Carbonized Leather Waste: A Review and Conductivity Outlook

. 2023 Feb 18 ; 15 (4) : . [epub] 20230218

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid36850311

Grantová podpora
INTER-EXCELLENCE LTT20005 and RO70200003025/2102 Ministry of Education, Youth, and Sports of the Czech Republic

The carbonization of collagen-based leather waste to nitrogen-containing carbon is reviewed with respect to the preparation, characterization of carbonized products, and applications proposed in the literature. The resulting nitrogen-containing carbons with fibrous morphology have been used as adsorbents in water pollution treatment, in electrocatalysis, and especially in electrodes of energy-storage devices, such as supercapacitors and batteries. Although electrical conductivity has been implicitly exploited in many cases, the quantitative determination of this parameter has been addressed in the literature only marginally. In this report, attention has been newly paid to the determination of conductivity and its dependence on carbonization temperature. The resulting powders cannot be compressed into pellets for routine conductivity determination. A new method has been used to follow the resistivity of powders as a function of pressure up to 10 MPa. The conductivity at this pressure increased from 9.4 × 10-8 S cm-1 for carbonization at 500 °C to 5.3 S cm-1 at 1000 °C. The conductivity of the last sample was comparable with conducting polymers such as polypyrrole. The carbonized leather thus has the potential to be used in applications requiring electrical conduction.

Zobrazit více v PubMed

Hu J., Xiao Z.B., Zhou R.J., Deng W.J., Wang M.X., Ma S.S. Ecological utilization of leather tannery waste with circular economy model. J. Clean. Prod. 2011;19:221–228. doi: 10.1016/j.jclepro.2010.09.018. DOI

Chojnacka K., Skrzypczak D., Mikula K., Witek-Krowiak A., Izydorczyk G., Kuligowski K., Bandrow P., Kulazynski M. Progress in sustainable technologies of leather wastes valorization as solutions for the circular economy. J. Clean. Prod. 2021;313:127902. doi: 10.1016/j.jclepro.2021.127902. DOI

Li C.T., Han M.M., Qiang T.T., Wang X.C. Recycling of raw materials (collagen protein) in the leather industry—High value added application of leather solid waste. J. Soc. Leather Technol. Chem. 2017;101:237–241.

Verma S.K., Sharma P.C. Current trends in solid tannery waste management. Crit. Rev. Biotechnol. 2022;17:1–8. doi: 10.1080/07388551.2022.2068996. PubMed DOI

Jiang H.Y., Liu J.S., Han W. The status and developments of leather solid waste treatment: A mini-review. Waste Manag. Res. 2016;34:399–408. doi: 10.1177/0734242X16633772. PubMed DOI

Marcilla A., Garcia A.N., Leon M., Martinez P., Banon E. Analytical pyrolysis as a method to characterize tannery wastes. J. Ind. Eng. Chem. 2011;50:8994–9002. doi: 10.1021/ie200582k. DOI

El-Hout S.I., Attia S.Y., Mohamed S.G., Abdelbasir S.M. From waste to value-added products: Evaluation of activated carbon generated from leather waste for supercapacitor applications. J. Environ. Manag. 2022;304:114222. doi: 10.1016/j.jenvman.2021.114222. PubMed DOI

Caballero J.A., Font R., Esperanza M.M. Kinetics of the thermal decomposition of tannery waste. J. Anal. Appl. Pyrolysis. 1998;47:165–181. doi: 10.1016/S0165-2370(98)00081-3. DOI

Marcilla A., Leon M., Garcia A.N., Banon E., Martinez P. Upgrading of tannery wastes under fast and slow pyrolysis conditions. Ind. Eng. Chem. 2012;51:3246–3255. doi: 10.1021/ie201635w. DOI

Gil R.R., Giron R.P., Lozano M.S., Ruiz B., Fuente E. Pyrolysis of biocollagenic wastes of vegetable tanning. Optimization and kinetic study. J. Anal. Appl. Pyrolysis. 2012;98:129–136. doi: 10.1016/j.jaap.2012.08.010. DOI

Yang P.Y., He X.C., Zhang W.J., Qiao Y.X., Wang F., Tang K.Y. Study on thermal degradation of cattlehide collagen fibers by simultaneous TG-MS-FTIR. J. Therm. Anal. Pyrolysis. 2017;127:2005–2012. doi: 10.1007/s10973-016-5813-z. DOI

Rosu L., Varganici C.D., Crudu A.M., Rosu D. Influence of different tanning agents on bovine leather thermal degradation. J. Therm. Anal. Calorim. 2018;134:583–594. doi: 10.1007/s10973-018-7076-3. DOI

Banon E., Garcia A.N., Marcilla A. Thermogravimetric analysis and Py-GC/MS for discrimination of leather from different animal species and tanning processes. J. Anal. Appl. Pyrolysis. 2021;159:105244. doi: 10.1016/j.jaap.2021.105244. DOI

Vasanth S., Muthuramalingam T., Gupta S. Carbonization region measurement in vegetable tanned goat leather using machine vision system for evaluating performance measures of leather cut contour edges. J. Am. Leather Chem. Assoc. 2022;117:54–61. doi: 10.34314/jalca.v117i2.4728. DOI

Colmenares J.C., Lisowski P., Bermudez J.M., Cot J., Luque R. Unprecedented photocatalytic activity of carbonized leather skin residues containing chromium oxide phases. Appl. Catal. B Environ. 2014;150:432–437. doi: 10.1016/j.apcatb.2013.12.038. DOI

He Y., Lin X.Y., Yan T.S., Zhang X.N., Zhou J., Chen Y., Luo X.G. Selective adsorption of uranium from salt lake-simulated solution by phenolic-functionalized hollow sponge-like adsorbent. J. Chem. Technol. Biotechnol. 2019;94:455–467. doi: 10.1002/jctb.5790. DOI

Lee J., Hong J., Jang D., Park K.Y. Hydrothermal carbonization of waste from leather processing and feasibility of produced hydrochar as an alternative solid fuel. J. Environ. Manag. 2019;247:115–120. doi: 10.1016/j.jenvman.2019.06.067. PubMed DOI

Kluska J., Ochnio M., Kardas D., Heda L. The influence of temperature on the physicochemical properties of products of pyrolysis of leather-tannery waste. Waste Manag. 2019;88:248–256. doi: 10.1016/j.wasman.2019.03.046. PubMed DOI

Putshaka J.D., Adamu K.I., Jauro A., Tanko S.F. Effect of pyrolysis temperature on adsorbent properties of carbon from leather buffing dust and sawdust. J. Test. Eval. 2014;42:593–600. doi: 10.1520/JTE20130062. DOI

Konikkara N., Punithavelan N., Kennedy L.J., Vijaya J.J. A new approach to solid waste management: Fabrication of supercapacitor electrodes from solid leather wastes using aqueous KOH electrolyte. Clean Technol. Environ. Policy. 2017;19:1087–1098. doi: 10.1007/s10098-016-1301-1. DOI

Chaudhary R., Pati A. Adsorption isotherm and kinetics of tannic acid on to carbonized chrome tanned leather solid waste. J. Am. Leather Chem. Assoc. 2017;112:198–206.

Ashokkumar M., Narayanan N.T., Reddy A.L.M., Gupta B.K., Chandrasekaran B., Talapatra S., Ajayan P.M., Thanikaivelan P. Transforming collagen wastes into doped nanocarbons for sustainable energy applications. Green Chem. 2012;14:1689–1695. doi: 10.1039/c2gc35262a. DOI

González-Lucas M., Peinado M., Vaquero J.J., Nozal L., Aguirre J.L., González-Egido S. Microwave-assisted pyrolysis of leather waste. Energies. 2022;15:1273. doi: 10.3390/en15041273. DOI

Vasanth S., Muthuramalingam T., Prakash S.S., Raghav S.S. Investigation of SOD control on leather carbonization in diode laser cutting. Mater. Manufact. Process. 2022. early access . DOI

Liu B.H., Li Y.J., Wang Q., Bai S.B. Green fabrication of leather solid waste/thermoplastic polyurethanes composite: Physically de-bundling effect of solid-state shear milling on collagen bundles. Compos. Sci. Technol. 2019;181:107674. doi: 10.1016/j.compscitech.2019.06.001. DOI

Yuan B., Lai S.X., Li J.J., Li L., Bai S.B. Trash into treasure: Stiff, thermally insulating and highly conductive carbon aerogels from leather wastes for high-performance electromagnetic interference shielding. J. Mater. Chem. C. 2021;9:2209–2310. doi: 10.1039/D0TC05480A. DOI

Kluska J., Turzynski T., Ochnio M., Karda D. Characteristics of ash formation in the process of combustion of pelletised leather tannery waste and hardwood pellets. Renew. Energy. 2020;149:1246–1253. doi: 10.1016/j.renene.2019.10.122. DOI

Simioni T., Matos E., Bacca V.M., Perondi D., Godinho M., Dettmer A. Pyrolysis of chromed leather waste shavings in fluidized bed. J. Am. Leather Chem. Assoc. 2014;109:342–352.

Sethuraman C., Srinivas K., Sekaran G. Pyrolysis coupled pulse oxygen incineration for disposal of hazardous chromium impregnated fine particulate solid waste generated from leather industry. J. Environ. Chem. Eng. 2014;2:516–524. doi: 10.1016/j.jece.2013.10.006. DOI

Poletto P., Dettmer A., Bacca V.M., Collazzo G.C., Foletto E.L., Godinho M. Activated carbon from leather shaving waste. Part, I. Pyrolysis and physical activation. J. Am. Leather Chem. Assoc. 2016;111:325–333.

Almeida A.F., Pereira I.M., Silva P., Neto M.P., Crispim A.C., Pilao R.M., Ribeiro A.M. Pyrolysis of leather trimmings in a fixed bed reactor. J. Am. Leather Chem. Assoc. 2017;112:112–120.

Fang C.Q., Jiang X.G., Lv G.J., Yan J.H., Deng X.B. Nitrogen-containing gaseous products of chrome-tanned leather shavings during pyrolysis and combustion. Waste Manag. 2018;78:553–558. doi: 10.1016/j.wasman.2018.06.028. PubMed DOI

Fang C.Q., Jiang X.G., Lv G.J., Yan J.H., Lin X.L., Song H.B., Cao J.J. Pyrolysis characteristics and Cr speciation of chrome-tanned leather shavings: Influence of pyrolysis temperature. Energy Sources A. 2019;41:881–891. doi: 10.1080/15567036.2018.1520366. DOI

Velusamy M., Chakali B., Ganesan S., Tinwala F., Venkatachalam S.S. Investigation on pyrolysis and incineration of chrome-tanned solid waste from tanneries for effective treatment and disposal: An experimental study. Environ. Sci. Pollut. Prog. 2019;27:29778–29790. doi: 10.1007/s11356-019-07025-6. PubMed DOI

Zhang H., Zhang X., Shao J.G., Wang H.N., Zhang S.H., Chen H.P. Effect of temperature on the product characteristics and fuel-nitrogen evolution during chromium-tanned solid wastes pyrolysis polygeneration. J. Clean. Prod. 2020;254:120020. doi: 10.1016/j.jclepro.2020.120020. DOI

Van Rensburg M.L., Nkomo S.L., Mkhize N.M. Characterization and pyrolysis of post-consumer leather shoe waste for the recovery of valuable chemicals. Detritus. 2021;14:92–107. doi: 10.31025/2611-4135/2021.14064. DOI

Yuan Y., An Z.X., Zhang R.J., Wei X.X., Lai B. Efficiencies and mechanisms of heavy metals adsorption on waste leather-derived high-nitrogen activated carbon. J. Clean. Prod. 2021;293:126215. doi: 10.1016/j.jclepro.2021.126215. DOI

Banon E., Marcilla A., Garcia A.N., Martinez P., Leon M. Kinetic model of the thermal pyrolysis of chrome tanned leather treated with NaOH under different conditions using thermogravimetric analysis. Waste Manag. 2016;48:285–299. doi: 10.1016/j.wasman.2015.10.012. PubMed DOI

Hu Y.D., Liu J., Luo L., Li X.M., Wang F., Tang K.Y. Kinetics and mechanism of thermal degradation of aldehyde tanned leather. Thermochim. Acta. 2020;691:178717. doi: 10.1016/j.tca.2020.178717. DOI

Luo L., Liu C.K., Brown E.M., Wang F., Hu Y.D., Tang K.Y. Thermogravimetric analysis and pyrolysis kinetics of tannery wastes in an inert atmosphere. J. Am. Leather Chem. Assoc. 2020;115:123–131. doi: 10.34314/jalca.v115i4.3798. DOI

Marcilla A., Garcia A.N., Leon M., Banon E., Martinez P. Characterization of commercially available leathers using thermogravimetric analysis and PY/GC-MS system. J. Am. Leather Chem. Assoc. 2012;107:220–230.

Tang Y.T., Ma X.Q., Lai Z.Y., Fan Y.X. Thermogravimetric analyses of co-combustion of plastic, rubber, leather in N-2/O-2 and CO2/O-2 atmospheres. Energy. 2015;90:1066–1074. doi: 10.1016/j.energy.2015.08.015. DOI

Wahab M.A., Ates F., Yildirir E., Miskolczi N. Investigation of thermal degradation kinetics and catalytic pyrolysis of industrial sludge produced from textile and leather industrial wastewater. Biomass Conv. Biorefinery. 2022. early access . DOI

Hu Y.D., Liu J., Li X.M., Wang F., Luo L., Pei Y., Lei Y., Tang K.Y. Assessment of the pyrolysis kinetics and mechanism of vegetable-tanned leathers. J. Anal. Appl. Pyrolysis. 2022;164:105502. doi: 10.1016/j.jaap.2022.105502. DOI

Guan Y.P., Liu C.Q., Peng Q.F., Zaman F., Zhang H., Jin Z.Q., Wang A.B., Wang W.K., Huang Y.Q. Pyrolysis kinetics behavior of solid leather wastes. Waste Manag. 2019;100:122–127. doi: 10.1016/j.wasman.2019.09.005. PubMed DOI

Banon E., Torro A., Garcia A.N., Leon M., Marcilla A. Thermal characterization and pyrolysis of waste leather treated with CoCl2 and MnCl2. J. Am. Leather Chem. Assoc. 2021;116:46–57.

Yılmaz O., Kantarli I., Yuksel M., Saglam M., Yanik J. Conversion of leather wastes to useful products. Resour. Conserv. Recycl. 2007;49:436–448. doi: 10.1016/j.resconrec.2006.05.006. DOI

Kantarli I.C., Yanik J. Activated carbon from leather shaving wastes and its application in removal of toxic materials. J. Hazard. Mater. 2010;179:348–356. doi: 10.1016/j.jhazmat.2010.03.012. PubMed DOI

Sebestyén Z., Jakab E., Badea E., Barta-Rajnai E., Sendrea C., Czégény Z. Thermal degradation study of vegetable tannins and vegetable tanned leathers. J. Anal. Appl. Pyrolysis. 2019;138:178–187. doi: 10.1016/j.jaap.2018.12.022. DOI

Zhou Y.C., Chen Z.Z., Gong H.J., Yang Z.Y. Chromium speciation in tannery sludge residues after different thermal decomposition processes. J. Clean. Prod. 2021;314:128071. doi: 10.1016/j.jclepro.2021.128071. DOI

Oliveira L.C.A., Guerreiro M.C., Gonçalves M., Oliveira D.Q.L., Costa L.C.M. Preparation of activated carbon from leather waste: A new material containing small particle of chromium oxide. Mater. Lett. 2008;62:3710–3712. doi: 10.1016/j.matlet.2008.04.064. DOI

Manera C., Poli J.V., Poletto P., Ferreira S.D., Dettmer A., Wander P.R., Godinho M. Activated carbon from leather shaving waste, part II. Effect of char demineralization and activation time on surface area and pore size distribution. J. Am. Leather Chem. Assoc. 2016;111:413–421.

Putshak’a J.D., Akpabio I.O. Adsorption performance pf activated carbon from leather buffing waste. J. Am. Leather Chem. Assoc. 2010;105:313–319.

Gil R.R., Ruiz B., Lozano M.S., Fuente E. Influence of the pyrolysis step and the tanning process on KOH-activated carbons from biocollagenic wastes. Prospects as adsorbent for CO2 capture. J. Anal. Appl. Pyrolysis. 2014;110:194–204. doi: 10.1016/j.jaap.2014.09.001. DOI

Konikkara N., Kennedy L.J., Vijaya J.J. Preparation and characterization of hierarchical porous carbons derived from solid leather waste for supercapacitor applications. J. Hazard. Mater. 2016;318:173–185. doi: 10.1016/j.jhazmat.2016.06.037. PubMed DOI

Alonso-Lemus I.L., Rodriguez-Varela F.J., Figueroa-Torres M.Z., Sanchez-Castro M.E., Hernandez-Ramírez A., Lardizabal-Gutierrez D., Quintana-Owen P. Novel self-nitrogen-doped porous carbon from waste leather as highly active metal-free electrocatalyst for the ORR. Int. J. Hydrog. Energy. 2016;41:23409–23416. doi: 10.1016/j.ijhydene.2016.09.033. DOI

Llado J., Gil R.R., Lao-Luque C., Sole-Sardans M., Fuente E., Ruiz B. Highly microporous activated carbons derived from biocollagenic wastes of the leather industry as adsorbents of aromatic organic pollutants in water. J. Environ. Chem. Eng. 2017;5:2090–2100. doi: 10.1016/j.jece.2017.04.018. DOI

Martínez-Casillas D.C., Alonso-Lemus I.L., Mascorro-Gutiérrez I., Cuentas-Gallegos A.K. Leather waste-derived biochar with high performance for supercapacitors. J. Electrochem. Soc. 2018;165:A2061–A2068. doi: 10.1149/2.0421810jes. DOI

Ma F., Ding S.L., Ren H.J., Peng P.L. Preparation of chrome-tanned leather shaving-based hierarchical porous carbon and its capacitance properties. RSC Adv. 2019;9:18333–18343. doi: 10.1039/C9RA03139A. PubMed DOI PMC

Han W.Y., Wang H.L., Xia K.D., Chen S.S., Yan P.X., Deng T.S., Zhu W.B. Superior nitrogen-doped activated carbon materials for water cleaning and energy storing prepared from renewable leather wastes. Environ. Int. 2020;142:105846. doi: 10.1016/j.envint.2020.105846. PubMed DOI

Cabrera-Codony A., Ruiz B., Gil R.R., Popartan L.A., Santos-Clotas E., Martin M.J., Fuente E. From biocollagenic waste to efficient biogas purification: Applying circular economy in the leather industry. Environ. Technol. Innov. 2021;21:101229. doi: 10.1016/j.eti.2020.101229. DOI

Sun X.G., Peng Q.F., Wang Z.X., Li C.M., Huang Y.Q. N-doped porous carbon derived from Cr-tanned leather shaving wastes for synergetic adsorption of Cr(VI) from aqueous solution. Mater. Lett. 2021;284:128815. doi: 10.1016/j.matlet.2020.128815. DOI

Liu P.Y., Xing Z.H., Wang X., Diao S., Duan B.R., Yang C., Shi L. Nanoarchitectonics of nitrogen-doped porous carbon derived from leather wastes for solid-state supercapacitor. J. Mater. Sci. Mater. Electron. 2022;33:4887–4901. doi: 10.1007/s10854-021-07678-5. DOI

Marcilla A., Garcia A.N., Leon M., Martinez P., Banon E. Study of the influence of NaOH treatment on the pyrolysis of different leather tanned using thermogravimetric analysis and Py/GC-MS system. J. Anal. Appl. Pyrolysis. 2011;92:194–201. doi: 10.1016/j.jaap.2011.05.014. DOI

Liu J., Brown E.M., Uknalis J., Liu C.K., Luo L., Tang K.Y. Thermal stability and degradation kinetics of vegetable-tanned collagen fiber with in-situ precipitated calcium carbonate. J. Am. Leather Chem. Assoc. 2018;113:358–370.

Arcibar-Orozco J.A., Barajas-Elias B.S., Caballero-Briones F., Nielsen L., Rangel-Mendez J.R. Hybrid carbon nanochromium composites prepared from chrome-tanned leather shavings for dye adsorption. Water Air Soil Pollut. 2019;230:142. doi: 10.1007/s11270-019-4194-x. DOI

Kong J.J., Yue Q.Y., Huang L.H., Gao Y., Sun Y.Y., Gao B.Y., Li Q., Wang Y. Preparation, characterization and evaluation of adsorptive properties of leather waste based activated carbon via physical and chemical activation. Chem. Eng. J. 2013;221:62–71. doi: 10.1016/j.cej.2013.02.021. DOI

Ke L., Zhao K., Yan X.Y., Cao X.J., Wu X.Y., Zhang C., Luo T.T., Ding T., Yan N. Facile mineralization and valorization of Cr-containing leather shavings for electrocatalytic H2O2 generation and organic pollutant removal. Chem. Eng. J. 2022;437:135036. doi: 10.1016/j.cej.2022.135036. DOI

Liu Y.H., Zhang X.F., Gu X., Wu N.X., Zhang R.N., Shen Y., Zheng B., Wu J.S., Zhang W.N., Li S. One-step turning leather wastes into heteroatom doped carbon aerogel for performance enhanced capacitive deionization. Micropor. Mesopor. Mater. 2020;303:110303. doi: 10.1016/j.micromeso.2020.110303. DOI

Murugan K.P., Swarnalatha S., Sekaran G. Chromium Impregnated carbon fibres from tannery buffing dust waste for road applications. Mater. Today Proc. 2016;3:3703–3708. doi: 10.1016/j.matpr.2016.11.016. DOI

Murugan K.P., Balaji M., Kar S.S., Swarnalatha S., Sekaran G. Nano fibrous carbon produced from chromium bearing tannery solid waste as the bitumen modifier. J. Environ. Manag. 2020;270:110882. doi: 10.1016/j.jenvman.2020.110882. PubMed DOI

Soni R., Bhange S.N., Kurungot S. A 3-D nanoribbon-like Pt-free oxygen reduction reaction electrocatalyst derived from waste leather for anion exchange membrane fuel cells and zinc-air batteries. Nanoscale. 2019;11:7893–7902. doi: 10.1039/C9NR00977A. PubMed DOI

Lei J., Zhou J., Li J.W., Wen J.W., Su L., Duan T., Zhu W.K. Novel collagen waste derived Mn-doped nitrogen-containing carbon for supercapacitors. Electrochim. Acta. 2018;285:292–300. doi: 10.1016/j.electacta.2018.07.174. DOI

Ćirić-Marjanović G., Pašti I., Gavrilov N., Janosević A., Mentus S. Carbonised polyaniline and polypyrrole: Towards advanced nitrogen-containing carbon materials. Chem. Pap. 2013;67:781–813. doi: 10.2478/s11696-013-0312-1. DOI

Stejskal J., Vilčáková J., Jurča M., Fei H.J., Trchová M., Kolská Z., Prokeš J., Křivka I. Polypyrrole-coated melamine sponge as a precursor for conducting macroporous nitrogen-containing carbons. Coatings. 2022;12:324. doi: 10.3390/coatings12030324. DOI

Sundar V.J., Rao J.R., Muralidharan C. Cleaner chrome tanning—Emerging options. J. Clean. Prod. 2002;10:69–74. doi: 10.1016/S0959-6526(01)00015-4. DOI

Peng H., Guo J. Removal of chromium from wastewater by membrane filtration, chemical precipitation, ion exchange, adsorption electrocoagulation, electrochemical reduction, electrodialysis, electrodeionization, photocatalysis and nanotechnology: A review. Environ. Chem. Lett. 2020;18:2055–2068. doi: 10.1007/s10311-020-01058-x. DOI

Oliveira L.C.A., Coura C.V., Guimaraes L.R., Goncalves M. Removal of organic dyes using Cr-containing activated carbon prepared from leather waste. J. Hazard. Mater. 2011;192:1094–1099. doi: 10.1016/j.jhazmat.2011.06.014. PubMed DOI

Xia S.P., Song Z.L., Jeyakumar P., Bolan N., Wang H.L. Characteristics and applications of biochar for remediating Cr(VI)-contaminated soils and wastewater. Environ. Geochem. Health. 2019;42:1543–1567. doi: 10.1007/s10653-019-00445-w. PubMed DOI

Konikkara N., Kennedy L.J., Aruldoss U., Vijaya J.J. Electrical conductivity studies of nanoporous carbon derived from leather waste: Effect of pressure, temperature and porosity. J. Nanosci. Nanotechnol. 2016;16:8829–8838. doi: 10.1166/jnn.2016.11652. DOI

Stejskal J., Trchová M., Lapčák L., Kolská Z., Kohl M., Pekárek M., Prokeš J. Comparison of carbonized and activated polypyrrole globules, nanofibers, and nanotubes as conducting nanomaterials and adsorbents of organic dyes. Carbon Trends. 2021;4:100068. doi: 10.1016/j.cartre.2021.100068. DOI

Skrzypczak D., Szopa D., Mikula K., Izydorczyk G., Baśladyńska S., Hoppe V., Pstrowska K., Wzorek Z., Kominko H., Kulażyński M., et al. Tannery waste-derived biochar as a carrier of micronutrients essential to plants. Chemosphere. 2022;294:133720. doi: 10.1016/j.chemosphere.2022.133720. PubMed DOI

Stejskal J., Kohl M., Trchová M., Kolská Z., Pekárek M., Křivka I., Prokeš J. Conversion of conducting polypyrrole nanostructures to nitrogen-containing carbons and its impact on the adsorption of organic dyes. Mater. Adv. 2021;2:706–717. doi: 10.1039/D0MA00730G. DOI

Thanikaivelan P., Narayanan T.N., Gupta B.K., Reddy A.L.M., Ajayan P.M. Nanobiocomposite from collagen waste using iron oxide nanoparticles and its conversion into magnetic nanocarbon. J. Nanosci. Nanotechnol. 2015;15:4504–4509. doi: 10.1166/jnn.2015.9720. PubMed DOI

Bober P., Minisy I.M., Acharya U., Pfleger J., Babayan V., Kazantseva N., Hodan J., Stejskal J. Conducting polymer composite aerogel with magnetic properties for organic dye removal. Synth. Met. 2020;260:116266. doi: 10.1016/j.synthmet.2019.116266. DOI

Foo K.Y., Hameed B.H. An overview of dye removal via activate carbon adsorption process. Desalin. Water Treat. 2010;19:255–274. doi: 10.5004/dwt.2010.1214. DOI

Gupta R., Pandit C., Pandit S., Gupta P.K., Lahiri D., Agarwal D., Pandey S. Potential and future prospects of biochar-based materials and their applications in removal of organic contaminants from industrial wastewater. J. Mater. Cycles Waste Manag. 2022;24:852–876. doi: 10.1007/s10163-022-01391-z. DOI

Jjagwe J., Olupot P.W., Menya E. Synthesis and application of granular activated carbon from biomass waste materials for water treatment: A review. J. Bioresour. Bioprod. 2021;6:292–322. doi: 10.1016/j.jobab.2021.03.003. DOI

Obey G., Adelaide M., Ramaraj R. Biochar derived from non-customized matamba fruit shell as an adsorbent for wastewater treatment. J. Bioresour. Bioprod. 2022;7:109–115. doi: 10.1016/j.jobab.2021.12.001. DOI

Pinheiro N.S.C., Perez-Lopez O.W., Gutterres M. Solid leather wastes as adsorbents for cationic and anionic dye removal. Environ. Technol. 2022;43:1285–1293. doi: 10.1080/09593330.2020.1825531. PubMed DOI

Puchana-Rosero M.J., Lima E.C., Mella B., Da Costa D., Poll E., Gutterres M. A coagulation-flocculation process combined with adsorption using activated carbon obtained from sludge for dye removal from tannery wastewater. J. Chil. Chem. Soc. 2018;63:3867–3874. doi: 10.4067/s0717-97072018000103867. DOI

Stejskal J. Interaction of conducting polymers, polyaniline and polypyrrole, with organic dyes: Polymer morphology control, dye adsorption and photocatalytic decomposition. Chem. Pap. 2020;74:1–54. doi: 10.1007/s11696-019-00982-9. DOI

Stejskal J. Recent advances in the removal of organic dyes from aqueous media with conducting polymers, polyaniline and polypyrrole and their composites. Polymers. 2022;14:4243. doi: 10.3390/polym14194243. PubMed DOI PMC

Bashir M.A., Khalid M., Naveed M., Ahmad R., Gao B. Influence of feedstock and pyrolytic temperature of biochar on physico-chemical characteristics and sorption of chromium in tannery polluted soil. Int. J. Agricult. Biol. 2018;20:2823–2834. doi: 10.17957/IJAB/15.0841. DOI

Zheng S., Zhang J.W., Deng H.B., Du Y.M., Shi X.W. Chitin derived nitrogen-doped porous carbons with ultrahigh specific surface area and tailored hierarchical porosity for high performance supercapacitors. J. Bioresour. Bioprod. 2021;6:142–151. doi: 10.1016/j.jobab.2021.02.002. DOI

Xiao J.L., Li H.L., Zhang H., He S.J., Zhang Q., Liu K.M., Jiang S.H., Duan G.G., Zhang K. Nanocellulose and its derived composite electrodes towards supercapacitor: Fabrication, properties, and challenges. J. Bioresour. Bioprod. 2022;7:245–269. doi: 10.1016/j.jobab.2022.05.003. DOI

Wang Y.F., Zhang L., Hou H.Q., Xu W.H., Duan G.G., He S.J., Liu K.M., Jiang S.H. Recent progress in carbon-based materials for supercapacitor electrodes: A review. J. Mater. Sci. 2020;56:73–200. doi: 10.1007/s10853-020-05157-6. DOI

Chatterjee D.P., Nandi A.K. A review on the recent advances in hybrid supercapacitors. J. Mater. Chem. A. 2021;9:15880–15918. doi: 10.1039/D1TA02505H. DOI

Torres A., Lange L.C., de Melo G.C.B., Praes G.E. Pyrolysis of chromium rich tanning industrial wastes and utilization of carbonized wastes in metallurgical process. Waste Manag. 2016;48:448–456. doi: 10.1016/j.wasman.2015.11.046. PubMed DOI

Longo L., Taghavi S., Ghedini E., Menegazzo F., Di Michele A., Cruciani G., Signoretto M. Selective hydrogenation of 5-hydroxymethylfurfural to 1-hydroxy-2,5-hexanedione by biochar-supported Ru catalysts. ChemSusChem. 2022;15:202200437. doi: 10.1002/cssc.202200437. PubMed DOI

Sivaprakash K., Maharaja P., Pavithra S., Boopathy R., Sekaran G. Preparation of light weight constructional materials from chrome containing buffing dust solid waste generated in leather industry. J. Mater. Cycles Waste Manag. 2017;19:928–938. doi: 10.1007/s10163-016-0494-z. DOI

Andrade J.J.D., Mattje V. Incorporation of chromium-tanned leather residue in mortars. Proc. Inst. Civil Eng. Construct. Mater. 2012;165:73–86. doi: 10.1680/coma.10.00026. DOI

Enfrin M., Giustozzi F. Recent advances in the construction of sustainable asphalt roads with recycled plastic. Polym. Int. 2022;71:1316–1383. doi: 10.1002/pi.6405. DOI

Guo X.X., Liu H.T., Zhang J. The role of biochar in organic waste composting and soil improvement: A review. Waste Manag. 2020;102:844–899. doi: 10.1016/j.wasman.2019.12.003. PubMed DOI

Stejskal J., Sapurina I., Vilčáková J., Humpolíček P., Truong T.H., Shishov M.A., Trchová M., Kopecký D., Kolská Z., Prokeš J., et al. Conducting polypyrrole-coated macroporous melamine sponges: A simple toy or an advanced material? Chem. Pap. 2021;75:5035–5055. doi: 10.1007/s11696-021-01776-8. DOI

Ul-Hoque M.I., Holze R. Intrinsically conducting polymer composites as active masses in supercapacitors. Polymers. 2023;15:730. doi: 10.3390/polym15030730. PubMed DOI PMC

Sapurina I., Stejskal J., Šeděnková I., Trchová M., Kovářová J., Hromádková J., Kopecká J., Cieslar M., El-Nasr A.A., Ayad M.M. Catalytic activity of polypyrrole nanotubes decorated with noble-metal nanoparticles and their conversion to carbonized analogues. Synth. Met. 2016;214:14–32. doi: 10.1016/j.synthmet.2016.01.009. DOI

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Carbonized Leather Waste with Deposited Polypyrrole Nanotubes: Conductivity and Dye Adsorption

. 2023 Oct 19 ; 13 (20) : . [epub] 20231019

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...