Recent Advances in the Removal of Organic Dyes from Aqueous Media with Conducting Polymers, Polyaniline and Polypyrrole, and Their Composites

. 2022 Oct 10 ; 14 (19) : . [epub] 20221010

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid36236189

Grantová podpora
FSR AD 70202001026/1100 Ministry of Education, Youth and Sports of the Czech Republic

Water pollution by organic dyes, and its remediation, is an important environmental issue associated with ever-increasing scientific interest. Conducting polymers have recently come to the forefront as advanced agents for removing dye. The present review reports on the progress represented by the literature published in 2020-2022 on the application of conducting polymers and their composites in the removal of dyes from aqueous media. Two composites, incorporating the most important polymers, polyaniline, and polypyrrole, have been used as efficient dye adsorbents or photocatalysts of dye decomposition. The recent application trends are outlined, and future uses also exploiting the electrical and electrochemical properties of conducting polymers are offered.

Zobrazit více v PubMed

Stejskal J. Interaction of conducting polymers, polyaniline and polypyrrole, with organic dyes: Polymer morphology control, dye adsorption and photocatalytic decomposition. Chem. Pap. 2020;74:1–54. doi: 10.1007/s11696-019-00982-9. DOI

Ambigadevi J., Kumar P.S., Vo D.-V.N., Haran S.H., Raghavan T.S. Recent developments in photocatalytic remediation of textile effluent using semiconductor based nanostructured catalyst: A review. J. Environ. Chem. Eng. 2020;9:104881. doi: 10.1016/j.jece.2020.104881. DOI

Senguttuvan S., Senthilkumar P., Janaki V., Kamala-Kannan S. Significance of conducting polyaniline based composites for the removal of dyes and heavy metals from aqueous solution and wastewaters—A review. Chemosphere. 2020;267:129201. doi: 10.1016/j.chemosphere.2020.129201. PubMed DOI

Khan M., Ali S.W., Shahadat M., Sagadevan S. Applications of polyaniline-impregnated silica gel-based nanocomposites in wastewater treatment as an efficient adsorbent of some important organic dyes. Green Process. Synth. 2022;11:617–630. doi: 10.1515/gps-2022-0063. DOI

Sapurina I., Stejskal J. The mechanism of the oxidative polymerization of aniline and the formation of supramolecular polyaniline structures. Polym. Int. 2008;57:1295–1325. doi: 10.1002/pi.2476. DOI

Stejskal J., Gilbert R.G. Polyaniline. Preparation of a conducting polymer (IUPAC Technical Report) Pure Appl. Chem. 2002;74:857–867. doi: 10.1351/pac200274050857. DOI

Bekhoukh A., Moulefera I., Zeggai F.Z., Benyoucef A., Bachari K. Anionic methyl orange removal from aqueous solutions by activated carbon reinforced conducting polyaniline as adsorbent: Synthesis, characterization, adsorption behavior, regeneration and kinetics study. J. Polym. Environ. 2021;30:886–895. doi: 10.1007/s10924-021-02248-6. DOI

Maeda S., Armes S.P. Surface-area measurements on conducting polymer-inorganic oxide nanocomposites. Synth. Met. 1995;73:151–155. doi: 10.1016/0379-6779(95)03315-7. DOI

Zor S., Budak B. Photocatalytic degradation of congo red by using PANI and PANI/ZrO2: Under UV-A light irradiation and dark environmental. Desalination Water Treat. 2020;201:420–430. doi: 10.5004/dwt.2020.26065. DOI

Wang X., Zhu J., Yu X., Fu X., Zhu Y., Zhang Y. Enhanced removal of organic pollutant by separable and recyclable rGH-PANI/BiOI photocatalyst via the synergism of adsorption and photocatalytic degradation under visible light. J. Mater. Sci. Technol. 2020;77:19–27. doi: 10.1016/j.jmst.2020.08.046. DOI

Stejskal J., Trchová M., Bober P., Morávková Z., Kopecký D., Vrňata M., Prokeš J., Varga M., Watzlová E. Polypyrrole salts and bases: Superior conductivity of nanotubes and their stability towards the loss of conductivity by deprotonation. RSC Adv. 2016;6:88382–88391. doi: 10.1039/C6RA19461C. DOI

Ji Y., Zhang W., Yang H., Ma F., Xu F. Green synthesis of poly(pyrrole methane) for enhanced adsorption of anionic and cationic dyes from aqueous solution. J. Colloid Interface Sci. 2021;590:396–406. doi: 10.1016/j.jcis.2021.01.073. PubMed DOI

Stejskal J., Trchová M. Conducting polypyrrole nanotubes: A review. Chem. Pap. 2018;72:1563–1595. doi: 10.1007/s11696-018-0394-x. PubMed DOI

Stejskal J., Prokeš J. Conductivity and morphology of polyaniline and polypyrrole prepared in the presence of organic dyes. Synth. Met. 2020;264:116373. doi: 10.1016/j.synthmet.2020.116373. DOI

Stejskal J., Sapurina I., Vilčáková J., Humpolíček P., Truong T.H., Shishov M.A., Trchová M., Kopecký D., Kolská Z., Prokeš J., et al. Conducting polypyrrole-coated macroporous melamine sponges: A simple toy or an advanced material? Chem. Pap. 2021;75:5035–5055. doi: 10.1007/s11696-021-01776-8. DOI

Stejskal J., Pekárek M., Trchová M., Kolská Z. Adsorption of organic dyes on macroporous melamine sponge incorporating conducting polypyrrole nanotubes. J. Appl. Polym. Sci. 2022;139:52156. doi: 10.1002/app.52156. DOI

Pete S., Kattil R.A., Thomas L. Polyaniline-multiwalled carbon nanotubes (PANI-MWCNTs) composite revisited: An efficient and reusable material for methyl orange dye removal. Diam. Relat. Mater. 2021;117:108455. doi: 10.1016/j.diamond.2021.108455. DOI

Stejskal J., Kopecký D., Kasparyan H., Vilčáková J., Prokeš J., Křivka I. Melamine sponges decorated with polypyrrole nanotubes as macroporous conducting pressure sensors. ACS Appl. Nano Mater. 2021;4:7513–7519. doi: 10.1021/acsanm.1c01634. DOI

Nayebi P., Babamoradi M. Synthesis of ZnO nanorods/Fe3O4/Polypyrrole nanocomposites for photocatalytic activity under the visible light irradiation. Optik. 2021;244:167497. doi: 10.1016/j.ijleo.2021.167497. DOI

Jadhav S., Jaspal D. Elimination of cationic azodye from aqueous media using doped polyaniline (PANI): Adsorption optimization and modeling. Can. J. Chem. 2020;98:717–724. doi: 10.1139/cjc-2020-0165. DOI

Danu B.Y., Agorku E.S., Ampong F.K., Awudza J.A.M., Torve V., Danquah I.M.K., Ama O.M., Osifo P.O., Ray S.S. Iron sulfide functionalized polyaniline nanocomposite for the removal of Eosin Y from water: Equilibrium and kinetic studies. Polym. Sci. Ser. B. 2021;63:304–313. doi: 10.1134/S1560090421030040. DOI

Khairy M., Kamar E.M., Yehia M., Masoud K.M. High removal efficiency of methyl orange dye by pure and (Cu, N) doped TiO2/polyaniline nanocomposites. Biointerface Res. Appl. Chem. 2021;12:893–909. doi: 10.33263/briac121.893909. DOI

Sillanpää M., Mahvi A.H., Balarak D., Khatibi A.D. Adsorption of Acid Orange 7 dyes from aqueous solution using Polypyrrole/nanosilica composite: Experimental and modelling. Int. J. Environ. Anal. Chem. 2021:1–18. doi: 10.1080/03067319.2020.1855338. DOI

Nguyen T.H., Nguyen M.T., Vuong B.H., Le T.H. Cellulose grafted with polyaniline for simultaneous adsorption of cationic and anionic dyes in wastewater effluent. Cellulose. 2022;29:7761–7773. doi: 10.1007/s10570-022-04748-7. DOI

Anuma S., Mishra P., Bhat B.R. Polypyrrole functionalized cobalt oxide graphene (COPYGO) nanocomposite for the efficient removal of dyes and heavy metal pollutants from aqueous effluents. J. Hazard. Mater. 2021;416:125929. doi: 10.1016/j.jhazmat.2021.125929. PubMed DOI

Alsaiari N., Amari A., Katubi K., Alzahrani F., Rebah F., Tahoon M. Innovative magnetite based polymeric nanocomposite for simultaneous removal of methyl orange and hexavalent chromium from water. Processes. 2021;9:576. doi: 10.3390/pr9040576. DOI

Li X., Zhao X., Li X., Jia X., Chang F., Zhang H., Hu G. Rapid simultaneous removal of cationic dyes and Cr(VI) by boron cluster polyaniline with a target site. Chem. Commun. 2021;57:7569–7572. doi: 10.1039/D1CC03140F. PubMed DOI

Mohammadi H., Ghaedi M., Fazeli M., Sabzehmeidani M.M. Removal of hexavalent chromium ions and Acid Red 18 by superparamagnetic CoFe2O4/polyaniline nanocomposites under external ultrasonic fields. Microporous Mesoporous Mater. 2021;324:111275. doi: 10.1016/j.micromeso.2021.111275. DOI

Peng D.-Y., Zeng H.-Y., Xiong J., Xu S., An D.S. Improved photocatalytic performance of p-n heterostructure Ag-Ag2MoO4/polyaniline for chromium (VI) reduction and dye degradation. J. Alloy. Compd. 2022;912:165063. doi: 10.1016/j.jallcom.2022.165063. DOI

Kuznetsova T.S., Burakova I.V., Pasko T.V., Burakov A.E., Melezhik A.V., Mkrtchyan E.S., Babkin A.V., Neskoromnaya E.A., Tkachev A.G. Technology of nanocomposites preparation for sorption purification of aqueous media. Inorg. Mater. Appl. Res. 2022;13:434–441. doi: 10.1134/S2075113322020447. DOI

Yu C., Tan L., Shen S., Fang M., Yang L., Fu X., Dong S., Sun J. In situ preparation of g-C3N4/polyaniline hybrid composites with enhanced visible-light photocatalytic performance. J. Environ. Sci. 2021;104:317–325. doi: 10.1016/j.jes.2020.08.024. PubMed DOI

Abinaya M., Muthuraj V. Bi-functional catalytic performance of silver manganite/polypyrrole nanocomposite for electrocatalytic sensing and photocatalytic degradation. Colloids Surf. A Physicochem. Eng. Asp. 2020;604:125321. doi: 10.1016/j.colsurfa.2020.125321. DOI

Motamedi M., Mollahosseini A., Negarestani M. Ultrasonic-assisted batch operation for the adsorption of rifampin and reactive orange 5 onto engineered zeolite–polypyrrole/TiO2 nanocomposite. Int. J. Environ. Sci. Technol. 2022;19:7547–7564. doi: 10.1007/s13762-022-03951-0. DOI

Sapurina I., Bubulinca C., Trchová M., Prokeš J., Stejskal J. Solid manganese dioxide as heterogeneous oxidant of aniline in the preparation of conducting polyaniline or polyaniline/manganese dioxide composites. Colloids Surf. A Physicochem. Eng. Asp. 2022;638:128298. doi: 10.1016/j.colsurfa.2022.128298. DOI

Lyu W., Yu M., Li J., Feng J., Yan W. Adsorption of anionic acid red G dye on polyaniline nanofibers synthesized by FeCl3 oxidant: Unravelling the role of synthetic conditions. Colloids Surf. A Physicochem. Eng. Asp. 2022;647:129203. doi: 10.1016/j.colsurfa.2022.129203. DOI

Myasoedova T.N., Gadzhieva V.A., Miroshnichenko Y.S. Properties of mesoporous pani nanorods obtained by facile acid-free synthesis as a sorbent for methylene blue and indigo carmine removal. J. Polym. Res. 2022;29:1–13. doi: 10.1007/s10965-022-03206-z. DOI

Zhao Z., Yang Y., Xu L., Qiu Z., Wang Z., Luo Y., Du K. Amino acid-doped polyaniline nanotubes as efficient adsorbent for wastewater treatment. J. Chem. 2022;2022:2041512. doi: 10.1155/2022/2041512. DOI

Wu Y., Chang H., Peng J., Liu Y., Sun B., Yang Z., Gao S., Liu F. A facile strategy to fabricate hollow spherical polyaniline and its application to dyes removal. Polym. Bull. 2022:1–14. doi: 10.1007/s00289-022-04231-0. DOI

Duhan M., Kaur R. Nano-structured polyaniline as a potential adsorbent for methylene blue dye removal from effluent. J. Compos. Sci. 2021;5:7. doi: 10.3390/jcs5010007. DOI

Ali L.I.A., Ismail H.K., Alesary H.F., Aboul-Enein H.Y. A nanocomposite based on polyaniline, nickel and manganese oxides for dye removal from aqueous solutions. Int. J. Environ. Sci. Technol. 2020;18:2031–2050. doi: 10.1007/s13762-020-02961-0. DOI

Zou Z.J., Li Y.L., Ma Z.W., Jin Y.Q., Lü Q.F. Preparation and dye adsorption of low-cost polyaniline-tea saponin nanocomposites. J. Wuhan Univ. Technol.-Mater. Sci. Ed. 2021;36:546–556. doi: 10.1007/s11595-021-2443-5. DOI

Bober P., Minisy I., Acharya U., Pfleger J., Babayan V., Kazantseva N., Hodan J., Stejskal J. Conducting polymer composite aerogel with magnetic properties for organic dye removal. Synth. Met. 2019;260:116266. doi: 10.1016/j.synthmet.2019.116266. DOI

Lyu W., Li J., Trchová M., Wang G., Liao Y., Bober P., Stejskal J. Fabrication of polyaniline/poly(vinyl alcohol)/montmorillonite hybrid aerogels toward efficient adsorption of organic dye pollutants. J. Hazard. Mater. 2022;435:129004. doi: 10.1016/j.jhazmat.2022.129004. PubMed DOI

Riede A., Helmstedt M., Sapurina I., Stejskal J. In situ polymerized polyaniline films. Film formation in dispersion polymerization of aniline. J. Colloid Interface Sci. 2002;248:413–418. doi: 10.1006/jcis.2001.8197. PubMed DOI

Singh S., Perween S., Ranjan A. Dramatic enhancement in adsorption of Congo red dye in polymer-nanoparticle composite of polyaniline-zinc titanate. J. Environ. Chem. Eng. 2021;9:105149. doi: 10.1016/j.jece.2021.105149. DOI

Das M., Ray P.G., Dhara S., Roy S. Symbiotically Augmented removal of Congo red by polyaniline/cobalt sulfide/graphite composites. Mater. Chem. Phys. 2021;278:125487. doi: 10.1016/j.matchemphys.2021.125487. DOI

Zhang T., Huang H., Zhang W., Lu Z., Shen M., Liu T., Bai J., Yang Y., Zhang J. Free-standing hybrid film for separation of dye pollutant with self-cleaning ability under visible light. Chemosphere. 2021;291:132725. doi: 10.1016/j.chemosphere.2021.132725. PubMed DOI

Li D.W., Tao Y.L., Li S., Wu Y.N., Wang C.R., Lv Y.R., Zhu G.S., Qiu H.F., Liu X., Chen C. Porous cage-like microfiber of fly ash magnetic powder (CMS)/polyaniline (PANI) composites with absorption properties. Phys. Scripta. 2022;97:085817. doi: 10.1088/1402-4896/ac8122. DOI

Xiong H., Zhang B., Cui C., Xu Y. Polyaniline/FeOOH composite for removal of Acid Orange II from aqueous solutions. Mater. Chem. Phys. 2022;278:125701. doi: 10.1016/j.matchemphys.2022.125701. DOI

Momina, Ahmad K. Remediation of anionic dye from aqueous solution through adsorption on polyaniline/FO nanocomposite-modelling by artificial neural network (ANN) J. Mol. Liq. 2022;360:119497. doi: 10.1016/j.molliq.2022.119497. DOI

Das P., Nisa S., Debnath A., Saha B. Enhanced adsorptive removal of toxic anionic dye by novel magnetic polymeric nanocomposite: Optimization of process parameters. J. Dispers. Sci. Technol. 2020;43:880–895. doi: 10.1080/01932691.2020.1845958. DOI

Das P., Debnath A. Fabrication of MgFe2O4/polyaniline nanocomposite for amputation of methyl red dye from water: Isotherm modeling, kinetic and cost analysis. J. Dispers. Sci. Technol. 2022:1–12. doi: 10.1080/01932691.2022.2110110. DOI

Fanourakis S.K., Barroga S.Q., Perez J.V.D., He L., Rodrigues D.F. In situ polymerization of polypyrrole and polyaniline on the surface of magnetic molybdenum trioxide nanoparticles: Implications for water treatment. ACS Appl. Nano Mater. 2021;4:12415–12428. doi: 10.1021/acsanm.1c02873. DOI

Peng L.-G., Zhao P., Cheng H.-Q., He Q.-R., Wang X.-H., Liu J.-X., Wang J.-L. Adsorption Studies of Reactive Green 19 from Aqueous Solutions by Polyaniline/Montmorillonite Nanocomposite. Sci. Adv. Mater. 2022;14:535–544. doi: 10.1166/sam.2022.4233. DOI

Tanweer M.S., Iqbal Z., Alam M. Experimental insights into mesoporous polyaniline-based nanocomposites for anionic and cationic dye removal. Langmuir. 2022;38:8837–8853. doi: 10.1021/acs.langmuir.2c00889. PubMed DOI

Rajaji U., Rani S.E.G.D., Chen S.M., Rajakumar K., Govindasamy M., Alzahrani F.M., Alsaiari N.S., Ouladsmane M., Lydia I.S. Synergistic photocatalytic activity of SnO2/PANI nanocomposite for the removal of direct blue 15 under UV light irradiation. Ceramics Int. 2021;47:29225–29231. doi: 10.1016/j.ceramint.2021.07.087. DOI

Lee Y.-J., Lee H.S., Lee C.-G., Park S.-J., Lee J., Jung S., Shin G.-A. Application of PANI/TiO2 composite for photocatalytic degradation of contaminants from aqueous solution. Appl. Sci. 2020;10:6710. doi: 10.3390/app10196710. DOI

Maldonado-Larios L., Mayen-Mondragón R., Martínez-Orozco R., Páramo-García U., Gallardo-Rivas N., García-Alamilla R. Electrochemically-assisted fabrication of titanium-dioxide/polyaniline nanocomposite films for the electroremediation of congo red in aqueous effluents. Synth. Met. 2020;268:116464. doi: 10.1016/j.synthmet.2020.116464. DOI

Imgharn A., Anchoum L., Hsini A., Naciri Y., Laabd M., Mobarak M., Aarab N., Bouziani A., Szunerits S., Boukherroub R., et al. Effectiveness of a novel polyaniline@Fe-ZSM-5 hybrid composite for Orange G dye removal from aqueous media: Experimental study and advanced statistical physics insights. Chemosphere. 2022;295:133786. doi: 10.1016/j.chemosphere.2022.133786. PubMed DOI

Toumi I., Djelad H., Chouli F., Benyoucef A. Synthesis of PANI@ZnO hybrid material and evaluations in adsorption of Congo red and methylene blue dyes: Structural characterization and adsorption performance. J. Inorg. Organomet. Polym. Mater. 2021;32:112–121. doi: 10.1007/s10904-021-02084-0. DOI

Turkten N., Karatas Y., Bekbolet M. Preparation of PANI Modified ZnO Composites via different methods: Structural, morphological and photocatalytic properties. Water. 2021;13:1025. doi: 10.3390/w13081025. DOI

Benchikh I., Dahou F.Z., Lahreche S., Sabantina L., Benmimoun Y., Benyoucef A. Development and characterisation of novel hybrid materials of modified ZnO-SiO2 and polyaniline for adsorption of organic dyes. Int. J. Environ. Anal. Chem. 2022:1–20. doi: 10.1080/03067319.2022.2107921. DOI

Kumar N., Bahl T., Kumar R. Study of the methylene blue adsorption mechanism using ZrO2/Polyaniline nanocomposite. Nano Express. 2020;1:030025. doi: 10.1088/2632-959X/abca10. DOI

Eisazadeh N., Eisazadeh H., Ghadakpour M. Comparison between various adsorbents for Direct Blue dye 14 removal from aqueous solution. Fibers Polym. 2021;22:149–158. doi: 10.1007/s12221-021-9885-4. DOI

Gohoho H.D., Noby H., Hayashi J., El-shazlyShazly A.H. Various acids functionalized polyaniline-peanut shell activated carbon composites for dye removal. J. Mater. Cycles Waste Manag. 2022;24:1508–1523. doi: 10.1007/s10163-022-01408-7. DOI

Lahreche S., Moulefera I., El Kebir A., Sabantina L., Kaid M., Benyoucef A. Application of activated carbon adsorbents prepared from prickly pear fruit seeds and a conductive polymer matrix to remove congo red from aqueous solutions. Fibers. 2022;10:7. doi: 10.3390/fib10010007. DOI

Meena P.L., Saini J.K., Surela A.K., Poswal K., Chhachhia L.K. Fabrication of polyaniline-coated porous and fibrous nanocomposite with granular morphology using tea waste carbon for effective removal of rhodamine B dye from water samples. Biomass Convers. Biorefinery. 2022:1–20. doi: 10.1007/s13399-021-02267-2. DOI

Li R., Li T., Wan Y., Zhang X., Liu X., Li R., Pu H., Gao T., Wang X., Zhou Q. Efficient decolorization of azo dye wastewater with polyaniline/graphene modified anode in microbial electrochemical systems. J. Hazard. Mater. 2021;421:126740. doi: 10.1016/j.jhazmat.2021.126740. PubMed DOI

Khan M.A., Govindasamy R., Ahmad A., Siddiqui M., Alshareef S., Hakami A., Rafatullah M. Carbon based polymeric nanocomposites for dye adsorption: Synthesis, characterization, and application. Polymers. 2021;13:419. doi: 10.3390/polym13030419. PubMed DOI PMC

Razzaq S., Akhtar M., Zulfiqar S., Zafar S., Shakir I., Agboola P.O., Haider S., Warsi M.F. Adsorption removal of Congo red onto L-cysteine/rGO/PANI nanocomposite: Equilibrium, kinetics and thermodynamic studies. J. Taibah Univ. Sci. 2021;15:50–62. doi: 10.1080/16583655.2021.1876351. DOI

Katowah D.F., Saleh S.M., Alqarni S.A., Ali R., Mohammed G.I., Hussein M.A. Network structure-based decorated CPA@CuO hybrid nanocomposite for methyl orange environmental remediation. Sci. Rep. 2021;11:1–21. doi: 10.1038/s41598-021-84540-y. PubMed DOI PMC

Singh A.R., Dhumal P.S., Bhakare M.A., Lokhande K.D., Bondarde M.P., Some S. In-situ synthesis of metal oxide and polymer decorated activated carbon-based photocatalyst for organic pollutants degradation. Sep. Purif. Technol. 2022;286:120380. doi: 10.1016/j.seppur.2021.120380. DOI

Liu Y., Wu F., Tian X., Hu X., Liu Y., Zhao X., Qu R., Ji C., Niu Y. Polyaniline dispersed by Kevlar fiber for uptake of organic dye. Pigment Resin Technol. 2020;50:346–355. doi: 10.1108/PRT-07-2020-0077. DOI

Liu M.-L., Li L., Sun Y.-X., Fu Z.-J., Cao X.-L., Sun S.-P. Scalable conductive polymer membranes for ultrafast organic pollutants removal. J. Membr. Sci. 2021;617:118644. doi: 10.1016/j.memsci.2020.118644. DOI

Jahan K., Tyeb S., Kumar N., Verma V. Bacterial cellulose-polyaniline porous mat for removal pf methyl orange and bacterial pathogens from potable water. J. Polym. Environ. 2021;29:1257–1270. doi: 10.1007/s10924-020-01947-w. DOI

Mansor E.S., Ali H., Abdel-Karim A. Efficient and reusable polyethylene oxide/polyaniline composite membrane for dye adsorption and filtration. Colloids Interface Sci. Commun. 2020;39:100314. doi: 10.1016/j.colcom.2020.100314. DOI

Mendieta-Rodríguez L.S., González-Rodríguez L.M., Alcaraz-Espinoza J.J., Chávez-Guajardo A.E., Medina-Llamas J.C. Synthesis and characterization of a polyurethane-polyaniline macroporous foam material for methyl orange removal in aqueous media. Mater. Today Commun. 2021;26:102–155. doi: 10.1016/j.mtcomm.2021.102155. DOI

Bagheri N., Lakouraj M.M., Hasantabar V., Mohseni M. Biodegradable macro-porous CMC-polyaniline hydrogel: Synthesis, characterization and study of microbial elimination and sorption capacity of dyes from waste water. J. Hazard. Mater. 2021;403:123631. doi: 10.1016/j.jhazmat.2020.123631. PubMed DOI

Alam J., Shukla A.K., Ansari M.A., Ali F.A.A., Alhoshan M. Dye separation and antibacterial activities of polyaniline thin film-coated poly(phenyl sulfone) membranes. Membranes. 2021;11:25. doi: 10.3390/membranes11010025. PubMed DOI PMC

Mahi O., Khaldi K., Belardja M.S., Belmokhtar A., Benyoucef A. Development of a New Hybrid Adsorbent from Opuntia Ficus Indica NaOH-Activated with PANI-Reinforced and Its Potential Use in Orange-G Dye Removal. J. Inorg. Organomet. Polym. Mater. 2021;31:2095–2104. doi: 10.1007/s10904-020-01873-3. DOI

Imgharn A., Ighnih H., Hsini A., Naciri Y., Laabd M., Kabli H., Elamine M., Lakhmiri R., Souhail B., Albourine A. Synthesis and characterization of polyaniline-based biocomposites for effective removal of Orange G dye adsorption in dynamic regime. Chem. Phys. Lett. 2021;778:138811. doi: 10.1016/j.cplett.2021.138811. DOI

Mashkoor F., Nasar A. Facile synthesis of polypyrrole decorated chitosan-based magsorbent: Characterizations, performance, and applications in removing cationic and anionic dyes from aqueous medium. Int. J. Biol. Macromol. 2020;161:88–100. doi: 10.1016/j.ijbiomac.2020.06.015. PubMed DOI

Li H., Zhang J., Zhu L., Liu H., Yu S., Xue J., Zhu X., Xue Q. Reusable membrane with multifunctional skin layer for effective removal of insoluble emulsified oils and soluble dyes. J. Hazard. Mater. 2021;415:125677. doi: 10.1016/j.jhazmat.2021.125677. PubMed DOI

Nawaz H., Umar M., Nawaz I., Zia Q., Tabassum M., Razzaq H., Gong H., Zhao X., Liu X. Photodegradation of textile pollutants by nanocomposite membranes of polyvinylidene fluoride integrated with polyaniline–titanium dioxide nanotubes. Chem. Eng. J. 2021;419:129542. doi: 10.1016/j.cej.2021.129542. DOI

Nawaz H., Umar M., Nawaz I., Ullah A., Khawar M.T., Nikiel M., Razzaq H., Siddiq M., Liu X. Hybrid PVDF/PANI membrane for removal of dyes from textile wastewater. Adv. Eng. Mater. 2021;24:2100719. doi: 10.1002/adem.202100719. DOI

Imgharn A., Aarab N., Hsini A., Naciri Y., Elhoudi M., Haki M.A., Laabd M., Lakhmiri R., Albourine A. Application of calcium alginate-PANI@sawdust wood hydrogel bio-beads for the removal of orange G dye from aqueous solution. Environ. Sci. Pollut. Res. 2022;29:60259–60268. doi: 10.1007/s11356-022-20162-9. PubMed DOI

Maruthapandi M., Saravanan A., Manohar P., Luong J., Gedanken A. Photocatalytic degradation of organic dyes and antimicrobial activities by polyaniline–nitrogen-doped carbon dot nanocomposite. Nanomaterials. 2021;11:1128. doi: 10.3390/nano11051128. PubMed DOI PMC

Yuan X., Kobylanski M.P., Cui Z., Li J., Beaunier P., Dragoe D., Colbeau-Justin C., Zaleska-Medynska A., Remita H. Highly active composite TiO2-polypyrrole nanostructures for water and air depollution under visible light irradiation. J. Environ. Chem. Eng. 2020;8:104178. doi: 10.1016/j.jece.2020.104178. DOI

Demir M., Taymaz B.H., Sarıbel M., Kamış H. Photocatalytic Degradation of Organic Dyes with Magnetically Separable PANI/Fe3O4 Composite under Both UV and Visible-light Irradiation. ChemistrySelect. 2022;7:e202103787. doi: 10.1002/slct.202103787. DOI

Riyat R.I., Salam A., Molla T.H., Islam S., Bashar A., Chandra D., Ahsan S., Roy D. Magnetically recyclable core–shell structured Co0.5Zn0.5Fe2O4@polyaniline nanocomposite: High stability and rapid photocatalytic degradation of commercial azo dyes and industrial effluents. React. Kinet. Mech. Catal. 2022;135:1077–1098. doi: 10.1007/s11144-022-02182-1. DOI

Liu G., Wang Y., Xue Q., Wen Y., Hong X., Ullah K. TiO2/Cu-MOF/PPy composite as a novel photocatalyst for decomposition of organic dyes. J. Mater. Sci. Mater. Electron. 2021;32:4097–4109. doi: 10.1007/s10854-020-05151-3. DOI

Mittal H., Khanuja M. Hydrothermal in-situ synthesis of MoSe2-polypyrrole nanocomposite for efficient photocatalytic degradation of dyes under dark and visible light irradiation. Sep. Purif. Technol. 2020;254:117508. doi: 10.1016/j.seppur.2020.117508. DOI

Taymaz B.H., Kamiş H., Yoldaş O. Photocatalytic degradation of malachite green dye using zero valent iron doped polypyrrole. Environ. Eng. Res. 2021;27:200638. doi: 10.4491/eer.2020.638. DOI

Liu T., Wang Z., Wang X., Yang G., Liu Y. Adsorption-photocatalysis performance of polyaniline/dicarboxyl acid cellulose@graphene oxide for dye removal. Int. J. Biol. Macromol. 2021;182:492–501. doi: 10.1016/j.ijbiomac.2021.04.038. PubMed DOI

Mansor E.S., Geioushy R.A., Fouad O.A. PANI/BiOCl nanocomposite induced efficient visible-light photocatalytic activity. J. Mater. Sci. Mater. Electron. 2021;32:1992–2000. doi: 10.1007/s10854-020-04966-4. DOI

Sharma S., Kumar D., Khare N. Hierarchical PANI/CdS nanoarchitecture system for visible light included photocatalytic dye degradation and photoelectrochemical water splitting. Polymer. 2021;231:124117. doi: 10.1016/j.polymer.2021.124117. DOI

Qutub N., Singh P., Sabir S., Umar K., Sagadevan S., Oh W.-C. Synthesis of polyaniline supported CdS/CdS-ZnS/CdS-TiO2 nanocomposite for efficient photocatalytic applications. Nanomaterials. 2022;12:1355. doi: 10.3390/nano12081355. PubMed DOI PMC

Kumar A., Mittal H., Nagar R., Khanuja M. The synergistic effect of acid-etched g-C3N4 nanosheets and polyaniline nanofibers for the adsorption and photocatalytic degradation of textile dyes: A study of charge transfer mechanism and intermediate products. Mater. Adv. 2022;3:5325–5336. doi: 10.1039/D1MA01218E. DOI

Ardani M.R., Pang A.L., Pal U., Zheng R., Arsad A., Hamzah A.A., Ahmadipour M. Ultrasonic-assisted polyaniline-multiwall carbon nanotube photocatalyst for efficient photodegradation of organic pollutants. J. Water Process Eng. 2022;46:102557. doi: 10.1016/j.jwpe.2021.102557. DOI

Bhaumik M., Maity A., Brink H.G. Metallic nickel nanoparticles supported polyaniline nanotubes as heterogeneous Fenton-like catalyst for the degradation of brilliant green dye in aqueous solution. J. Colloid Interface Sci. 2021;611:408–420. doi: 10.1016/j.jcis.2021.11.181. PubMed DOI

Fenniche F., Henni A., Khane Y., Aouf D., Harfouche N., Bensalem S., Zerrouki D., Belkhalfa H. Electrochemical synthesis of reduced graphene oxide–wrapped polyaniline nanorods for improved photocatalytic and antibacterial activities. J. Inorg. Organomet. Polym. Mater. 2022;32:1011–1025. doi: 10.1007/s10904-021-02204-w. DOI

Kumar H., Luthra M., Punia M., Singh D. Ag2O@PANI nanocomposites for advanced functional applications: A sustainable experimental and theoretical approach. Colloids Surf. A Physicochem. Eng. Asp. 2022;640:128464. doi: 10.1016/j.colsurfa.2022.128464. DOI

Sayed M.A., Ahmed M., El-Shahat M., El-Sewify I.M. Mesoporous polyaniline/SnO2 nanospheres for enhanced photocatalytic degradation of bio-staining fluorescent dye from an aqueous environment. Inorg. Chem. Commun. 2022;139:109326. doi: 10.1016/j.inoche.2022.109326. DOI

Rahman K.H., Kar A.K. Effect of band gap variation and sensitization process of polyaniline (PANI)-TiO2 p-n heterojunction photocatalysts on the enhancement of photocatalytic degradation of toxic methylene blue with UV irradiation. J. Environ. Chem. Eng. 2020;8:104181. doi: 10.1016/j.jece.2020.104181. DOI

Aminuddin N., Nawi M., Bahrudin N., Jawad A. Iron ion assisted photocatalytic-adsorptive removal of acid orange 52 by immobilized TiO2/polyaniline bilayer photocatalyst. Appl. Surf. Sci. Adv. 2021;6:100180. doi: 10.1016/j.apsadv.2021.100180. DOI

Aminuddin N., Nawi M., Bahrudin N. Enhancing the optical properties of immobilized TiO2/polyaniline bilayer photocatalyst for methyl orange decolorization. React. Funct. Polym. 2022;174:105248. doi: 10.1016/j.reactfunctpolym.2022.105248. DOI

Naciri Y., Hsini A., Bouziani A., Tanji K., El Ibrahimi B., Ghazzal M., Bakiz B., Albourine A., Benlhachemi A., Navío J., et al. Z-scheme WO3/PANI heterojunctions with enhanced photocatalytic activity under visible light: A depth experimental and DFT studies. Chemosphere. 2021;292:133468. doi: 10.1016/j.chemosphere.2021.133468. PubMed DOI

Hamdy M.S., Abd-Rabboh H.S., Benaissa M., Al-Metwaly M.G., Galal A., Ahmed M. Fabrication of novel polyaniline/ZnO heterojunction for exceptional photocatalytic hydrogen production and degradation of fluorescein dye through direct Z-scheme mechanism. Opt. Mater. 2021;117:111198. doi: 10.1016/j.optmat.2021.111198. DOI

Belabed C., Tab A., Moulai F., Černohorský O., Boudiaf S., Benrekaa N., Grym J., Trari M. ZnO nanorods-PANI heterojunction dielectric, electrochemical properties, and photodegradation study of organic pollutant under solar light. Int. J. Hydrogen Energy. 2021;46:20893–20904. doi: 10.1016/j.ijhydene.2021.03.195. DOI

Yadav A., Kumar H. Polyaniline Plastic Nanocomposite as Multi-Functional Nanomaterial. ChemistrySelect. 2022;7:202201475. doi: 10.1002/slct.202201475. DOI

Kumaresan A., Arun A., Kalpana V., Vinupritha P., Sundaravadivel E. Polymer-supported NiWO4 nanocomposites for visible light degradation of toxic dyes. J. Mater. Sci. Mater. Electron. 2022;33:9660–9668. doi: 10.1007/s10854-021-07643-2. DOI

Ding W.P., Li J.D., Chen S.W., Li X.G., Wang Q., He A.Y., Yin J.Z. Attapulgite/g-C3N4-Pt/polyaniline composites: Preparation and visible light photocatalytic properties. Chin. J. Inorg. Chem. 2022;38:253–260. doi: 10.11862/CJIC.2022.011. DOI

Chen Y., Wang T., Pan J., Wang M., Chen A., Chen Y. Fabrication, characterization and photocatalytic degradation activity of PS/PANI/CeO2 tri-layer nanostructured hybrids. Bull. Mater. Sci. 2022;45:1–9. doi: 10.1007/s12034-021-02635-8. DOI

Shashikala B.S., Al-Gunaid M.Q.A., Somesh T.E., Anasuya S.J. Core–shell synergistic effect of (PANI-NaBiO2) incorporated polycarbonate films to photodegradation of MG dye and photovoltaic activity. Polym. Bull. 2022;79:7531–7554. doi: 10.1007/s00289-021-03754-2. DOI

Palliyalil S., Chola R.K.V., Vigneshwaran S., Poovathumkuzhi N.C., Chelaveettil B.M., Meenakshi S. Ternary system of TiO2 confined chitosan–polyaniline heterostructure photocatalyst for the degradation of anionic and cationic dyes. Environ. Technol. Innov. 2022;28:102586. doi: 10.1016/j.eti.2022.102586. DOI

Liu S., Hu J., Wu D., Zeng H., Zhou T., Yang M., Feng Q. Preparation of spunlaced viscose/PANI-ZnO/GO fiber membrane and its performance of photocatalytic decolorization. J. Ind. Text. 2022;51:7359S–7373S. doi: 10.1177/15280837211070615. DOI

Jumat N.A., Khor S.-H., Basirun W.J., Juan J.-C., Phang S.-W. Highly Visible Light Active Ternary Polyaniline-TiO2-Fe3O4 Nanotube/Nanorod for Photodegradation of Reactive Black 5 Dyes. J. Inorg. Organomet. Polym. Mater. 2021;31:2168–2181. doi: 10.1007/s10904-021-01912-7. DOI

Zare N., Kojoori R.K., Abdolmohammadi S., Sadegh-Samiei S. Ultrasonic-assisted synthesis of highly effective visible light Fe3O4/ZnO/PANI nanocomposite: Thoroughly kinetics and thermodynamic investigations on the Congo red dye decomposition. J. Mol. Struct. 2021;1250:131903. doi: 10.1016/j.molstruc.2021.131903. DOI

Liu S., Jiang X., Waterhouse G.I., Zhang Z.-M., Yu L.-M. Protonated graphitic carbon nitride/polypyrrole/reduced graphene oxide composites as efficient visible light driven photocatalysts for dye degradation and E. coli disinfection. J. Alloy. Compd. 2021;873:159750. doi: 10.1016/j.jallcom.2021.159750. DOI

Bahadoran A., Baghbadorani N.B., De Lile J.R., Masudy-Panah S., Sadeghi B., Li J., Ramakrishna S., Liu Q., Janani B.J., Fakhri A. Ag doped Sn3O4 nanostructure and immobilized on hyperbranched polypyrrole for visible light sensitized photocatalytic, antibacterial agent and microbial detection process. J. Photochem. Photobiol. B Biol. 2022;228:112393. doi: 10.1016/j.jphotobiol.2022.112393. PubMed DOI

Zhang T., Guo R., Ying G., Lu Z., Peng C., Shen M., Zhang J. Absolute film separation of dyes/salts and emulsions with a superhigh water permeance through graded nanofluidic channels. Mater. Horizons. 2022;9:1536–1542. doi: 10.1039/D2MH00046F. PubMed DOI

Shi X.-Y., Gao M.-H., Hu W.-W., Luo D., Hu S.-Z., Huang T., Zhang N., Wang Y. Largely enhanced adsorption performance and stability of MXene through in-situ depositing polypyrrole nanoparticles. Sep. Purif. Technol. 2022;287:120596. doi: 10.1016/j.seppur.2022.120596. DOI

Yan Y.Y., Zhou P.Z., Zhang S., Yin X.Y., Zeng X.J., Pi P.H., Nong Y.J., Wen X.F. Facile preparation of ultralong polypyrrole nanowires-coated membrane for switchable emulsions separation and dyes adsorption. J. Water Process Eng. 2022;49:102942. doi: 10.1016/j.jwpe.2022.102942. DOI

Lai X., Wang C., Wang L., Xiao C. A novel PPTA/PPy composite organic solvent nanofiltration (OSN) membrane prepared by chemical vapor deposition for organic dye wastewater treatment. J. Water Process Eng. 2022;45:102533. doi: 10.1016/j.jwpe.2021.102533. DOI

Zhang D., Yang J., Qiao G., Wang J., Li H. Facile two-step synthesis of nanofiber polyaniline/graphene/cuprous oxide composite with enhanced photocatalytic performance. Appl. Nanosci. 2021;11:983–993. doi: 10.1007/s13204-020-01660-z. DOI

Attia N.F., Shaltout S.M., Salem I.A., Zaki A.B., El-Sadek M.H., Salem M.A. Sustainable and smart hybrid nanoporous adsorbent derived biomass as efficient adsorbent for cleaning of wastewater from Alizarin Red dye. Biomass Convers. Biorefinery. 2022:1–16. doi: 10.1007/s13399-022-02763-z. DOI

Wang Y., Chen R., Dai Z., Yu Q., Miao Y., Xu R. Facile preparation of a polypyrrole modified Chinese yam peel-based adsorbent: Characterization, performance, and application in removal of Congo red dye. RSC Adv. 2022;12:9424–9434. doi: 10.1039/D1RA08280A. PubMed DOI PMC

Huang F., Tian X., Wei W., Xu X., Li J., Guo Y., Zhou Z. Wheat straw-core hydrogel spheres with polypyrrole nanotubes for the removal of organic dyes. J. Clean. Prod. 2022;344:131100. doi: 10.1016/j.jclepro.2022.131100. DOI

Heybet E.N., Ugraskan V., Isik B., Yazici O. Adsorption of methylene blue dye on sodium alginate/polypyrrole nanotube composites. Int. J. Biol. Macromol. 2021;193:88–99. doi: 10.1016/j.ijbiomac.2021.10.084. PubMed DOI

Maqbool M., Sadaf S., Bhatti H.N., Rehmat S., Kausar A., Alissa S.A., Iqbal M. Sodium alginate and polypyrrole composites with algal dead biomass for the adsorption of Congo red dye: Kinetics, thermodynamics and desorption studies. Surfaces Interfaces. 2021;25:101183. doi: 10.1016/j.surfin.2021.101183. DOI

Qi F.-F., Ma T.-Y., Liu Y., Fan Y.-M., Li J.-Q., Yu Y., Chu L.-L. 3D superhydrophilic polypyrrole nanofiber mat for highly efficient adsorption of anionic azo dyes. Microchem. J. 2020;159:105389. doi: 10.1016/j.microc.2020.105389. DOI

Yu Y., Su J., Liu J., Li W. Magnetic poly(glycidyl methacrylate) microspheres with grafted polypyrrole chains for the high-capacity adsorption of Congo red dye from aqueous solutions. Coatings. 2022;12:168. doi: 10.3390/coatings12020168. DOI

Li Y., Yan S., Jia X., Wu J., Yang J., Zhao C., Wang S., Song H., Yang X. Uncovering the origin of full-spectrum visible-light-responsive polypyrrole supramolecular photocatalysts. Appl. Catal. B: Environ. 2021;287:119926. doi: 10.1016/j.apcatb.2021.119926. DOI

Taymaz B.H., Taş R., Kamış H., Can M. Photocatalytic activity of polyaniline and neutral polyaniline for degradation of methylene blue and malachite green dyes under UV Light. Polym. Bull. 2021;78:2849–2865. doi: 10.1007/s00289-021-03674-1. DOI

Hussain D., Siddiqui M.F., Shirazi Z., Alam Khan T. Evaluation of adsorptive and photocatalytic degradation properties of FeWO4/polypyrrole nanocomposite for rose bengal and alizarin red S from liquid phase: Modeling of adsorption isotherms and kinetics data. Environ. Prog. Sustain. Energy. 2022;41:13822. doi: 10.1002/ep.13822. DOI

Pang A.L., Arsad A., Ahmadipour M., Hamzah A.A., Zaini M.A.A., Mohsin R. High efficient degradation of organic dyes by polypyrrole-multiwall carbon nanotubes nanocomposites. Polym. Adv. Technol. 2022;33:1402–1411. doi: 10.1002/pat.5609. DOI

Punnakkal V.S., Jos B., Anila E.I. Polypyrrole-silver nanocomposite for enhanced photocatalytic degradation of methylene blue under sunlight irradiation. Mater. Lett. 2021;298:130014. doi: 10.1016/j.matlet.2021.130014. DOI

Koysuren H.N., Koysuren O. Improving UV light photocatalytic activity of WO3 by doping with boron and compounding with polypyrrole. Biointerface Res. Appl. Chem. 2022;13:86. doi: 10.33263/briac131.086. DOI

Capilli G., Sartori D.R., Gonzalez M.C., Laurenti E., Minero C., Calza P. Non-purified commercial multiwalled carbon nanotubes supported on electrospun polyacrylonitrile@polypyrrole nanofibers as photocatalysts for water decontamination. RSC Adv. 2021;11:9911–9920. doi: 10.1039/D0RA10930D. PubMed DOI PMC

Yu H., He Y., Li H., Li Z., Ren B., Chen G., Hu X., Tang T., Cheng Y., Ou J.Z. Core-shell PPy@TiO2 enable GO membranes with controllable and stable dye desalination properties. Desalination. 2022;526:115523. doi: 10.1016/j.desal.2021.115523. DOI

Elkady M., Hassan H. Photocatalytic Degradation of malachite green dye from aqueous solution using environmentally compatible Ag/ZnO polymeric nanofibers. Polymers. 2021;13:2033. doi: 10.3390/polym13132033. PubMed DOI PMC

Habtamu F., Berhanu S., Mender T. Polyaniline supported Ag-doped ZnO nanocomposite: Synthesis, characterization, and kinetics study for photocatalytic degradation of malachite green. J. Chem. 2021;2021:2451836. doi: 10.1155/2021/2451836. DOI

Biju R., Ravikumar R., Thomas C., Indulal C.R. Enhanced photocatalytic degradation of Metanil Yellow dye using polypyrrole-based copper oxide–zinc oxide nanocomposites under visible light. J. Nanoparticle Res. 2022;24:1–16. doi: 10.1007/s11051-022-05495-3. DOI

Mohamed H.G., Aboud A.A., El-Salam H.A. Synthesis and characterization of chitosan/polyacrylamide hydrogel grafted poly(N-methylaniline) for methyl red removal. Int. J. Biol. Macromol. 2021;187:240–250. doi: 10.1016/j.ijbiomac.2021.07.124. PubMed DOI

Stejskal J. Polymers of phenylenediamines. Prog. Polym. Sci. 2015;41:1–31. doi: 10.1016/j.progpolymsci.2014.10.007. DOI

Ma G., Zhao S., Wang Y., Wang Z., Wang J. Conjugated polyaniline derivative membranes enable ultrafast nanofiltration and organic-solvent nanofiltration. J. Membr. Sci. 2022;645:120241. doi: 10.1016/j.memsci.2021.120241. DOI

Trchová M., Konyushenko E.N., Stejskal J., Kovářová J., Ćirić-Marjanović G. The conversion of polyaniline nanotubes to nitrogen-containing carbon nanotubes and their comparison with multi-walled carbon nanotubes. Polym. Degrad. Stab. 2009;94:929–938. doi: 10.1016/j.polymdegradstab.2009.03.001. DOI

Cheng H., Zhang W., Liu X., Tang T., Xiong J. Fabrication of Titanium Dioxide/Carbon Fiber (TiO2/CF) Composites for Removal of Methylene Blue (MB) from Aqueous Solution with Enhanced Photocatalytic Activity. J. Chem. 2021;2021:9986158. doi: 10.1155/2021/9986158. DOI

Munusamy S., Sivaranjan K., Sabhapathy P., Narayanan V., Mohammad F., Sagadevan S. Enhanced electrochemical and photocatalytic activity of g-C3N4-PANI-PPy nanohybrids. Synth. Met. 2020;272:116669. doi: 10.1016/j.synthmet.2020.116669. DOI

Mahmud H.N.M.E., Kamal S.J., Mohamad N., Sharma A.K., Saharan P., Santos J.H., Zakaria S.N.A. Nanoconducting polymer: An effective adsorbent for dyes. Chem. Pap. 2021;75:5173–5185. doi: 10.1007/s11696-021-01665-0. DOI

Stejskal J., Kohl M., Trchová M., Kolská Z., Pekárek M., Křivka I., Prokeš J. Conversion of conducting polypyrrole nanostructures to nitrogen containing carbons and its impact on the adsorption of organic dye. Mater. Adv. 2021;2:706–717. doi: 10.1039/D0MA00730G. DOI

Stejskal J., Trchová M., Lapčák L., Kolská Z., Kohl M., Pekárek M., Prokeš J. Comparison of carbonized and activated polypyrrole globules, nanofibers, and nanotubes as conducting nanomaterials and adsorbents of organic dye. Carbon Trends. 2021;4:100068. doi: 10.1016/j.cartre.2021.100068. DOI

Stejskal J. Conducting polymers are not just conducting: A perspective for emerging technology. Polym. Int. 2020;69:662–664. doi: 10.1002/pi.5947. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...