Magnetic Polypyrrole-Gelatin-Barium Ferrite Cryogel as an Adsorbent for Chromium (VI) Removal
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
21-01401S
Czech Science Foundation
PubMed
37888413
PubMed Central
PMC10606301
DOI
10.3390/gels9100840
PII: gels9100840
Knihovny.cz E-zdroje
- Klíčová slova
- adsorption, chromium, cryogel, polypyrrole, water purification,
- Publikační typ
- časopisecké články MeSH
Polypyrrole-gelatin aerogels, containing magnetic barium ferrite (BaFe) particles, (PPy-G-BaFe) were synthesized by oxidative cryopolymerization and used as adsorbents for the removal of Cr(VI) from aqueous media. The removal was performed at pH 4, which was shown to be the optimal value, due to HCrO4- being the dominant species in these conditions and its more favorable adsorption and reduction compared to CrO42-, present at pH > 4. It was found that the presence of magnetic BaFe particles had no effect on the adsorption performance of PPy aerogels in terms of capacity and kinetics, which was attributed to its relatively low content in the composite. After the adsorption, the presence of chromium in the composites was confirmed by EDX and its electrostatic interaction with the adsorbent was pointed at by vibrational spectroscopy, corresponding to the accepted adsorption mechanism. The adsorption kinetics followed the pseudo-second-order model pointing at chemisorption being the rate-limiting step. The adsorption isotherm data was best fitting with the Temkin model. The maximum adsorption capacity, calculated using the Langmuir model, was 255.8 mg g-1 (the maximum experimental value was 161.6 mg g-1). Additionally, the possibility of Cr(VI) adsorption in the presence of Cl-, Br-, NO3- and SO42- as interfering ions was shown.
Zobrazit více v PubMed
Zhitkovich A. Chromium in drinking water: Sources, metabolism, and cancer risks. Chem. Res. Toxicol. 2011;24:1617–1629. doi: 10.1021/tx200251t. PubMed DOI PMC
Oze C., Bird D.K., Fendorf S. Genesis of hexavalent chromium from natural sources in soil and groundwater. Proc. Natl. Acad. Sci. USA. 2007;104:6544–6549. doi: 10.1073/pnas.0701085104. PubMed DOI PMC
Hasan S.M.M., Akber M.A., Bahar M.M., Islam M.A., Akbor M.A., Siddique M.A.B., Islam M.A. Chromium contamination from tanning industries and phytoremediation potential of native plants: A study of savar tannery industrial estate in Dhaka, Bangladesh. Bull. Environ. Contam. Toxicol. 2021;106:1024–1032. doi: 10.1007/s00128-021-03262-z. PubMed DOI
Sanyal T., Kaviraj A., Saha S. Deposition of chromium in aquatic ecosystem from effluents of handloom textile industries in Ranaghat–Fulia region of West Bengal, India. J. Adv. Res. 2015;6:995–1002. doi: 10.1016/j.jare.2014.12.002. PubMed DOI PMC
Beukes J.P., Du Preez S.P., Van Zyl P.G., Paktunc D., Fabritius T., Päätalo M., Cramer M. Review of Cr (VI) environmental practices in the chromite mining and smelting industry–Relevance to development of the Ring of Fire, Canada. J. Clean. Prod. 2017;165:874–889. doi: 10.1016/j.jclepro.2017.07.176. DOI
Chrysochoou M., Ferreira D.R., Johnston C.P. Calcium polysulfide treatment of Cr (VI)-contaminated soil. J. Hazard. Mater. 2010;179:650–657. doi: 10.1016/j.jhazmat.2010.03.052. PubMed DOI
World Health Organization . Background Document for Development of WHO Guidelines for Drinking-Water Quality. World Health Organization; Geneva, Switzerland: 2020. Chromium in drinking-water. WHO/HEP/ECH/WSH/2020.3.
Park J.E., Shin J.H., Oh W., Choi S.J., Kim J., Kim C., Jeon J. Removal of hexavalent chromium(VI) from wastewater using chitosan-coated iron oxide nanocomposite membranes. Toxics. 2022;10:98. doi: 10.3390/toxics10020098. PubMed DOI PMC
El Gaayda J., Rachid Y., Titchou F.E., Barra I., Hsini A., Yap P.S., Oh W.D., Swanson C., Hamdani M., Akbour R.A. Optimizing removal of chromium (VI) ions from water by coagulation process using central composite design: Effectiveness of grape seed as a green coagulant. Sep. Purif. Technol. 2023;307:122805. doi: 10.1016/j.seppur.2022.122805. DOI
Sattari-Najafabadi M., Esfahany M.N. Hexavalent chromium extraction from aqueous solutions in a liquid-liquid slug flow microreactor. Chem. Eng. Process. 2020;157:108156. doi: 10.1016/j.cep.2020.108156. DOI
Peng H., Guo J., Li B., Liu Z.H., Tao C.Y. High-efficient recovery of chromium (VI) with lead sulfate. J. Taiwan Inst. Chem. Eng. 2018;85:149–154. doi: 10.1016/j.jtice.2018.01.028. DOI
Bashir M.S., Safdar A., Ibrahim A., Ahmed I.A., Shah S.S.A., Unar A., Almukhlifi H.A., Saeedi A.M., Fuzhou W. Facile one-pot strategy to fabricate polyurea-based palladium for flow-through catalytic reduction of harmful hexavalent chromium from water. Inorg. Chem. Commun. 2023;158:111462. doi: 10.1016/j.inoche.2023.111462. DOI
Yu M., Shang J., Kuang Y. Efficient photocatalytic reduction of chromium (VI) using photoreduced graphene oxide as photocatalyst under visible light irradiation. J. Mater. Sci. Nanotechnol. 2021;91:17–27. doi: 10.1016/j.jmst.2021.02.051. DOI
Zhang Z.J., Sun L., Liu R. Flash nanoprecipitation of polymer supported Pt colloids with tunable catalytic chromium reduction property. Colloid Polym. Sci. 2018;296:327–333. doi: 10.1007/s00396-017-4231-5. DOI
Rajapaksha A.U., Selvasembian R., Ashiq A., Gunarathne V., Ekanayake A., Perera V.O., Wijesekera H., Mia S.M., Ahmad M., Vithanage M., et al. A systematic review on adsorptive removal of hexavalent chromium from aqueous solutions: Recent advances. Sci. Total Environ. 2022;809:152055. doi: 10.1016/j.scitotenv.2021.152055. PubMed DOI
Valentin-Reyes J., Garcia-Reyes R.B., Garcia-Gonzalez A., Soto-Regalado E., Cerino-Cordova F. Adsorption mechanisms of hexavalent chromium from aqueous solutions on modified activated carbons. J. Environ. Manag. 2019;236:815–822. doi: 10.1016/j.jenvman.2019.02.014. PubMed DOI
Zhang T., Wei S., Waterhouse G.I.N., Fu L., Liu L., Shi W.J., Sun J.C., Ai S.Y. Chromium (VI) adsorption and reduction by humic acid coated nitrogen-doped magnetic porous carbon. Powder Technol. 2020;360:55–64. doi: 10.1016/j.powtec.2019.09.091. DOI
Almanassra I.W., Al-Ansari T., Ihsanullah I., Kochkodan V., Chatla A., Atieh M.A., Shanableh A., Laoui T. Carbide-derived carbon as an extraordinary material for the removal of chromium from an aqueous solution. Chemosphere. 2022;307:135953. doi: 10.1016/j.chemosphere.2022.135953. PubMed DOI
Dim P.E., Mustapha L.S., Termtanun M., Okafor J.O. Adsorption of chromium (VI) and iron (III) ions onto acid-modified kaolinite: Isotherm, kinetics and thermodynamics studies. Arab. J. Chem. 2021;14:103064. doi: 10.1016/j.arabjc.2021.103064. DOI
Khalfa L., Sdiri A., Bagane M., Cervera M.L. A calcined clay fixed bed adsorption studies for the removal of heavy metals from aqueous solutions. J. Clean. Prod. 2021;278:123935. doi: 10.1016/j.jclepro.2020.123935. DOI
Santoso S.P., Kurniawan A., Angkawijaya A.E., Shuwanto H., Warmadewanthi I.D.A.A., Hsieh C.W., Hsu H.Y., Soetaredjo F.E., Ismadji S., Cheng K.C. Removal of heavy metals from water by macro-mesoporous calcium alginate-exfoliated clay composite sponges. Chem. Eng. J. 2023;452:139261. doi: 10.1016/j.cej.2022.139261. DOI
Alvarez A.M., Guerron D.B., Calderon C.M. Natural zeolite as a chromium VI removal agent in tannery effluents. Heliyon. 2021;7:07974. doi: 10.1016/j.heliyon.2021.e07974. PubMed DOI PMC
Liu X.Q., Zhang Y.Y., Liu Y., Zhang T.A. Green method to synthesize magnetic zeolite/chitosan composites and adsorption of hexavalent chromium from aqueous solutions. Int. J. Biol. Macromol. 2022;194:746–754. doi: 10.1016/j.ijbiomac.2021.11.121. PubMed DOI
Velarde L., Nabavi M.S., Escalera E., Antti M.L., Akhtar F. Adsorption of heavy metals on natural zeolites: A review. Chemosphere. 2023;328:138508. doi: 10.1016/j.chemosphere.2023.138508. PubMed DOI
Varnamkhasti S.S., Samani M.R., Toghraie D. Removal of chromium (VI) from aqueous environments using composites of polyaniline-cherry leaves. J. Environ. Manag. 2023;332:117359. doi: 10.1016/j.jenvman.2023.117359. PubMed DOI
Choe J., Ji J.M., Yu J.H.Y., Jang K., Yun J., Choe S., Rim Y., Jo C. Adsorption of Cr(VI) in aqueous solution by polypyrrole nanotube and polypyrrole nanoparticle; Kinetics, isotherm equilibrium, and thermodynamics. Inorg. Chem. Commun. 2022;145:109981. doi: 10.1016/j.inoche.2022.109981. DOI
Marghaki N.S., Jonoush Z.A., Rezaee A. Chromium (VI) removal using microbial cellulose/nano-Fe3O4@polypyrrole: Isotherm, kinetic and thermodynamic studies. Mater. Chem. Phys. 2022;278:125696. doi: 10.1016/j.matchemphys.2022.125696. DOI
Karthikeyan P., Elanchezhiyan S.S., Meenakshi S., Park C.M. Magnesium ferrite-reinforced polypyrrole hybrids as an effective adsorbent for the removal of toxic ions from aqueous solutions: Preparation, characterization, and adsorption experiments. J. Hazard. Mater. 2021;408:124892. doi: 10.1016/j.jhazmat.2020.124892. PubMed DOI
Qiu L.Y., Wang Y.J., Sui R., Zhu C.X., Yang W.W., Yu Y.S., Li J.M. Preparation of a novel metal-free polypyrrole-red phosphorus adsorbent for efficient removal of Cr(VI) from aqueous solution. Environ. Res. 2023;224:115458. doi: 10.1016/j.envres.2023.115458. PubMed DOI
Chigondo M., Nyamunda B., Maposa M., Chigondo F. Cr (VI) ions water pollution, toxicity and remediation by polypyrrole-based adsorbents: A review. Water Sci. Technol. 2022;85:1600–1619. doi: 10.2166/wst.2022.050. PubMed DOI
Pang A.L., Arsad A., Ahmadipour M. Synthesis and factor affecting on the conductivity of polypyrrole: A short review. Polym. Adv. Technol. 2021;32:1428–1454. doi: 10.1002/pat.5201. DOI
Milakin K.A., Capáková Z., Acharya U., Vajďák J., Morávková Z., Hodan J., Humpolíček P., Bober P. Biocompatible and antibacterial gelatin-based polypyrrole cryogels. Polymer. 2020;197:122491. doi: 10.1016/j.polymer.2020.122491. DOI
Minisy I.M., Acharya U., Veigel S., Morávková Z., Taboubi O., Hodan J., Breitenbach S., Unterweger C., Gindl-Altmutter W., Bober P. Sponge-like polypyrrole-nanofibrillated cellulose aerogels: Synthesis and application. J. Mater. Chem. C. 2021;9:12615–12623. doi: 10.1039/D1TC03006J. DOI
Milakin K.A., Morávková Z., Acharya U., Lhotka M., Hlídková H., Hodan J., Bober P. Templating effects in dye-containing polypyrrole-gelatin cryogels. Mater. Chem. Phys. 2022;290:126596. doi: 10.1016/j.matchemphys.2022.126596. DOI
Bober P., Minisy I.M., Morávková Z., Hlídková H., Hodan J., Hromádková J., Acharya U. Polypyrrole aerogels: Efficient adsorbents of Cr(VI) ions from aqueous solutions. Gels. 2023;9:582. doi: 10.3390/gels9070582. PubMed DOI PMC
Milakin K.A., Taboubi O., Acharya U., Lhotka M., Pokorný V., Konefał M., Kočková O., Hromádková J., Hodan J., Bober P. Polypyrrole-barium ferrite magnetic cryogels for water purification. Gels. 2023;9:92. doi: 10.3390/gels9020092. PubMed DOI PMC
Chullasat K., Nurerk P., Kanatharana P., Kueseng P., Sukchuay T., Bunkoed O. Hybrid monolith sorbent of polypyrrole-coated graphene oxide incorporated into a polyvinyl alcohol cryogel for extraction and enrichment of sulfonamides from water samples. Anal. Chim. Acta. 2017;961:59–66. doi: 10.1016/j.aca.2017.01.052. PubMed DOI
Chen M.M., Yan Z., Luan J.D., Sun X., Liu W.A., Ke X. pi-pi electron-donor-acceptor (EDA) interaction enhancing adsorption of tetracycline on 3D PPY/CMC aerogels. Chem. Eng. J. 2023;454:140300. doi: 10.1016/j.cej.2022.140300. DOI
Mohammadi A., Ataie A., Sheibani S. Chromium (VI) ions adsorption onto barium hexaferrite magnetic nano-adsorbent. Adv. Mater. Lett. 2016;7:579–586. doi: 10.5185/amlett.2016.6394. DOI
Marciano J.S., Ferreira R.R., de Souza A.G., Barbosa R.F.S., de Moura A.J., Rosa D.S. Biodegradable gelatin composite hydrogels filled with cellulose for chromium (VI) adsorption from contaminated water. Int. J. Biol. Macromol. 2021;181:112–124. doi: 10.1016/j.ijbiomac.2021.03.117. PubMed DOI
Chen G.X., Qiao C.D., Wang Y., Yao J.S. Synthesis of magnetic gelatin and its adsorption property for Cr(VI) Ind. Eng. Chem. Res. 2014;53:15576–15581. doi: 10.1021/ie502709u. DOI
Zhang F., Xi L.Y., Zhao M.Q., Du Y.G., Ma L.Y., Chen S.H., Ye H.P., Du D.Y., Zhang T.C. Efficient removal of Cr(VI) from aqueous solutions by polypyrrole/natural pyrite composites. J. Mol. Liq. 2022;365:120041. doi: 10.1016/j.molliq.2022.120041. DOI
Van Vlierberghe S., Graulus G.J., Keshari Samal S., Van Nieuwenhove I., Dubruel P. Biomedical Foams for Tissue Engineering Applications. Woodhead Publishing; Cambridge, UK: 2014. 12-porous hydrogel biomedical foam scaffolds for tissue repair. DOI
Ramsey J.D., Xia L., Kendig M.W., McCreery L. Raman spectroscopic analysis of the speciation of dilute chromate solutions. Corros. Sci. 2001;43:1557–1572. doi: 10.1016/S0010-938X(00)00145-1. DOI
Rouhaninezhad A.A., Hojati S., Masir M.N. Adsorption of Cr (VI) onto micro- and nanoparticles of palygorskite in aqueous solutions: Effects of pH and humic acid Ecotoxicol. Environ. Saf. 2020;206:111247. doi: 10.1016/j.ecoenv.2020.111247. PubMed DOI
Bhaumik M., Maity A., Srinivasu V.V., Onyango M.S. Enhanced removal of Cr(VI) from aqueous solution using polypyrrole/Fe3O4 magnetic nanocomposite. J. Hazard. Mater. 2011;190:381–390. doi: 10.1016/j.jhazmat.2011.03.062. PubMed DOI
Stejskal J., Trchová M., Bober P., Morávková Z., Kopecký D., Vrňata M., Prokeš J., Varga M., Watzlová E. Polypyrrole salts and bases: Superior conductivity of nanotubes and their stability towards the loss of conductivity by deprotonation. RSC Adv. 2016;6:88382–88391. doi: 10.1039/C6RA19461C. DOI
Al-Harby N.F., Albahly E.F., Mohamed N.A. Kinetics, isotherm and thermodynamic studies for efficient adsorption of Congo Red dye from aqueous solution onto novel cyanoguanidine-modified chitosan adsorbent. Polymers. 2021;13:4446. doi: 10.3390/polym13244446. PubMed DOI PMC
Dehghani M.H., Sanaei D., Ali I., Bhatnagar A. Removal of chromium(VI) from aqueous solution using treated waste newspaper as a low-cost adsorbent: Kinetic modeling and isotherm studies. J. Mol. Liq. 2016;215:671–679. doi: 10.1016/j.molliq.2015.12.057. DOI
Raji C., Anirudhan T.S. Batch Cr(VI) removal by polyacrylamide-grafted sawdust: Kinetics and thermodynamics. Water Res. 1998;32:3772–3780. doi: 10.1016/S0043-1354(98)00150-X. DOI
Li D., Liu H.P., Wang Z.W., Zhang Z.Q., Wang C.Z., Zhao B.A., Pan K. Ultralight and superelastic nanofiber aerogels with in-situ loaded polypyrrole for high-efficient Cr(VI) adsorption. J. Polym. Environ. 2023;31:637–647. doi: 10.1007/s10924-022-02602-2. DOI
Ji J.Y., Xiong H.Z., Zhu Z.N., Li L., Huang Y.N., Yu X.H. Fabrication of polypyrrole/chitosan nanocomposite aerogel monolith for removal of Cr(VI) J. Polym. Environ. 2018;26:1979–1985. doi: 10.1007/s10924-017-1095-1. DOI
Chen J.D., Liang Q.W., Ploychompoo S., Luo H.J. Functional rGO aerogel as a potential adsorbent for removing hazardous hexavalent chromium: Adsorption performance and mechanism. Environ. Sci. Pollut. Res. 2020;27:10715–10728. doi: 10.1007/s11356-019-07365-3. PubMed DOI
Liang Q.W., Luo H.J., Geng J.J., Chen J.D. Facile one-pot preparation of nitrogen-doped ultra-light graphene oxide aerogel and its prominent adsorption performance of Cr(VI) Chem. Eng. J. 2018;338:62–71. doi: 10.1016/j.cej.2017.12.145. DOI
Bin Y.L., Liang Q.W., Luo H.J., Chen Y.Y., Wang T. One-step synthesis of nitrogen-functionalized graphene aerogel for efficient removal of hexavalent chromium in water. Environ. Sci. Pollut. Res. 2023;30:6746–6757. doi: 10.1007/s11356-022-22591-y. PubMed DOI
Waghmare A., Rathore R., Pandey A., Chandra V. Graphene-oxide-coated, polypyrrole-supported, nano zerovalent iron nanocomposites for adsorption of hexavalent chromium from wastewater. Chemistryselect. 2023;8:e202204410. doi: 10.1002/slct.202204410. DOI
Hosseinkhani A., Rad B.F., Baghdadi M. Efficient removal of hexavalent chromium from electroplating wastewater using polypyrrole coated on cellulose sulfate fibers. J. Environ. Manag. 2020;274:111153. doi: 10.1016/j.jenvman.2020.111153. PubMed DOI
Chigondo M., Paumo H.K., Bhaumik M., Pillay K., Maity A. Magnetic arginine-functionalized polypyrrole with improved and selective chromium(VI) ions removal from water. J. Mol. Liq. 2019;275:778–791. doi: 10.1016/j.molliq.2018.11.032. DOI
Zhang Y.H., Zhu C.Q., Liu F.Q., Yuan Y., Wu H.D., Li A.M. Effects of ionic strength on removal of toxic pollutants from aqueous media with multifarious adsorbents: A review. Sci. Total Environ. 2019;646:265–279. doi: 10.1016/j.scitotenv.2018.07.279. PubMed DOI
Wang J.Q., Pan K., He Q.W., Cao B. Polyacrylonitrile/polypyrrole core/shell nanofiber mat for the removal of hexavalent chromium from aqueous solution. J. Hazard. Mater. 2013;244:121–129. doi: 10.1016/j.jhazmat.2012.11.020. PubMed DOI
Xu Y.L., Chen J.Y., Chen R., Yu P.L., Guo S., Wang X.F. Adsorption and reduction of chromium(VI) from aqueous solution using polypyrrole/calcium rectorite composite adsorbent. Water Res. 2019;160:148–157. doi: 10.1016/j.watres.2019.05.055. PubMed DOI
Du L.L., Gao P., Meng Y.D., Liu Y.L., Le S.W., Yu C.B. Highly efficient removal of Cr(VI) from aqueous solutions by polypyrrole/monodisperse latex spheres. ACS Omega. 2020;5:6651–6660. doi: 10.1021/acsomega.9b04438. PubMed DOI PMC
Minisy I.M., Zasońska B.A., Petrovský E., Veverka P., Šeděnková I., Hromádková J., Bober P. Poly(p-phenylenediamine)/maghemite composite as highly effective adsorbent for anionic dye removal. React. Funct. Polym. 2020;146:104436. doi: 10.1016/j.reactfunctpolym.2019.104436. DOI
Minisy I.M., Salahuddin N.A., Ayad M.M. Chitosan/polyaniline hybrid for the removal of cationic and anionic dyes from aqueous solutions. J. Appl. Polym. Sci. 2019;136:47056. doi: 10.1002/app.47056. DOI