Carbonized Leather Waste: A Review and Conductivity Outlook
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, přehledy
Grantová podpora
INTER-EXCELLENCE LTT20005 and RO70200003025/2102
Ministry of Education, Youth, and Sports of the Czech Republic
PubMed
36850311
PubMed Central
PMC9967325
DOI
10.3390/polym15041028
PII: polym15041028
Knihovny.cz E-zdroje
- Klíčová slova
- activation, carbonization, char, conductivity, leather waste, nitrogen-containing carbon, pyrolysis,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
The carbonization of collagen-based leather waste to nitrogen-containing carbon is reviewed with respect to the preparation, characterization of carbonized products, and applications proposed in the literature. The resulting nitrogen-containing carbons with fibrous morphology have been used as adsorbents in water pollution treatment, in electrocatalysis, and especially in electrodes of energy-storage devices, such as supercapacitors and batteries. Although electrical conductivity has been implicitly exploited in many cases, the quantitative determination of this parameter has been addressed in the literature only marginally. In this report, attention has been newly paid to the determination of conductivity and its dependence on carbonization temperature. The resulting powders cannot be compressed into pellets for routine conductivity determination. A new method has been used to follow the resistivity of powders as a function of pressure up to 10 MPa. The conductivity at this pressure increased from 9.4 × 10-8 S cm-1 for carbonization at 500 °C to 5.3 S cm-1 at 1000 °C. The conductivity of the last sample was comparable with conducting polymers such as polypyrrole. The carbonized leather thus has the potential to be used in applications requiring electrical conduction.
Faculty of Mathematics and Physics Charles University 180 00 Prague 8 Czech Republic
University Institute Tomas Bata University in Zlin 760 01 Zlin Czech Republic
Zobrazit více v PubMed
Hu J., Xiao Z.B., Zhou R.J., Deng W.J., Wang M.X., Ma S.S. Ecological utilization of leather tannery waste with circular economy model. J. Clean. Prod. 2011;19:221–228. doi: 10.1016/j.jclepro.2010.09.018. DOI
Chojnacka K., Skrzypczak D., Mikula K., Witek-Krowiak A., Izydorczyk G., Kuligowski K., Bandrow P., Kulazynski M. Progress in sustainable technologies of leather wastes valorization as solutions for the circular economy. J. Clean. Prod. 2021;313:127902. doi: 10.1016/j.jclepro.2021.127902. DOI
Li C.T., Han M.M., Qiang T.T., Wang X.C. Recycling of raw materials (collagen protein) in the leather industry—High value added application of leather solid waste. J. Soc. Leather Technol. Chem. 2017;101:237–241.
Verma S.K., Sharma P.C. Current trends in solid tannery waste management. Crit. Rev. Biotechnol. 2022;17:1–8. doi: 10.1080/07388551.2022.2068996. PubMed DOI
Jiang H.Y., Liu J.S., Han W. The status and developments of leather solid waste treatment: A mini-review. Waste Manag. Res. 2016;34:399–408. doi: 10.1177/0734242X16633772. PubMed DOI
Marcilla A., Garcia A.N., Leon M., Martinez P., Banon E. Analytical pyrolysis as a method to characterize tannery wastes. J. Ind. Eng. Chem. 2011;50:8994–9002. doi: 10.1021/ie200582k. DOI
El-Hout S.I., Attia S.Y., Mohamed S.G., Abdelbasir S.M. From waste to value-added products: Evaluation of activated carbon generated from leather waste for supercapacitor applications. J. Environ. Manag. 2022;304:114222. doi: 10.1016/j.jenvman.2021.114222. PubMed DOI
Caballero J.A., Font R., Esperanza M.M. Kinetics of the thermal decomposition of tannery waste. J. Anal. Appl. Pyrolysis. 1998;47:165–181. doi: 10.1016/S0165-2370(98)00081-3. DOI
Marcilla A., Leon M., Garcia A.N., Banon E., Martinez P. Upgrading of tannery wastes under fast and slow pyrolysis conditions. Ind. Eng. Chem. 2012;51:3246–3255. doi: 10.1021/ie201635w. DOI
Gil R.R., Giron R.P., Lozano M.S., Ruiz B., Fuente E. Pyrolysis of biocollagenic wastes of vegetable tanning. Optimization and kinetic study. J. Anal. Appl. Pyrolysis. 2012;98:129–136. doi: 10.1016/j.jaap.2012.08.010. DOI
Yang P.Y., He X.C., Zhang W.J., Qiao Y.X., Wang F., Tang K.Y. Study on thermal degradation of cattlehide collagen fibers by simultaneous TG-MS-FTIR. J. Therm. Anal. Pyrolysis. 2017;127:2005–2012. doi: 10.1007/s10973-016-5813-z. DOI
Rosu L., Varganici C.D., Crudu A.M., Rosu D. Influence of different tanning agents on bovine leather thermal degradation. J. Therm. Anal. Calorim. 2018;134:583–594. doi: 10.1007/s10973-018-7076-3. DOI
Banon E., Garcia A.N., Marcilla A. Thermogravimetric analysis and Py-GC/MS for discrimination of leather from different animal species and tanning processes. J. Anal. Appl. Pyrolysis. 2021;159:105244. doi: 10.1016/j.jaap.2021.105244. DOI
Vasanth S., Muthuramalingam T., Gupta S. Carbonization region measurement in vegetable tanned goat leather using machine vision system for evaluating performance measures of leather cut contour edges. J. Am. Leather Chem. Assoc. 2022;117:54–61. doi: 10.34314/jalca.v117i2.4728. DOI
Colmenares J.C., Lisowski P., Bermudez J.M., Cot J., Luque R. Unprecedented photocatalytic activity of carbonized leather skin residues containing chromium oxide phases. Appl. Catal. B Environ. 2014;150:432–437. doi: 10.1016/j.apcatb.2013.12.038. DOI
He Y., Lin X.Y., Yan T.S., Zhang X.N., Zhou J., Chen Y., Luo X.G. Selective adsorption of uranium from salt lake-simulated solution by phenolic-functionalized hollow sponge-like adsorbent. J. Chem. Technol. Biotechnol. 2019;94:455–467. doi: 10.1002/jctb.5790. DOI
Lee J., Hong J., Jang D., Park K.Y. Hydrothermal carbonization of waste from leather processing and feasibility of produced hydrochar as an alternative solid fuel. J. Environ. Manag. 2019;247:115–120. doi: 10.1016/j.jenvman.2019.06.067. PubMed DOI
Kluska J., Ochnio M., Kardas D., Heda L. The influence of temperature on the physicochemical properties of products of pyrolysis of leather-tannery waste. Waste Manag. 2019;88:248–256. doi: 10.1016/j.wasman.2019.03.046. PubMed DOI
Putshaka J.D., Adamu K.I., Jauro A., Tanko S.F. Effect of pyrolysis temperature on adsorbent properties of carbon from leather buffing dust and sawdust. J. Test. Eval. 2014;42:593–600. doi: 10.1520/JTE20130062. DOI
Konikkara N., Punithavelan N., Kennedy L.J., Vijaya J.J. A new approach to solid waste management: Fabrication of supercapacitor electrodes from solid leather wastes using aqueous KOH electrolyte. Clean Technol. Environ. Policy. 2017;19:1087–1098. doi: 10.1007/s10098-016-1301-1. DOI
Chaudhary R., Pati A. Adsorption isotherm and kinetics of tannic acid on to carbonized chrome tanned leather solid waste. J. Am. Leather Chem. Assoc. 2017;112:198–206.
Ashokkumar M., Narayanan N.T., Reddy A.L.M., Gupta B.K., Chandrasekaran B., Talapatra S., Ajayan P.M., Thanikaivelan P. Transforming collagen wastes into doped nanocarbons for sustainable energy applications. Green Chem. 2012;14:1689–1695. doi: 10.1039/c2gc35262a. DOI
González-Lucas M., Peinado M., Vaquero J.J., Nozal L., Aguirre J.L., González-Egido S. Microwave-assisted pyrolysis of leather waste. Energies. 2022;15:1273. doi: 10.3390/en15041273. DOI
Vasanth S., Muthuramalingam T., Prakash S.S., Raghav S.S. Investigation of SOD control on leather carbonization in diode laser cutting. Mater. Manufact. Process. 2022. early access . DOI
Liu B.H., Li Y.J., Wang Q., Bai S.B. Green fabrication of leather solid waste/thermoplastic polyurethanes composite: Physically de-bundling effect of solid-state shear milling on collagen bundles. Compos. Sci. Technol. 2019;181:107674. doi: 10.1016/j.compscitech.2019.06.001. DOI
Yuan B., Lai S.X., Li J.J., Li L., Bai S.B. Trash into treasure: Stiff, thermally insulating and highly conductive carbon aerogels from leather wastes for high-performance electromagnetic interference shielding. J. Mater. Chem. C. 2021;9:2209–2310. doi: 10.1039/D0TC05480A. DOI
Kluska J., Turzynski T., Ochnio M., Karda D. Characteristics of ash formation in the process of combustion of pelletised leather tannery waste and hardwood pellets. Renew. Energy. 2020;149:1246–1253. doi: 10.1016/j.renene.2019.10.122. DOI
Simioni T., Matos E., Bacca V.M., Perondi D., Godinho M., Dettmer A. Pyrolysis of chromed leather waste shavings in fluidized bed. J. Am. Leather Chem. Assoc. 2014;109:342–352.
Sethuraman C., Srinivas K., Sekaran G. Pyrolysis coupled pulse oxygen incineration for disposal of hazardous chromium impregnated fine particulate solid waste generated from leather industry. J. Environ. Chem. Eng. 2014;2:516–524. doi: 10.1016/j.jece.2013.10.006. DOI
Poletto P., Dettmer A., Bacca V.M., Collazzo G.C., Foletto E.L., Godinho M. Activated carbon from leather shaving waste. Part, I. Pyrolysis and physical activation. J. Am. Leather Chem. Assoc. 2016;111:325–333.
Almeida A.F., Pereira I.M., Silva P., Neto M.P., Crispim A.C., Pilao R.M., Ribeiro A.M. Pyrolysis of leather trimmings in a fixed bed reactor. J. Am. Leather Chem. Assoc. 2017;112:112–120.
Fang C.Q., Jiang X.G., Lv G.J., Yan J.H., Deng X.B. Nitrogen-containing gaseous products of chrome-tanned leather shavings during pyrolysis and combustion. Waste Manag. 2018;78:553–558. doi: 10.1016/j.wasman.2018.06.028. PubMed DOI
Fang C.Q., Jiang X.G., Lv G.J., Yan J.H., Lin X.L., Song H.B., Cao J.J. Pyrolysis characteristics and Cr speciation of chrome-tanned leather shavings: Influence of pyrolysis temperature. Energy Sources A. 2019;41:881–891. doi: 10.1080/15567036.2018.1520366. DOI
Velusamy M., Chakali B., Ganesan S., Tinwala F., Venkatachalam S.S. Investigation on pyrolysis and incineration of chrome-tanned solid waste from tanneries for effective treatment and disposal: An experimental study. Environ. Sci. Pollut. Prog. 2019;27:29778–29790. doi: 10.1007/s11356-019-07025-6. PubMed DOI
Zhang H., Zhang X., Shao J.G., Wang H.N., Zhang S.H., Chen H.P. Effect of temperature on the product characteristics and fuel-nitrogen evolution during chromium-tanned solid wastes pyrolysis polygeneration. J. Clean. Prod. 2020;254:120020. doi: 10.1016/j.jclepro.2020.120020. DOI
Van Rensburg M.L., Nkomo S.L., Mkhize N.M. Characterization and pyrolysis of post-consumer leather shoe waste for the recovery of valuable chemicals. Detritus. 2021;14:92–107. doi: 10.31025/2611-4135/2021.14064. DOI
Yuan Y., An Z.X., Zhang R.J., Wei X.X., Lai B. Efficiencies and mechanisms of heavy metals adsorption on waste leather-derived high-nitrogen activated carbon. J. Clean. Prod. 2021;293:126215. doi: 10.1016/j.jclepro.2021.126215. DOI
Banon E., Marcilla A., Garcia A.N., Martinez P., Leon M. Kinetic model of the thermal pyrolysis of chrome tanned leather treated with NaOH under different conditions using thermogravimetric analysis. Waste Manag. 2016;48:285–299. doi: 10.1016/j.wasman.2015.10.012. PubMed DOI
Hu Y.D., Liu J., Luo L., Li X.M., Wang F., Tang K.Y. Kinetics and mechanism of thermal degradation of aldehyde tanned leather. Thermochim. Acta. 2020;691:178717. doi: 10.1016/j.tca.2020.178717. DOI
Luo L., Liu C.K., Brown E.M., Wang F., Hu Y.D., Tang K.Y. Thermogravimetric analysis and pyrolysis kinetics of tannery wastes in an inert atmosphere. J. Am. Leather Chem. Assoc. 2020;115:123–131. doi: 10.34314/jalca.v115i4.3798. DOI
Marcilla A., Garcia A.N., Leon M., Banon E., Martinez P. Characterization of commercially available leathers using thermogravimetric analysis and PY/GC-MS system. J. Am. Leather Chem. Assoc. 2012;107:220–230.
Tang Y.T., Ma X.Q., Lai Z.Y., Fan Y.X. Thermogravimetric analyses of co-combustion of plastic, rubber, leather in N-2/O-2 and CO2/O-2 atmospheres. Energy. 2015;90:1066–1074. doi: 10.1016/j.energy.2015.08.015. DOI
Wahab M.A., Ates F., Yildirir E., Miskolczi N. Investigation of thermal degradation kinetics and catalytic pyrolysis of industrial sludge produced from textile and leather industrial wastewater. Biomass Conv. Biorefinery. 2022. early access . DOI
Hu Y.D., Liu J., Li X.M., Wang F., Luo L., Pei Y., Lei Y., Tang K.Y. Assessment of the pyrolysis kinetics and mechanism of vegetable-tanned leathers. J. Anal. Appl. Pyrolysis. 2022;164:105502. doi: 10.1016/j.jaap.2022.105502. DOI
Guan Y.P., Liu C.Q., Peng Q.F., Zaman F., Zhang H., Jin Z.Q., Wang A.B., Wang W.K., Huang Y.Q. Pyrolysis kinetics behavior of solid leather wastes. Waste Manag. 2019;100:122–127. doi: 10.1016/j.wasman.2019.09.005. PubMed DOI
Banon E., Torro A., Garcia A.N., Leon M., Marcilla A. Thermal characterization and pyrolysis of waste leather treated with CoCl2 and MnCl2. J. Am. Leather Chem. Assoc. 2021;116:46–57.
Yılmaz O., Kantarli I., Yuksel M., Saglam M., Yanik J. Conversion of leather wastes to useful products. Resour. Conserv. Recycl. 2007;49:436–448. doi: 10.1016/j.resconrec.2006.05.006. DOI
Kantarli I.C., Yanik J. Activated carbon from leather shaving wastes and its application in removal of toxic materials. J. Hazard. Mater. 2010;179:348–356. doi: 10.1016/j.jhazmat.2010.03.012. PubMed DOI
Sebestyén Z., Jakab E., Badea E., Barta-Rajnai E., Sendrea C., Czégény Z. Thermal degradation study of vegetable tannins and vegetable tanned leathers. J. Anal. Appl. Pyrolysis. 2019;138:178–187. doi: 10.1016/j.jaap.2018.12.022. DOI
Zhou Y.C., Chen Z.Z., Gong H.J., Yang Z.Y. Chromium speciation in tannery sludge residues after different thermal decomposition processes. J. Clean. Prod. 2021;314:128071. doi: 10.1016/j.jclepro.2021.128071. DOI
Oliveira L.C.A., Guerreiro M.C., Gonçalves M., Oliveira D.Q.L., Costa L.C.M. Preparation of activated carbon from leather waste: A new material containing small particle of chromium oxide. Mater. Lett. 2008;62:3710–3712. doi: 10.1016/j.matlet.2008.04.064. DOI
Manera C., Poli J.V., Poletto P., Ferreira S.D., Dettmer A., Wander P.R., Godinho M. Activated carbon from leather shaving waste, part II. Effect of char demineralization and activation time on surface area and pore size distribution. J. Am. Leather Chem. Assoc. 2016;111:413–421.
Putshak’a J.D., Akpabio I.O. Adsorption performance pf activated carbon from leather buffing waste. J. Am. Leather Chem. Assoc. 2010;105:313–319.
Gil R.R., Ruiz B., Lozano M.S., Fuente E. Influence of the pyrolysis step and the tanning process on KOH-activated carbons from biocollagenic wastes. Prospects as adsorbent for CO2 capture. J. Anal. Appl. Pyrolysis. 2014;110:194–204. doi: 10.1016/j.jaap.2014.09.001. DOI
Konikkara N., Kennedy L.J., Vijaya J.J. Preparation and characterization of hierarchical porous carbons derived from solid leather waste for supercapacitor applications. J. Hazard. Mater. 2016;318:173–185. doi: 10.1016/j.jhazmat.2016.06.037. PubMed DOI
Alonso-Lemus I.L., Rodriguez-Varela F.J., Figueroa-Torres M.Z., Sanchez-Castro M.E., Hernandez-Ramírez A., Lardizabal-Gutierrez D., Quintana-Owen P. Novel self-nitrogen-doped porous carbon from waste leather as highly active metal-free electrocatalyst for the ORR. Int. J. Hydrog. Energy. 2016;41:23409–23416. doi: 10.1016/j.ijhydene.2016.09.033. DOI
Llado J., Gil R.R., Lao-Luque C., Sole-Sardans M., Fuente E., Ruiz B. Highly microporous activated carbons derived from biocollagenic wastes of the leather industry as adsorbents of aromatic organic pollutants in water. J. Environ. Chem. Eng. 2017;5:2090–2100. doi: 10.1016/j.jece.2017.04.018. DOI
Martínez-Casillas D.C., Alonso-Lemus I.L., Mascorro-Gutiérrez I., Cuentas-Gallegos A.K. Leather waste-derived biochar with high performance for supercapacitors. J. Electrochem. Soc. 2018;165:A2061–A2068. doi: 10.1149/2.0421810jes. DOI
Ma F., Ding S.L., Ren H.J., Peng P.L. Preparation of chrome-tanned leather shaving-based hierarchical porous carbon and its capacitance properties. RSC Adv. 2019;9:18333–18343. doi: 10.1039/C9RA03139A. PubMed DOI PMC
Han W.Y., Wang H.L., Xia K.D., Chen S.S., Yan P.X., Deng T.S., Zhu W.B. Superior nitrogen-doped activated carbon materials for water cleaning and energy storing prepared from renewable leather wastes. Environ. Int. 2020;142:105846. doi: 10.1016/j.envint.2020.105846. PubMed DOI
Cabrera-Codony A., Ruiz B., Gil R.R., Popartan L.A., Santos-Clotas E., Martin M.J., Fuente E. From biocollagenic waste to efficient biogas purification: Applying circular economy in the leather industry. Environ. Technol. Innov. 2021;21:101229. doi: 10.1016/j.eti.2020.101229. DOI
Sun X.G., Peng Q.F., Wang Z.X., Li C.M., Huang Y.Q. N-doped porous carbon derived from Cr-tanned leather shaving wastes for synergetic adsorption of Cr(VI) from aqueous solution. Mater. Lett. 2021;284:128815. doi: 10.1016/j.matlet.2020.128815. DOI
Liu P.Y., Xing Z.H., Wang X., Diao S., Duan B.R., Yang C., Shi L. Nanoarchitectonics of nitrogen-doped porous carbon derived from leather wastes for solid-state supercapacitor. J. Mater. Sci. Mater. Electron. 2022;33:4887–4901. doi: 10.1007/s10854-021-07678-5. DOI
Marcilla A., Garcia A.N., Leon M., Martinez P., Banon E. Study of the influence of NaOH treatment on the pyrolysis of different leather tanned using thermogravimetric analysis and Py/GC-MS system. J. Anal. Appl. Pyrolysis. 2011;92:194–201. doi: 10.1016/j.jaap.2011.05.014. DOI
Liu J., Brown E.M., Uknalis J., Liu C.K., Luo L., Tang K.Y. Thermal stability and degradation kinetics of vegetable-tanned collagen fiber with in-situ precipitated calcium carbonate. J. Am. Leather Chem. Assoc. 2018;113:358–370.
Arcibar-Orozco J.A., Barajas-Elias B.S., Caballero-Briones F., Nielsen L., Rangel-Mendez J.R. Hybrid carbon nanochromium composites prepared from chrome-tanned leather shavings for dye adsorption. Water Air Soil Pollut. 2019;230:142. doi: 10.1007/s11270-019-4194-x. DOI
Kong J.J., Yue Q.Y., Huang L.H., Gao Y., Sun Y.Y., Gao B.Y., Li Q., Wang Y. Preparation, characterization and evaluation of adsorptive properties of leather waste based activated carbon via physical and chemical activation. Chem. Eng. J. 2013;221:62–71. doi: 10.1016/j.cej.2013.02.021. DOI
Ke L., Zhao K., Yan X.Y., Cao X.J., Wu X.Y., Zhang C., Luo T.T., Ding T., Yan N. Facile mineralization and valorization of Cr-containing leather shavings for electrocatalytic H2O2 generation and organic pollutant removal. Chem. Eng. J. 2022;437:135036. doi: 10.1016/j.cej.2022.135036. DOI
Liu Y.H., Zhang X.F., Gu X., Wu N.X., Zhang R.N., Shen Y., Zheng B., Wu J.S., Zhang W.N., Li S. One-step turning leather wastes into heteroatom doped carbon aerogel for performance enhanced capacitive deionization. Micropor. Mesopor. Mater. 2020;303:110303. doi: 10.1016/j.micromeso.2020.110303. DOI
Murugan K.P., Swarnalatha S., Sekaran G. Chromium Impregnated carbon fibres from tannery buffing dust waste for road applications. Mater. Today Proc. 2016;3:3703–3708. doi: 10.1016/j.matpr.2016.11.016. DOI
Murugan K.P., Balaji M., Kar S.S., Swarnalatha S., Sekaran G. Nano fibrous carbon produced from chromium bearing tannery solid waste as the bitumen modifier. J. Environ. Manag. 2020;270:110882. doi: 10.1016/j.jenvman.2020.110882. PubMed DOI
Soni R., Bhange S.N., Kurungot S. A 3-D nanoribbon-like Pt-free oxygen reduction reaction electrocatalyst derived from waste leather for anion exchange membrane fuel cells and zinc-air batteries. Nanoscale. 2019;11:7893–7902. doi: 10.1039/C9NR00977A. PubMed DOI
Lei J., Zhou J., Li J.W., Wen J.W., Su L., Duan T., Zhu W.K. Novel collagen waste derived Mn-doped nitrogen-containing carbon for supercapacitors. Electrochim. Acta. 2018;285:292–300. doi: 10.1016/j.electacta.2018.07.174. DOI
Ćirić-Marjanović G., Pašti I., Gavrilov N., Janosević A., Mentus S. Carbonised polyaniline and polypyrrole: Towards advanced nitrogen-containing carbon materials. Chem. Pap. 2013;67:781–813. doi: 10.2478/s11696-013-0312-1. DOI
Stejskal J., Vilčáková J., Jurča M., Fei H.J., Trchová M., Kolská Z., Prokeš J., Křivka I. Polypyrrole-coated melamine sponge as a precursor for conducting macroporous nitrogen-containing carbons. Coatings. 2022;12:324. doi: 10.3390/coatings12030324. DOI
Sundar V.J., Rao J.R., Muralidharan C. Cleaner chrome tanning—Emerging options. J. Clean. Prod. 2002;10:69–74. doi: 10.1016/S0959-6526(01)00015-4. DOI
Peng H., Guo J. Removal of chromium from wastewater by membrane filtration, chemical precipitation, ion exchange, adsorption electrocoagulation, electrochemical reduction, electrodialysis, electrodeionization, photocatalysis and nanotechnology: A review. Environ. Chem. Lett. 2020;18:2055–2068. doi: 10.1007/s10311-020-01058-x. DOI
Oliveira L.C.A., Coura C.V., Guimaraes L.R., Goncalves M. Removal of organic dyes using Cr-containing activated carbon prepared from leather waste. J. Hazard. Mater. 2011;192:1094–1099. doi: 10.1016/j.jhazmat.2011.06.014. PubMed DOI
Xia S.P., Song Z.L., Jeyakumar P., Bolan N., Wang H.L. Characteristics and applications of biochar for remediating Cr(VI)-contaminated soils and wastewater. Environ. Geochem. Health. 2019;42:1543–1567. doi: 10.1007/s10653-019-00445-w. PubMed DOI
Konikkara N., Kennedy L.J., Aruldoss U., Vijaya J.J. Electrical conductivity studies of nanoporous carbon derived from leather waste: Effect of pressure, temperature and porosity. J. Nanosci. Nanotechnol. 2016;16:8829–8838. doi: 10.1166/jnn.2016.11652. DOI
Stejskal J., Trchová M., Lapčák L., Kolská Z., Kohl M., Pekárek M., Prokeš J. Comparison of carbonized and activated polypyrrole globules, nanofibers, and nanotubes as conducting nanomaterials and adsorbents of organic dyes. Carbon Trends. 2021;4:100068. doi: 10.1016/j.cartre.2021.100068. DOI
Skrzypczak D., Szopa D., Mikula K., Izydorczyk G., Baśladyńska S., Hoppe V., Pstrowska K., Wzorek Z., Kominko H., Kulażyński M., et al. Tannery waste-derived biochar as a carrier of micronutrients essential to plants. Chemosphere. 2022;294:133720. doi: 10.1016/j.chemosphere.2022.133720. PubMed DOI
Stejskal J., Kohl M., Trchová M., Kolská Z., Pekárek M., Křivka I., Prokeš J. Conversion of conducting polypyrrole nanostructures to nitrogen-containing carbons and its impact on the adsorption of organic dyes. Mater. Adv. 2021;2:706–717. doi: 10.1039/D0MA00730G. DOI
Thanikaivelan P., Narayanan T.N., Gupta B.K., Reddy A.L.M., Ajayan P.M. Nanobiocomposite from collagen waste using iron oxide nanoparticles and its conversion into magnetic nanocarbon. J. Nanosci. Nanotechnol. 2015;15:4504–4509. doi: 10.1166/jnn.2015.9720. PubMed DOI
Bober P., Minisy I.M., Acharya U., Pfleger J., Babayan V., Kazantseva N., Hodan J., Stejskal J. Conducting polymer composite aerogel with magnetic properties for organic dye removal. Synth. Met. 2020;260:116266. doi: 10.1016/j.synthmet.2019.116266. DOI
Foo K.Y., Hameed B.H. An overview of dye removal via activate carbon adsorption process. Desalin. Water Treat. 2010;19:255–274. doi: 10.5004/dwt.2010.1214. DOI
Gupta R., Pandit C., Pandit S., Gupta P.K., Lahiri D., Agarwal D., Pandey S. Potential and future prospects of biochar-based materials and their applications in removal of organic contaminants from industrial wastewater. J. Mater. Cycles Waste Manag. 2022;24:852–876. doi: 10.1007/s10163-022-01391-z. DOI
Jjagwe J., Olupot P.W., Menya E. Synthesis and application of granular activated carbon from biomass waste materials for water treatment: A review. J. Bioresour. Bioprod. 2021;6:292–322. doi: 10.1016/j.jobab.2021.03.003. DOI
Obey G., Adelaide M., Ramaraj R. Biochar derived from non-customized matamba fruit shell as an adsorbent for wastewater treatment. J. Bioresour. Bioprod. 2022;7:109–115. doi: 10.1016/j.jobab.2021.12.001. DOI
Pinheiro N.S.C., Perez-Lopez O.W., Gutterres M. Solid leather wastes as adsorbents for cationic and anionic dye removal. Environ. Technol. 2022;43:1285–1293. doi: 10.1080/09593330.2020.1825531. PubMed DOI
Puchana-Rosero M.J., Lima E.C., Mella B., Da Costa D., Poll E., Gutterres M. A coagulation-flocculation process combined with adsorption using activated carbon obtained from sludge for dye removal from tannery wastewater. J. Chil. Chem. Soc. 2018;63:3867–3874. doi: 10.4067/s0717-97072018000103867. DOI
Stejskal J. Interaction of conducting polymers, polyaniline and polypyrrole, with organic dyes: Polymer morphology control, dye adsorption and photocatalytic decomposition. Chem. Pap. 2020;74:1–54. doi: 10.1007/s11696-019-00982-9. DOI
Stejskal J. Recent advances in the removal of organic dyes from aqueous media with conducting polymers, polyaniline and polypyrrole and their composites. Polymers. 2022;14:4243. doi: 10.3390/polym14194243. PubMed DOI PMC
Bashir M.A., Khalid M., Naveed M., Ahmad R., Gao B. Influence of feedstock and pyrolytic temperature of biochar on physico-chemical characteristics and sorption of chromium in tannery polluted soil. Int. J. Agricult. Biol. 2018;20:2823–2834. doi: 10.17957/IJAB/15.0841. DOI
Zheng S., Zhang J.W., Deng H.B., Du Y.M., Shi X.W. Chitin derived nitrogen-doped porous carbons with ultrahigh specific surface area and tailored hierarchical porosity for high performance supercapacitors. J. Bioresour. Bioprod. 2021;6:142–151. doi: 10.1016/j.jobab.2021.02.002. DOI
Xiao J.L., Li H.L., Zhang H., He S.J., Zhang Q., Liu K.M., Jiang S.H., Duan G.G., Zhang K. Nanocellulose and its derived composite electrodes towards supercapacitor: Fabrication, properties, and challenges. J. Bioresour. Bioprod. 2022;7:245–269. doi: 10.1016/j.jobab.2022.05.003. DOI
Wang Y.F., Zhang L., Hou H.Q., Xu W.H., Duan G.G., He S.J., Liu K.M., Jiang S.H. Recent progress in carbon-based materials for supercapacitor electrodes: A review. J. Mater. Sci. 2020;56:73–200. doi: 10.1007/s10853-020-05157-6. DOI
Chatterjee D.P., Nandi A.K. A review on the recent advances in hybrid supercapacitors. J. Mater. Chem. A. 2021;9:15880–15918. doi: 10.1039/D1TA02505H. DOI
Torres A., Lange L.C., de Melo G.C.B., Praes G.E. Pyrolysis of chromium rich tanning industrial wastes and utilization of carbonized wastes in metallurgical process. Waste Manag. 2016;48:448–456. doi: 10.1016/j.wasman.2015.11.046. PubMed DOI
Longo L., Taghavi S., Ghedini E., Menegazzo F., Di Michele A., Cruciani G., Signoretto M. Selective hydrogenation of 5-hydroxymethylfurfural to 1-hydroxy-2,5-hexanedione by biochar-supported Ru catalysts. ChemSusChem. 2022;15:202200437. doi: 10.1002/cssc.202200437. PubMed DOI
Sivaprakash K., Maharaja P., Pavithra S., Boopathy R., Sekaran G. Preparation of light weight constructional materials from chrome containing buffing dust solid waste generated in leather industry. J. Mater. Cycles Waste Manag. 2017;19:928–938. doi: 10.1007/s10163-016-0494-z. DOI
Andrade J.J.D., Mattje V. Incorporation of chromium-tanned leather residue in mortars. Proc. Inst. Civil Eng. Construct. Mater. 2012;165:73–86. doi: 10.1680/coma.10.00026. DOI
Enfrin M., Giustozzi F. Recent advances in the construction of sustainable asphalt roads with recycled plastic. Polym. Int. 2022;71:1316–1383. doi: 10.1002/pi.6405. DOI
Guo X.X., Liu H.T., Zhang J. The role of biochar in organic waste composting and soil improvement: A review. Waste Manag. 2020;102:844–899. doi: 10.1016/j.wasman.2019.12.003. PubMed DOI
Stejskal J., Sapurina I., Vilčáková J., Humpolíček P., Truong T.H., Shishov M.A., Trchová M., Kopecký D., Kolská Z., Prokeš J., et al. Conducting polypyrrole-coated macroporous melamine sponges: A simple toy or an advanced material? Chem. Pap. 2021;75:5035–5055. doi: 10.1007/s11696-021-01776-8. DOI
Ul-Hoque M.I., Holze R. Intrinsically conducting polymer composites as active masses in supercapacitors. Polymers. 2023;15:730. doi: 10.3390/polym15030730. PubMed DOI PMC
Sapurina I., Stejskal J., Šeděnková I., Trchová M., Kovářová J., Hromádková J., Kopecká J., Cieslar M., El-Nasr A.A., Ayad M.M. Catalytic activity of polypyrrole nanotubes decorated with noble-metal nanoparticles and their conversion to carbonized analogues. Synth. Met. 2016;214:14–32. doi: 10.1016/j.synthmet.2016.01.009. DOI
Carbonized Leather Waste with Deposited Polypyrrole Nanotubes: Conductivity and Dye Adsorption