Dual core processing: MRB1 is an emerging kinetoplast RNA editing complex
Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic
Typ dokumentu časopisecké články, Research Support, N.I.H., Extramural, práce podpořená grantem, přehledy
Grantová podpora
F32 AI092902
NIAID NIH HHS - United States
R01 AI061580
NIAID NIH HHS - United States
PubMed
23305619
PubMed Central
PMC3558622
DOI
10.1016/j.pt.2012.11.005
PII: S1471-4922(12)00198-5
Knihovny.cz E-zdroje
- MeSH
- editace RNA * MeSH
- guide RNA, Kinetoplastida metabolismus MeSH
- Kinetoplastida genetika metabolismus MeSH
- messenger RNA metabolismus MeSH
- protozoální proteiny metabolismus MeSH
- RNA protozoální genetika metabolismus MeSH
- Trypanosoma brucei brucei genetika metabolismus MeSH
- uridin metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
- Research Support, N.I.H., Extramural MeSH
- Názvy látek
- guide RNA, Kinetoplastida MeSH
- messenger RNA MeSH
- protozoální proteiny MeSH
- RNA protozoální MeSH
- uridin MeSH
Our understanding of kinetoplastid RNA (kRNA) editing has centered on this paradigm: guide RNAs (gRNAs) provide a blueprint for uridine insertion/deletion into mitochondrial mRNAs by the RNA editing core complex (RECC). The characterization of constituent subunits of the mitochondrial RNA-binding complex 1 (MRB1) implies that it too is vital to the editing process. The recently elucidated MRB1 architecture will be instrumental in putting functional data from individual subunits into context. Our model depicts two functions for MRB1: mediating multi-round kRNA editing by coordinating the exchange of multiple gRNAs required by RECC to edit lengthy regions of mRNAs, and then linking kRNA editing with other RNA processing events.
Zobrazit více v PubMed
Benne R, et al. Major transcript of the frameshifted coxII gene from trypanosome mitochondria contains four nucleotides that are not encoded in the DNA. Cell. 1986;46:819–826. PubMed
Blum B, et al. A model for RNA editing in kinetoplastid mitochondria: “guide” RNA molecules transcribed from maxicircle DNA provide the edited information. Cell. 1990;60:189–198. PubMed
Seiwert SD, Stuart K. RNA editing: transfer of genetic information from gRNA to precursor mRNA in vitro. Science. 1994;266:114–117. PubMed
Simpson L, et al. Mitochondrial proteins and complexes in Leishmania and Trypanosoma involved in U-insertion/deletion RNA editing. RNA. 2004;10:159–170. PubMed PMC
Stuart KD, et al. Complex management: RNA editing in trypanosomes. Trends Biochem Sci. 2005;30:97–105. PubMed
Lukeš J, et al. The remarkable mitochondrion of trypanosomes and related flagellates. In: de Souza W, editor. Structures and Organelles in Pathogenic Protists. Springer; 2010. pp. 227–252.
Salavati R, et al. Inhibitors of RNA editing as potential chemotherapeutics against trypanosomatid pathogens. Int J Parasitol Drugs & Drug Res. 2012;2:36–46. PubMed PMC
Hashimi H, et al. TbRGG1, an essential protein involved in kinetoplastid RNA metabolism that is associated with a novel multiprotein complex. RNA. 2008;14:970–980. PubMed PMC
Panigrahi AK, et al. Mitochondrial complexes in Trypanosoma brucei: a novel complex and a unique oxidoreductase complex. Mol Cell Proteomics. 2008;7:534–545. PubMed
Etheridge RD, et al. 3′ adenylation determines mRNA abundance and monitors completion of RNA editing in T. brucei mitochondria. EMBO J. 2008;27:1596–1608. PubMed PMC
Weng J, et al. Guide RNA-binding complex from mitochondria of trypanosomatids. Mol Cell. 2008;32:198–209. PubMed PMC
Hashimi H, et al. Kinetoplastid guide RNA biogenesis is dependent on subunits of the mitochondrial RNA binding complex 1 and mitochondrial RNA polymerase. RNA. 2009;15:588–599. PubMed PMC
Hernandez A, et al. REH2 RNA helicase in kinetoplastid mitochondria: ribonucleoprotein complexes and essential motifs for unwinding and guide RNA (gRNA) binding. J Biol Chem. 2010;285:1220–1228. PubMed PMC
Ammerman ML, et al. MRB3010 is a core component of the MRB1 complex that facilitates an early step of the kinetoplastid RNA editing process. RNA. 2011;17:865–877. PubMed PMC
Kafková L, et al. Functional characterization of two paralogs that are novel RNA binding proteins influencing mitochondrial transcripts of Trypanosoma brucei. RNA. 2012;18:1846–1861. PubMed PMC
Ammerman ML, et al. Architecture of the trypanosome RNA editing accessory complex, MRB1. Nucl Acids Res. 2012;40:5637–5650. PubMed PMC
Acestor N, et al. The MRB1 complex functions in kinetoplastid RNA processing. RNA. 2009;15:277–286. PubMed PMC
Fisk JC, et al. TbRGG2, an essential RNA editing accessory factor in two Trypanosoma brucei life cycle stages. J Biol Chem. 2008;283:23016–23025. PubMed PMC
Ammerman ML, et al. TbRGG2 facilitates kinetoplastid RNA editing initiation and progression past intrinsic pause sites. RNA. 2010;16:2239–2251. PubMed PMC
Foda BM, et al. Multifunctional G-rich and RRM-containing domains of TbRGG2 perform separate yet essential functions in trypanosome RNA editing. Eukaryot Cell. 2012;11:1119–1131. PubMed PMC
McManus MT, et al. Trypanosoma brucei guide RNA poly(U) tail formation is stabilized by cognate mRNA. Mol Cell Biol. 2000;20:883–891. PubMed PMC
Feagin JE, et al. Developmentally regulated addition of nucleotides within apocytochrome b transcripts in Trypanosoma brucei. Cell. 1987;49:337–345. PubMed
Maslov DA, Simpson L. The polarity of editing within a multiple gRNA-mediated domain is due to formation of anchors for upstream gRNAs by downstream editing. Cell. 1992;70:459–467. PubMed
Li F, et al. Trypanosome REH1 is an RNA helicase involved with the 3′–5′ polarity of multiple gRNA-guided uridine insertion/deletion RNA editing. Proc Natl Acad Sci USA. 2011;108:3542–3547. PubMed PMC
Grams J, et al. A trypanosome mitochondrial RNA polymerase is required for transcription and replication. J Biol Chem. 2002;277:16952–16959. PubMed
Madina BR, et al. Guide RNA biogenesis involves a novel RNase III family endoribonuclease in Trypanosoma brucei. RNA. 2011;17:1821–1830. PubMed PMC
Koslowsky DJ, Yahampath G. Mitochondrial mRNA 3′ cleavage/polyadenylation and RNA editing in Trypanosoma brucei are independent events. Mol Biochem Parasit. 1997;90:81–94. PubMed
Aphasizheva I, Aphasizhev R. RET1-catalyzed uridylylation shapes the mitochondrial transcriptome in Trypanosoma brucei. Mol Cell Biol. 2010;30:1555–1567. PubMed PMC
Adler BK, et al. Modification of Trypanosoma brucei mitochondrial rRNA by posttranscriptional 3′ polyuridine tail formation. Mol Cell Biol. 1991;11:5878–5884. PubMed PMC
Blum B, Simpson L. Guide RNAs in kinetoplastid mitochondria have a nonencoded 3′ oligo(U) tail involved in recognition of the preedited region. Cell. 1990;62:391–397. PubMed
Ryan CM, Read LK. UTP-dependent turnover of Trypanosoma brucei mitochondrial mRNA requires UTP polymerization and involves the RET1 TUTase. RNA. 2005;11:763–773. PubMed PMC
Zimmer SL, et al. Additive and transcript-specific effects of KPAP1 and TbRND activities on 3′ non-encoded tail characteristics and mRNA stability in Trypanosoma brucei. PLoS One. 2012;7:e37639. PubMed PMC
Kao CY, Read LK. Opposing effects of polyadenylation on the stability of edited and unedited mitochondrial RNAs in Trypanosoma brucei. Mol Cell Biol. 2005;25:1634–1644. PubMed PMC
Aphasizheva I, et al. Pentatricopeptide repeat proteins stimulate mRNA adenylation/uridylation to activate mitochondrial translation in trypanosomes. Mol Cell. 2011;42:106–117. PubMed PMC
Andrade MA, et al. Comparison of ARM and HEAT protein repeats. J Mol Biol. 2001;309:1–18. PubMed
Aphasizhev R, et al. A 100-kD complex of two RNA-binding proteins from mitochondria of Leishmania tarentolae catalyzes RNA annealing and interacts with several RNA editing components. RNA. 2003;9:62–76. PubMed PMC
Golden DE, Hajduk SL. The 3′-untranslated region of cytochrome oxidase II mRNA functions in RNA editing of African trypanosomes exclusively as a cis guide RNA. RNA. 2005;11:29–37. PubMed PMC
Jackson AP. Tandem gene arrays in Trypanosoma brucei: comparative phylogenomic analysis of duplicate sequence variation. BMC Evol Biol. 2007;7:54. PubMed PMC
Lukeš J, et al. How a neutral evolutionary ratchet can build cellular complexity. IUBMB Life. 2011;63:528–537. PubMed
Zíková A, et al. Trypanosoma brucei mitochondrial ribosomes: affinity purification and component identification by mass spectrometry. Mol Cell Proteomics. 2008;7:1286–1296. PubMed PMC
Ochsenreiter T, et al. Alternative mRNA editing in trypanosomes is extensive and may contribute to mitochondrial protein diversity. PLoS One. 2008;3:e1566. PubMed PMC
Speijer D. Is kinetoplastid pan-editing the result of an evolutionary balancing act? IUBMB Life. 2006;58:91–96. PubMed
Gray MW, et al. Cell biology. Irremediable complexity? Science. 2010;330:920–921. PubMed
Carnes J, et al. Endonuclease associations with three distinct editosomes in Trypanosoma brucei. J Biol Chem. 2011;286:19320–19330. PubMed PMC
Carnes J, et al. RNA editing in Trypanosoma brucei requires three different editosomes. Mol Cell Biol. 2008;28:122–130. PubMed PMC
Mitochondrial RNA editing in Trypanoplasma borreli: New tools, new revelations
Lexis and Grammar of Mitochondrial RNA Processing in Trypanosomes
Combinatorial interplay of RNA-binding proteins tunes levels of mitochondrial mRNA in trypanosomes
Trypanosome RNA editing: the complexity of getting U in and taking U out
Analysis of the mitochondrial maxicircle of Trypanosoma lewisi, a neglected human pathogen
Integrity of the core mitochondrial RNA-binding complex 1 is vital for trypanosome RNA editing
Unexpectedly Streamlined Mitochondrial Genome of the Euglenozoan Euglena gracilis