323. PubMed DOI
Ahmad A.L., Puma S.W. Reactive dyes decolourization from an aqueous solution by combined coagulation/micellar-enhanced ultrafiltration process. Chem. Eng. J. 2007;132:257–265. doi: 10.1016/j.cej.2007.01.005. DOI
Saber-Samandari S., Saber-Samandari S., Joneidi-Yekta H., Mohseni M. Adsorption of anionic and cationic dyes from aqueous solution using gelatin-based magnetic nanocomposite beads comprising carboxylic acid functionalized carbon nanotube. Chem. Eng. J. 2017;308:1133–1144. doi: 10.1016/j.cej.2016.10.017. DOI
Van Vlierberghe S., Graulus G.-J., Keshari Samal S., Van Nieuwenhove I., Dubruel P. Biomedical Foams for Tissue Engineering Applications. Woodhead Publishing; Sawston, UK: 2014. 12—Porous hydrogel biomedical foam scaffolds for tissue repair; pp. 335–390. DOI
Sakai H., Cima M.J., Rhine W.E. Adsorption of sulfonic-acid doped poly(vinyl chloride) on barium ferrite particles. J. Am. Ceram. Soc. 1993;76:3136–3140. doi: 10.1111/j.1151-2916.1993.tb06618.x. DOI
Aphesteguy J.C., Jacobo S.E. Synthesis of a soluble polyaniline-ferrite composite: Magnetic and electric properties. J. Mater. Sci. 2007;42:7062–7068. doi: 10.1007/s10853-006-1423-7. DOI
Rana K., Thakur P., Tomar M., Gupta V., Thakurd A. Investigation of cobalt substituted M-type barium ferrite synthesized via co-precipitation method for radar absorbing material in Ku-band (12–18 GHz) Ceram. Int. 2018;44:6370–6375. doi: 10.1016/j.ceramint.2018.01.028. DOI
Verma M., Singh A.P., Sambyal P., Singh B.P., Dhawan S.K., Choudhary V. Barium ferrite decorated reduced graphene oxide nanocomposite for effective electromagnetic interference shielding. Phys. Chem. Chem. Phys. 2015;17:1610–1618. doi: 10.1039/C4CP04284K. PubMed DOI
Basante-Delgado S.F., González-Vidal D., Morales-Morales J.A., Aperador-Chaparro W.A., Gómez-Cuaspud J.A. A preliminary study of oxides of Fe doped with Ba, Co, Cu and synthetized by the citrate sol–gel combustion route. J. Phys. Conf. Ser. 2020;1541:012013. doi: 10.1088/1742-6596/1541/1/012013. DOI
Mohammed J., Jyoti S., Yerima K.U., Tchouank Tekou Carol T., Basandrai D., Arun K., Maji P.K., Srivastava A.K. Magnetic, Mossbauer and Raman spectroscopy of nanocrystalline Dy3+-Cr3+ substituted barium hexagonal ferrites. Phys. B. 2020;585:412115. doi: 10.1016/j.physb.2020.412115. DOI
Mustofa S., Rizaldy R., Adi W.A. Study of Raman Spectra of Aluminum Powder-Substituted Barium Hexaferrite (BaM) BaFe12-xAlxO19 as a Result of Solid State Reaction Process. IOP Conf. Ser. Mater. Sci. Eng. 2017;202:012040. doi: 10.1088/1757-899X/202/1/012040. DOI
Milakin K.A., Acharya U., Trchova M., Zasonska B.A., Stejskal J. Polypyrrole/gelatin cryogel as a precursor for a macroporous conducting polymer. React. Funct. Polym. 2020;157:104751. doi: 10.1016/j.reactfunctpolym.2020.104751. DOI
Stejskal J., Trchová M., Bober P., Morávková Z., Kopecký D., Vrňata M., Prokeš J., Varga M., Watzlová E. Polypyrrole salts and bases: Superior conductivity of nanotubes and their stability towards the loss of conductivity by deprotonation. RSC Adv. 2016;6:88382–88391. doi: 10.1039/C6RA19461C. DOI
Moravkova Z., Taboubi O., Minisy I.M., Bober P. The evolution of the molecular structure of polypyrrole during chemical polymerization. Synth. Met. 2021;271:116608. doi: 10.1016/j.synthmet.2020.116608. DOI
Crystallography Open Database, Entry 1008841. [(accessed on 9 December 2022)]. Available online: http://www.crystallography.net.
Sanches E.A., Alves S.F., Soares J.C., da Silva A.M., da Silva C.G., de Souza S.M., da Frota H.O. Nanostructured Polypyrrole Powder: A Structural and Morphological Characterization. J. Nanomater. 2015;2015:129678. doi: 10.1155/2015/129678. DOI
Ouyang J.Y., Li Y.F. Great improvement of polypyrrole films prepared electrochemically from aqueous solutions by adding nonaphenol polyethyleneoxy(10)ether. Polymer. 1997;38:3997–3999. doi: 10.1016/S0032-3861(97)00087-6. DOI
Shen J.H., Chen K.Y., Li L.C., Wang W.X., Jin Y. Fabrication and microwave absorbing properties of (Z-type barium ferrite/silica)@polypyrrole composites. J. Alloys Compd. 2014;615:488–495. doi: 10.1016/j.jallcom.2014.06.096. DOI
Tchouank Tekou Carol T., Srivastava A., Mohammed J., Sharma S., Mukhtar G. Investigation of energy band-gap of the composite of hexaferrites and polyaniline. SN Appl. Sci. 2020;2:864. doi: 10.1007/s42452-020-2516-7. DOI
Al-Harby N.F., Albahly E.F., Mohamed N.A. Kinetics, Isotherm and Thermodynamic Studies for Efficient Adsorption of Congo Red Dye from Aqueous Solution onto Novel Cyanoguanidine-Modified Chitosan Adsorbent. Polymers. 2021;13:4446. doi: 10.3390/polym13244446. PubMed DOI PMC
Minisy I.M., Bober P., Acharya U., Trchová M., Hromádková J., Pfleger J., Stejskal J. Cationic dyes as morphology-guiding agents for one-dimensional polypyrrole with improved conductivity. Polymer. 2019;174:11–17. doi: 10.1016/j.polymer.2019.04.045. DOI