Dynamics of mitochondrial RNA-binding protein complex in Trypanosoma brucei and its petite mutant under optimized immobilization conditions
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
25063375
PubMed Central
PMC4187623
DOI
10.1128/ec.00149-14
PII: EC.00149-14
Knihovny.cz E-zdroje
- MeSH
- mitochondriální proteiny genetika MeSH
- mutace MeSH
- proteiny vázající RNA genetika metabolismus MeSH
- protozoální proteiny genetika metabolismus MeSH
- RNA interference MeSH
- RNA mitochondriální MeSH
- RNA genetika MeSH
- Saccharomyces cerevisiae genetika MeSH
- Trypanosoma brucei brucei genetika MeSH
- viabilita buněk genetika MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- gBP21 protein, Trypanosoma brucei MeSH Prohlížeč
- mitochondriální proteiny MeSH
- proteiny vázající RNA MeSH
- protozoální proteiny MeSH
- RNA mitochondriální MeSH
- RNA MeSH
There are a variety of complex metabolic processes ongoing simultaneously in the single, large mitochondrion of Trypanosoma brucei. Understanding the organellar environment and dynamics of mitochondrial proteins requires quantitative measurement in vivo. In this study, we have validated a method for immobilizing both procyclic stage (PS) and bloodstream stage (BS) T. brucei brucei with a high level of cell viability over several hours and verified its suitability for undertaking fluorescence recovery after photobleaching (FRAP), with mitochondrion-targeted yellow fluorescent protein (YFP). Next, we used this method for comparative analysis of the translational diffusion of mitochondrial RNA-binding protein 1 (MRP1) in the BS and in T. b. evansi. The latter flagellate is like petite mutant Saccharomyces cerevisiae because it lacks organelle-encoded nucleic acids. FRAP measurement of YFP-tagged MRP1 in both cell lines illuminated from a new perspective how the absence or presence of RNA affects proteins involved in mitochondrial RNA metabolism. This work represents the first attempt to examine this process in live trypanosomes.
Faculty of Sciences University of South Bohemia České Budĕjovice Czech Republic
Institute for Molecular Genetics Czech Academy of Sciences Prague Czech Republic
Institute of Parasitology Biology Centre Czech Academy of Sciences České Budĕjovice Czech Republic
Zobrazit více v PubMed
Matthews KR. 2005. The developmental cell biology of Trypanosoma brucei. J. Cell Sci. 118:283–290. 10.1242/jcs.01649 PubMed DOI PMC
Ho HH, He CY, de Graffenried CL, Murrells LJ, Warren G. 2006. Ordered assembly of the duplicating Golgi in Trypanosoma brucei. Proc. Natl. Acad. Sci. U. S. A. 103:7676–7681. 10.1073/pnas.0602595103 PubMed DOI PMC
He CY, Pypaert M, Warren G. 2005. Golgi duplication in Trypanosoma brucei requires Centrin2. Science 310:1196–1198. 10.1126/science.1119969 PubMed DOI
Lukeš J, Hashimi H, Verner Z, Čičová Z. 2010. The remarkable mitochondrion of trypanosomes and related flagellates, p 227–252 In de Souza W. (ed), Structures and organelles in pathogenic protists. Springer, Berlin, Germany
Bringaud F, Riviere L, Coustou V. 2006. Energy metabolism of trypanosomatids: adaptation to available carbon sources. Mol. Biochem. Parasitol. 149:1–9. 10.1016/j.molbiopara.2006.03.017 PubMed DOI
Gordon GW, Berry G, Liang XH, Levine B, Herman B. 1998. Quantitative fluorescence resonance energy transfer measurements using fluorescence microscopy. Biophys. J. 74:2702–2713. 10.1016/S0006-3495(98)77976-7 PubMed DOI PMC
Broadhead R, Dawe HR, Farr H, Griffiths S, Hart SR, Portman N, Shaw MK, Ginger ML, Gaskell SJ, McKean PG, Gull K. 2006. Flagellar motility is required for the viability of the bloodstream trypanosome. Nature 440:224–227. 10.1038/nature04541 PubMed DOI
Pérez-Morga D, Vanhollebeke B, Paturiaux-Hanocq F, Nolan DP, Lins L, Homble F, Vanhamme L, Tebabi P, Pays A, Poelvoorde P, Jacquet A, Brasseur R, Pays E. 2005. Apolipoprotein L-I promotes trypanosome lysis by forming pores in lysosomal membranes. Science 309:469–472. 10.1126/science.1114566 PubMed DOI
Schnaufer A, Clark-Walker GD, Steinberg AG, Stuart K. 2005. The F1-ATP synthase complex in bloodstream stage trypanosomes has an unusual and essential function. EMBO J. 24:4029–4040. 10.1038/sj.emboj.7600862 PubMed DOI PMC
Esson HJ, Morriswood B, Yavuz S, Vidilaseris K, Dong G, Warren G. 2012. Morphology of the trypanosome bilobe, a novel cytoskeletal structure. Eukaryot. Cell 11:761–772. 10.1128/EC.05287-11 PubMed DOI PMC
Buisson J, Chenouard N, Lagache T, Blisnick T, Olivo-Marin JC, Bastin P. 2013. Intraflagellar transport proteins cycle between the flagellum and its base. J. Cell Sci. 126:327–338. 10.1242/jcs.117069 PubMed DOI
Price HP, MacLean L, Marrison J, O'Toole PJ, Smith DF. 2010. Validation of a new method for immobilising kinetoplastid parasites for live cell imaging. Mol. Biochem. Parasitol. 169:66–69. 10.1016/j.molbiopara.2009.09.008 PubMed DOI PMC
Maclean LM, O'Toole PJ, Stark M, Marrison J, Seelenmeyer C, Nickel W, Smith DF. 2012. Trafficking and release of Leishmania metacyclic HASPB on macrophage invasion. Cell. Microbiol. 14:740–761. 10.1111/j.1462-5822.2012.01756.x PubMed DOI PMC
Zíková A, Kopečná J, Schumacher MA, Stuart K, Trantírek L, Lukeš J. 2008. Structure and function of the native and recombinant mitochondrial MRP1/MRP2 complex from Trypanosoma brucei. Int. J. Parasitol. 38:901–912. 10.1016/j.ijpara.2007.12.009 PubMed DOI PMC
Schumacher MA, Karamooz E, Zíková A, Trantírek L, Lukeš J. 2006. Crystal structures of T. brucei MRP1/MRP2 guide-RNA binding complex reveal RNA matchmaking mechanism. Cell 126:701–711. 10.1016/j.cell.2006.06.047 PubMed DOI
Müller UF, Lambert L, Goringer HU. 2001. Annealing of RNA editing substrates facilitated by guide RNA-binding protein gBP21. EMBO J. 20:1394–1404. 10.1093/emboj/20.6.1394 PubMed DOI PMC
Aphasizhev R, Aphasizheva I, Nelson RE, Simpson L. 2003. A 100-kD complex of two RNA-binding proteins from mitochondria of Leishmania tarentolae catalyzes RNA annealing and interacts with several RNA editing components. RNA 9:62–76. 10.1261/rna.2134303 PubMed DOI PMC
Fisk JC, Presnyak V, Ammerman ML, Read LK. 2009. Distinct and overlapping functions of MRP1/2 and RBP16 in mitochondrial RNA metabolism. Mol. Cell. Biol. 29:5214–5225. 10.1128/MCB.00520-09 PubMed DOI PMC
Lambert L, Müller UF, Souza AE, Goringer HU. 1999. The involvement of gRNA-binding protein gBP21 in RNA editing—an in vitro and in vivo analysis. Nucleic Acids Res. 27:1429–1436. 10.1093/nar/27.6.1429 PubMed DOI PMC
Vondrusková E, van den Burg J, Zíková A, Ernst NL, Stuart K, Benne R, Lukeš J. 2005. RNA interference analyses suggest a transcript-specific regulatory role for mitochondrial RNA-binding proteins MRP1 and MRP2 in RNA editing and other RNA processing in Trypanosoma brucei. J. Biol. Chem. 280:2429–2438. 10.1074/jbc.M405933200 PubMed DOI
Lai DH, Hashimi H, Lun ZR, Ayala FJ, Lukeš J. 2008. Adaptations of Trypanosoma brucei to gradual loss of kinetoplast DNA: Trypanosoma equiperdum and Trypanosoma evansi are petite mutants of T. brucei. Proc. Natl. Acad. Sci. U. S. A. 105:1999–2004. 10.1073/pnas.0711799105 PubMed DOI PMC
Dean S, Gould MK, Dewar CE, Schnaufer AC. 2013. Single point mutations in ATP synthase compensate for mitochondrial genome loss in trypanosomes. Proc. Natl. Acad. Sci. U. S. A. 110:14741–14746. 10.1073/pnas.1305404110 PubMed DOI PMC
Paris Z, Hashimi H, Lun S, Alfonzo JD, Lukeš J. 2011. Futile import of tRNAs and proteins into the mitochondrion of Trypanosoma brucei evansi. Mol. Biochem. Parasitol. 176:116–120. 10.1016/j.molbiopara.2010.12.010 PubMed DOI PMC
Cristodero M, Seebeck T, Schneider A. 2010. Mitochondrial translation is essential in bloodstream forms of Trypanosoma brucei. Mol. Microbiol. 78:757–769. 10.1111/j.1365-2958.2010.07368.x PubMed DOI
Domingo GJ, Palazzo SS, Wang B, Pannicucci B, Salavati R, Stuart KD. 2003. Dyskinetoplastic Trypanosoma brucei contains functional editing complexes. Eukaryot. Cell 2:569–577. 10.1128/EC.2.3.569-577.2003 PubMed DOI PMC
Hashimi H, McDonald L, Str̆íbrná E, Lukeš J. 2013. Trypanosome Letm1 protein is essential for mitochondrial potassium homeostasis. J. Biol. Chem. 288:26914–26925. 10.1074/jbc.M113.495119 PubMed DOI PMC
Kelly S, Reed J, Kramer S, Ellis L, Webb H, Sunter J, Salje J, Marinsek N, Gull K, Wickstead B, Carrington M. 2007. Functional genomics in Trypanosoma brucei: a collection of vectors for the expression of tagged proteins from endogenous and ectopic gene loci. Mol. Biochem. Parasitol. 154:103–109. 10.1016/j.molbiopara.2007.03.012 PubMed DOI PMC
Martins SB, Rino J, Carvalho T, Carvalho C, Yoshida M, Klose JM, de Almeida SF, Carmo-Fonseca M. 2011. Spliceosome assembly is coupled to RNA polymerase II dynamics at the 3′ end of human genes. Nat. Struct. Mol. Biol. 18:1115–1123. 10.1038/nsmb.2124 PubMed DOI
Dieteren CE, Gielen SC, Nijtmans LG, Smeitink JA, Swarts HG, Brock R, Willems PH, Koopman WJ. 2011. Solute diffusion is hindered in the mitochondrial matrix. Proc. Natl. Acad. Sci. U. S. A. 108:8657–8662. 10.1073/pnas.1017581108 PubMed DOI PMC
Kaňa R. 2013. Mobility of photosynthetic proteins. Photosynth. Res. 116:465–479. 10.1007/s11120-013-9898-y PubMed DOI
Goodwin JS, Kenworthy AK. 2005. Photobleaching approaches to investigate diffusional mobility and trafficking of Ras in living cells. Methods 37:154–164. 10.1016/j.ymeth.2005.05.013 PubMed DOI
Baicu SC, Taylor MJ. 2002. Acid-base buffering in organ preservation solutions as a function of temperature: new parameters for comparing buffer capacity and efficiency. Cryobiology 45:33–48. 10.1016/S0011-2240(02)00104-9 PubMed DOI
Fritz-Laylin LK, Prochnik SE, Ginger ML, Dacks JB, Carpenter ML, Field MC, Kuo A, Paredez A, Chapman J, Pham J, Shu S, Neupane R, Cipriano M, Mancuso J, Tu H, Salamov A, Lindquist E, Shapiro H, Lucas S, Grigoriev IV, Cande WZ, Fulton C, Rokhsar DS, Dawson SC. 2010. The genome of Naegleria gruberi illuminates early eukaryotic versatility. Cell 140:631–642. 10.1016/j.cell.2010.01.032 PubMed DOI
Huranová M, Ivani I, Benda A, Poser I, Brody Y, Hof M, Shav-Tal Y, Neugebauer KM, Stanĕk D. 2010. The differential interaction of snRNPs with pre-mRNA reveals splicing kinetics in living cells. J. Cell Biol. 191:75–86. 10.1083/jcb.201004030 PubMed DOI PMC
Partikian A, Olveczky B, Swaminathan R, Li Y, Verkman AS. 1998. Rapid diffusion of green fluorescent protein in the mitochondrial matrix. J. Cell Biol. 140:821–829. 10.1083/jcb.140.4.821 PubMed DOI PMC
Hashimi H, Zimmer SL, Ammerman ML, Read LK, Lukeš J. 2013. Dual core processing: MRB1 is an emerging kinetoplast RNA editing complex. Trends Parasitol. 29:91–99. 10.1016/j.pt.2012.11.005 PubMed DOI PMC
Panigrahi AK, Zíková A, Dalley RA, Acestor N, Ogata Y, Anupama A, Myler PJ, Stuart KD. 2008. Mitochondrial complexes in Trypanosoma brucei: a novel complex and a unique oxidoreductase complex. Mol. Cell. Proteomics 7:534–545. 10.1074/mcp.M700430-MCP200 PubMed DOI
Maslov D, Agrawal R. 2012. Mitochondrial translation in trypanosomatids, p 215–236 In Bindereif A. (ed), RNA metabolism in trypanosomes. Springer, Berlin, Germany
Schnaufer A, Domingo GJ, Stuart K. 2002. Natural and induced dyskinetoplastic trypanosomatids: how to live without mitochondrial DNA. Int. J. Parasitol. 32:1071–1084. 10.1016/S0020-7519(02)00020-6 PubMed DOI
TbUTP10, a protein involved in early stages of pre-18S rRNA processing in Trypanosoma brucei
Integrity of the core mitochondrial RNA-binding complex 1 is vital for trypanosome RNA editing