Carbonized Leather Waste with Deposited Polypyrrole Nanotubes: Conductivity and Dye Adsorption
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
RP/CPS/2022/005
Ministry of Education Youth and Sports
PubMed
37887944
PubMed Central
PMC10609213
DOI
10.3390/nano13202794
PII: nano13202794
Knihovny.cz E-zdroje
- Klíčová slova
- Raman spectra, bicontinuous structure, carbonized leather, conducting polymer, conductivity, dye adsorption, globular polypyrrole, polypyrrole nanotubes, resistivity,
- Publikační typ
- časopisecké články MeSH
This paper reports the conversion of a waste to a conducting material, exploiting the ability to adsorb pollutant organic dyes. Leather waste was carbonized at 800 °C in an inert nitrogen atmosphere. The resulting biochar was used for in-situ deposition of polypyrrole nanotubes produced by the oxidative polymerization of pyrrole in the presence of methyl orange. The composites of carbonized leather with deposited polypyrrole nanotubes of various composition were compared with similar composites based on globular polypyrrole. Their molecular structure was characterized by infrared and Raman spectra. Both conducting components formed a bicontinuous structure. The resistivity was newly determined by a four-point van der Pauw method and monitored as a function of pressure applied up to 10 MPa. The typical conductivity of composites was of the order of 0.1 to 1 S cm-1 and it was always higher for polypyrrole nanotubes than for globular polypyrrole. The method also allows for the assessment of mechanical features, such as powder fluffiness. The conductivity decreased by 1-2 orders of magnitude after treatment with ammonia but still maintained a level acceptable for applications operating under non-acidic conditions. The composites were tested for dye adsorption, specifically cationic methylene blue and anionic methyl orange, using UV-vis spectroscopy. The composites were designed for future use as functional adsorbents controlled by the electrical potential or organic electrode materials.
Central Laboratories University of Chemistry and Technology Prague 166 28 Prague 6 Czech Republic
Faculty of Mathematics and Physics Charles University 180 00 Prague 8 Czech Republic
University Institute Tomas Bata University in Zlin 760 01 Zlin Czech Republic
Zobrazit více v PubMed
Stejskal J., Ngwabebhoh F.A., Sáha T., Prokeš J. Coating of carbonized leather waste with the conducting polymer polyaniline: Bicontinuous composites for dye adsorption. Coatings. 2023;13:1419. doi: 10.3390/coatings13081419. DOI
Binner J., Chang H., Higginson R. Processing of ceramic-metal interpenetrating composites. J. Eur. Ceram. Soc. 2009;29:837–842. doi: 10.1016/j.jeurceramsoc.2008.07.034. DOI
Travitzky N., Gotman I., Claussen N. Alumina–Ti aluminide interpenetrating composites: Microstructure and mechanical properties. Mater. Lett. 2013;57:3422–3426. doi: 10.1016/S0167-577X(03)00090-9. DOI
Li S., Li Y., Wang Q., Miao K., Liang X., Lu Z., Li D. Fabrication of 3D-SiC/aluminum alloy interpenetrating composites by DIW and pressureless infiltration. Ceram. Int. 2021;47:24340–24347. doi: 10.1016/j.ceramint.2021.05.147. DOI
Khan S.M., Deng Z., Yang T., Li L. Bio-inspired ceramic-metal composites using ceramic 3D printing and centrifugal infiltration. Adv. Eng. Mater. 2022;24:2101009. doi: 10.1002/adem.202101009. DOI
Hu W., Niu X., Zhao R., Pei Q. Elastomeric transparent capacitive sensors based on an interpenetrating composite of silver nanowires and polyurethane. Appl. Phys. Lett. 2013;102:083303. doi: 10.1063/1.4794143. DOI
Al-Jawoosh S., Ireland A., Su B. Characterisation of mechanical and surface properties of novel biomimetic interpenetrating alumina-polycarbonate composite materials. Dent. Mater. 2020;36:1595–1607. doi: 10.1016/j.dental.2020.09.016. PubMed DOI
Stejskal J., Vilčáková J., Jurča M., Fei H., Trchová M., Kolská Z., Prokeš J., Křivka I. Polypyrrole-coated melamine sponge as a precursor for conducting macroporous nitrogen nitrogen-containing carbons. Coatings. 2022;12:324. doi: 10.3390/coatings12030324. DOI
Ngwabebhoh F.A., Zandraa O., Sáha T., Stejskal J., Trchová M., Kopecký D., Pfleger J., Prokeš J. In-situ coating of leather with conducting polyaniline in colloidal dispersion mode. Synth. Met. 2022;291:117191. doi: 10.1016/j.synthmet.2022.117191. DOI
Yılmaz O., Kantarli I.C., Yuksel M., Saglam M., Yanik J. Conversion of leather wastes to useful products. Resour. Conserv. Recycl. 2007;49:436–448. doi: 10.1016/j.resconrec.2006.05.006. DOI
Yuan B., Lai S., Li J., Li L., Bai S. Trash into treasure: Stiff, thermally insulating and highly conductive carbon aerogels from leather wastes for high-performance electromagnetic interference shielding. J. Mater. Chem. C. 2021;9:2298–2310. doi: 10.1039/D0TC05480A. DOI
Stejskal J., Ngwabebhoh F.A., Sáha P., Prokeš J. Carbonized leather waste: A review and conductivity outlook. Polymers. 2023;15:1028. doi: 10.3390/polym15041028. PubMed DOI PMC
Foo K.Y., Hameed B.H. An overview of dye removal via activated carbon adsorption process. Desalination Water Treat. 2010;19:255–274. doi: 10.5004/dwt.2010.1214. DOI
Gupta R., Pandit C., Pandit S., Gupta P.K., Lahiri D., Agarwal D., Pandey S. Potential and future prospects of biochar-based materials and their applications in removal of organic contaminants from industrial wastewater. J. Mater. Cycles Waste Manag. 2022;24:852–876. doi: 10.1007/s10163-022-01391-z. DOI
Bashir M.A., Khalid M., Naveed M., Ahmad R., Gao B. Influence of feedstock and pyrolytic temperature of biochar on physico-chemical characteristics and sorption of chromium in tannery polluted soil. Int. J. Agricult. Biol. 2018;20:2823–2834. doi: 10.17957/IJAB/15.0841. DOI
Sun X., Peng Q., Wang Z., Li C., Huang Y. N-doped porous carbon derived from Cr-tanned leather shaving wastes for synergetic adsorption of Cr(VI) from aqueous solution. Mater. Lett. 2021;284:128815. doi: 10.1016/j.matlet.2020.128815. DOI
Ma F., Ding S., Ren H., Peng P. Preparation of chrome-tanned leather shaving-based hierarchical porous carbon and its capacitance properties. RSC Adv. 2019;9:18333–18343. doi: 10.1039/C9RA03139A. PubMed DOI PMC
Liu P., Xing Z., Wang X., Diao S., Duan B., Yang C., Shi L. Nanoarchitectonics of nitrogen-doped porous carbon derived from leather wastes for solid-state supercapacitor. J. Mater. Sci. Mater. Electron. 2022;33:4887–4901. doi: 10.1007/s10854-021-07678-5. DOI
Ashokkumar M., Narayanan N.T., Reddy A.L.M., Gupta B.K., Chandrasekaran B., Talapatra S., Ajayan P.M., Thanikaivelan P. Transforming collagen wastes into doped nanocarbons for sustainable energy applications. Green Chem. 2012;14:1689–1695. doi: 10.1039/c2gc35262a. DOI
Han W., Wang H., Xia K., Chen S., Yan P., Deng T., Zhu W. Superior nitrogen-doped activated carbon materials for water cleaning and energy storing prepared from renewable leather wastes. Environ. Int. 2020;142:105846. doi: 10.1016/j.envint.2020.105846. PubMed DOI
Filho A.T., Lange L.C., de Melo G.C.B., Praes G.E. Pyrolysis of chromium rich tanning industrial wastes and utilization of carbonized wastes in metallurgical process. Waste Manag. 2016;48:448–456. doi: 10.1016/j.wasman.2015.11.046. PubMed DOI
Shi A., Song X., Wei L., Ma H., Pang H., Li W., Liu X., Tan L. Design of an internal/external bicontinuous conductive network for high-performance asymmetrical supercapacitors. Molecules. 2023;27:8168. doi: 10.3390/molecules27238168. PubMed DOI PMC
Murugan K.P., Swarnalatha S., Sekaran G. Chromium impregnated carbon fibres from tannery buffing dust waste for road applications. Mater. Today Proc. 2016;3:3703–3708. doi: 10.1016/j.matpr.2016.11.016. DOI
Enfrin M., Giustozzi F. Recent advances in the construction of sustainable asphalt roads with recycled plastic. Polym. Int. 2022;71:1376–1383. doi: 10.1002/pi.6405. DOI
Grycová B., Klemencová K., Leštinský P., Stejskal J., Sáha T., Trchová M., Prokeš J. Conductivity of carbonized and activated leather waste. Sustain. Chem. Pharm. 2023;35:101172. doi: 10.1016/j.scp.2023.101172. DOI
Ngwabebhoh F.A., Gazi M., Oladipo A.A. Adsorptive removal of multi-azo dye from aqueous phase using a semi-IPN superabsorbent chitosan-starch hydrogel. Chem. Eng. Res. Des. 2016;112:274–288. doi: 10.1016/j.cherd.2016.06.023. DOI
Machida S., Miyata S., Techagumpuch A. Chemical synthesis of highly electrically conductive polypyrrole. Synth. Met. 1989;31:311–318. doi: 10.1016/0379-6779(89)90798-4. DOI
Yang X., Zhu Z., Dai T., Lu Y. Facile fabrication of functional polypyrrole nanotubes via a reactive self-degraded template. Macromol. Rapid Commun. 2005;26:1736–1740. doi: 10.1002/marc.200500514. DOI
Stejskal J., Trchová M. Conducting polypyrrole nanotubes: A review. Chem. Pap. 2018;72:1563–1595. doi: 10.1007/s11696-018-0394-x. PubMed DOI
Stejskal J., Prokeš J. Conductivity and morphology of polyaniline and polypyrrole prepared in the presence of organic dyes. Synth. Met. 2020;264:116373. doi: 10.1016/j.synthmet.2020.116373. DOI
Stejskal J., Sapurina I. Polyaniline: Thin films and colloidal dispersions (IUPAC Technical Report) Pure Appl. Chem. 2005;77:815–826. doi: 10.1351/pac200577050815. DOI
Beygisangchin M., Abdul Rashid S., Shafie S., Sadrolhosseini A., Lim H. Preparations, properties, and applications of polyaniline and polyaniline thin films—A review. Polymers. 2021;13:2003. doi: 10.3390/polym13122003. PubMed DOI PMC
Elyashevich G.K., Gerasimov D.I., Kuryndin I.S., Lavrentyev V.K., Rosova E.Y., Vylegzhanina M.E. Evolution of the surface structure and functional properties of the electroconducting polymer coatings onto porous films. Coatings. 2022;12:51. doi: 10.3390/coatings12010051. DOI
Ngwabebhoh F.A., Zandraa O., Sáha T., Stejskal J., Kopecký D., Trchová M., Pfleger J. Coating of leather with dye-containing antibacterial and conducting polypyrrole. Coatings. 2023;13:608. doi: 10.3390/coatings13030608. DOI
Ćirić-Marjanović G., Pašti I., Mentus S. One-dimensional nitrogen-containing carbon nanostructures. Prog. Mater. Sci. 2015;69:61–182. doi: 10.1016/j.pmatsci.2014.08.002. DOI
Souza F.G., Michel R.C., Soares B.G. A methodology for studying the dependence of electrical resistivity with pressure in conducting composites. Polym. Test. 2005;24:998–1004. doi: 10.1016/j.polymertesting.2005.08.001. DOI
Adetunji O.O., Chiou N.R., Epstein A.J. Effect of pressure on the morphology of polyaniline nanostructures. Synth. Met. 2009;159:2263–2265. doi: 10.1016/j.synthmet.2009.07.049. DOI
Stejskal J., Trchová M., Bober P., Morávková Z., Kopecký D., Vrňata M., Prokeš J., Varga M., Watzlová E. Polypyrrole salts and bases: Superior conductivity of nanotubes and their stability towards the loss of conductivity by deprotonation. RSC Adv. 2016;6:88382–88391. doi: 10.1039/C6RA19461C. DOI
Obey G., Adelaide M., Ramaraj R. Biochar derived from non-customized matamba fruit shell as an adsorbent for wastewater treatment. J. Bioresour. Bioprod. 2022;7:109–115. doi: 10.1016/j.jobab.2021.12.001. DOI
Jjagwe J., Olupot P.W., Menya E., Kalibbala H.M. Synthesis and application of granular activated carbon from biomass waste materials for water treatment: A review. J. Bioresour. Bioprod. 2021;6:292–322. doi: 10.1016/j.jobab.2021.03.003. DOI
Maqbool Q., Barucca G., Sabbatini S., Parlapiano M., Ruello M.L., Tittarelli F. Transformation of industrial and organic waste into titanium doped activated carbon—Cellulose nanocomposite for rapid removal of organic pollutants. J. Hazard. Mater. 2021;423:126958. doi: 10.1016/j.jhazmat.2021.126958. PubMed DOI
Stejskal J. Interaction of conducting polymers, polyaniline and polypyrrole, with organic dyes: Polymer morphology control, dye adsorption and photocatalytic decomposition. Chem. Pap. 2020;74:1–54. doi: 10.1007/s11696-019-00982-9. DOI
Lyu W., Li J., Trchová M., Wang G., Liao Y., Bober P., Stejskal J. Fabrication of polyaniline/poly(vinyl alcohol)/montmorillonite hybrid aerogels toward efficient adsorption of organic dye pollutants. J. Hazard. Mater. 2022;435:129004. doi: 10.1016/j.jhazmat.2022.129004. PubMed DOI
Stejskal J. Recent advances in the removal of organic dyes from aqueous media with conducting polymers, polyaniline and polypyrrole, and their composites. Polymers. 2022;14:4243. doi: 10.3390/polym14194243. PubMed DOI PMC
Porri A., Baroncelli R., Guglielminetti L., Sarrocco S., Guazzelli L., Forti M., Catelani G., Valentini G., Bazzichi A., Franceschi M., et al. Fusarium oxysporum degradation and detoxification of a new textile-glycoconjugate azo dye (GAD) Fungal Biol. 2011;115:30–37. doi: 10.1016/j.funbio.2010.10.001. PubMed DOI
Jamal M., Awadasseid A., Su X. Exploring potential bacterial populations for enhanced anthraquinone dyes biodegradation: A critical review. Biotechnol. Lett. 2022;44:1011–1025. doi: 10.1007/s10529-022-03279-2. PubMed DOI
Liu M.-L., Li L., Sun Y.-X., Fu Z.-J., Cao X.-L., Sun S.-P. Scalable conductive polymer membranes for ultrafast organic pollutants removal. J. Membr. Sci. 2020;617:118644. doi: 10.1016/j.memsci.2020.118644. DOI
Maldonado-Larios L., Mayen-Mondragón R., Martínez-Orozco R., Páramo-García U., Gallardo-Rivas N., García-Alamilla R. Electrochemically-assisted fabrication of titanium-dioxide/polyaniline nanocomposite films for the electroremediation of congo red in aqueous effluents. Synth. Met. 2020;268:116464. doi: 10.1016/j.synthmet.2020.116464. DOI
Yu H., Che M., Zhao B., Lu Y., Zhu S., Wang X., Qin W., Huo M. Enhanced electrosorption of rhodamine B over porous copper-nickel foam electrodes modified with graphene oxide/polypyrrole. Synth. Met. 2021;262:116332. doi: 10.1016/j.synthmet.2020.116332. DOI
Haque M., Wong D.K.Y. Improved dye entrapment–liberation performance at electrochemically synthesised polypyrrole–reduced graphene oxide nanocomposite films. J. Appl. Electrochem. 2017;47:777–788. doi: 10.1007/s10800-017-1079-9. DOI
Putshaka J.D., Adamu K.I., Jauro A., Tanko S.F. Effect of pyrolysis temperature on adsorbent properties of carbon from leather buffing dust and sawdust. J. Test. Evaluation. 2014;42:593–600. doi: 10.1520/JTE20130062. DOI
Kantarli I.C., Yanik J. Activated carbon from leather shaving wastes and its application in removal of toxic materials. J. Hazard. Mater. 2010;179:348–356. doi: 10.1016/j.jhazmat.2010.03.012. PubMed DOI
Putshak’a J.D., Akpabio I.O. Adsorption performance pf activated carbon from leather buffing waste. J. Am. Leather Chem. Assoc. 2010;105:313–319.
Kong J., Yue Q., Huang L., Gao Y., Sun Y., Gao B., Li Q., Wang Y. Preparation, characterization and evaluation of adsorptive properties of leather waste based activated carbon via physical and chemical activation. Chem. Eng. J. 2013;221:62–71. doi: 10.1016/j.cej.2013.02.021. DOI
Ke L., Zhao K., Yan X., Cao X., Wu X., Zhang C., Luo T., Ding T., Yan N. Facile mineralization and valorization of Cr-containing leather shavings for electrocatalytic H2O2 generation and organic pollutant removal. Chem. Eng. J. 2022;437:135036. doi: 10.1016/j.cej.2022.135036. DOI
Oliveira L.C., Coura C.V.Z., Guimarães I.R., Gonçalves M. Removal of organic dyes using Cr-containing activated carbon prepared from leather waste. J. Hazard. Mater. 2011;192:1094–1099. doi: 10.1016/j.jhazmat.2011.06.014. PubMed DOI
Castillo-Reyes B.E., Ovando-Medina V.M., González-Ortega O., Alonso-Dávila P.A., Juárez-Ramírez I., Martínez-Gutiérrez H., Márquez-Herrera A. TiO2/polypyrrole nanocomposites photoactive under visible light synthesized by heterophase polymerization in the presence of different surfactants. Res. Chem. Intermed. 2015;41:8211–8231. doi: 10.1007/s11164-014-1886-0. DOI
Ovando-Medina V.M., López R.G., Castillo-Reyes B.E., Alonso-Dávila P.A., Martínez-Gutiérrez H., González-Ortega O., Farías-Cepeda L. Composite of acicular rod-like ZnO nanoparticles and semiconducting polypyrrole photoactive under visible light irradiation for methylene blue dye photodegradation. Colloid Polym. Sci. 2015;293:3459–3469. doi: 10.1007/s00396-015-3717-2. DOI
Rajagopalan V. A new synthetic nanocomposite for dye degradation in dark and light. Sci. Rep. 2016;6:38606. doi: 10.1038/srep38606. PubMed DOI PMC
Márquez-Herrera A., Ovando-Medina V.M., Castillo-Reyes B.E., Zapata-Torres M., Meléndez-Lira M., González-Castañeda J. Facile synthesis pf SrCO3-Sr[OH]2/PPy nanocomposite with enhanced photocatalytic activity under visible light. Materials. 2016;9:30. doi: 10.3390/ma9010030. PubMed DOI PMC
Sangareswari M., Sundaram M.M. Development of efficiency improved polymer-modified TiO2 for the photocatalytic degradation of an organic dye from wastewater environment. Appl. Water Sci. 2017;7:1781–1790. doi: 10.1007/s13201-015-0351-6. DOI
Yuan X., Floresyona D., Aubert P.-H., Bui T.-T., Remita S., Ghosh S., Brisset F., Goubard F., Remita H. Photocatalytic degradation of organic pollutant with polypyrrole nanostructures under UV and visible light. Appl. Catal. B, Environ. 2019;242:284–292. doi: 10.1016/j.apcatb.2018.10.002. DOI
Li X., Wang J., Hu Z., Li M., Ogino K. In situ polypyrrole polymerization enhances the photocatalytic activity of nanofibrous TiO2/SiO2 membranes. Chin. Chem. Lett. 2018;29:166–170. doi: 10.1016/j.cclet.2017.05.020. DOI