Mobility of photosynthetic proteins

. 2013 Oct ; 116 (2-3) : 465-79. [epub] 20130817

Jazyk angličtina Země Nizozemsko Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid23955784

The mobility of photosynthetic proteins represents an important factor that affects light-energy conversion in photosynthesis. The specific feature of photosynthetic proteins mobility can be currently measured in vivo using advanced microscopic methods, such as fluorescence recovery after photobleaching which allows the direct observation of photosynthetic proteins mobility on a single cell level. The heterogeneous organization of thylakoid membrane proteins results in heterogeneity in protein mobility. The thylakoid membrane contains both, protein-crowded compartments with immobile proteins and fluid areas (less crowded by proteins), allowing restricted diffusion of proteins. This heterogeneity represents an optimal balance as protein crowding is necessary for efficient light-energy conversion, and protein mobility plays an important role in the regulation of photosynthesis. The mobility is required for an optimal light-harvesting process (e.g., during state transitions), and also for transport of proteins during their synthesis or repair. Protein crowding is then a key limiting factor of thylakoid membrane protein mobility; the less thylakoid membranes are crowded by proteins, the higher protein mobility is observed. Mobility of photosynthetic proteins outside the thylakoid membrane (lumen and stroma/cytosol) is less understood. Cyanobacterial phycobilisomes attached to the stromal side of the thylakoid can move relatively fast. Therefore, it seems that stroma with their active enzymes of the Calvin-Benson cycle, are a more fluid compartment in comparison to the rather rigid thylakoid lumen. In conclusion, photosynthetic protein diffusion is generally slower in comparison to similarly sized proteins from other eukaryotic membranes or organelles. Mobility of photosynthetic proteins resembles restricted protein diffusion in bacteria, and has been rationalized by high protein crowding similar to that of thylakoids.

Zobrazit více v PubMed

Science. 1997 Jun 27;276(5321):2039-42 PubMed

Biophys J. 2012 Apr 4;102(7):1656-65 PubMed

Nat Rev Mol Cell Biol. 2001 Jun;2(6):444-56 PubMed

Plant Physiol. 1998 Sep;118(1):103-13 PubMed

Trends Plant Sci. 2008 May;13(5):201-7 PubMed

Biophys J. 1983 Jan;41(1):95-7 PubMed

Curr Opin Biotechnol. 2011 Feb;22(1):117-26 PubMed

Biochim Biophys Acta. 2012 Aug;1817(8):1237-47 PubMed

Ann Bot. 2010 Jul;106(1):1-16 PubMed

Plant Cell. 2008 Apr;20(4):1029-39 PubMed

Biochim Biophys Acta. 2001 Apr 2;1504(2-3):229-34 PubMed

Proc Natl Acad Sci U S A. 2010 Feb 2;107(5):2337-42 PubMed

Proc Natl Acad Sci U S A. 2012 Jul 10;109(28):11431-6 PubMed

J Exp Bot. 2004 Aug;55(403):1697-706 PubMed

Biochim Biophys Acta. 2013 Mar;1827(3):411-9 PubMed

Biochemistry. 2005 May 10;44(18):7085-94 PubMed

Nat Cell Biol. 2000 May;2(5):288-95 PubMed

Biochim Biophys Acta. 2005 Aug 15;1709(1):58-68 PubMed

Photosynth Res. 2008 Oct-Dec;98(1-3):621-9 PubMed

PLoS One. 2012;7(1):e29700 PubMed

PLoS One. 2009;4(4):e5295 PubMed

J Cell Biol. 1997 Sep 22;138(6):1193-206 PubMed

Nat Mater. 2012 May 22;11(6):481-5 PubMed

Plant Physiol. 1970 Mar;45(3):289-99 PubMed

Proc Natl Acad Sci U S A. 2006 Feb 14;103(7):2098-102 PubMed

Photosynth Res. 2012 Mar;111(1-2):71-9 PubMed

Biochemistry. 2008 Jun 24;47(25):6583-9 PubMed

FEBS Lett. 2003 Oct 23;553(3):295-8 PubMed

Biochemistry. 2008 Sep 16;47(37):9747-55 PubMed

Biochim Biophys Acta. 2007 Jun;1767(6):750-6 PubMed

Biochemistry. 2005 Dec 27;44(51):16939-48 PubMed

Biophys J. 2002 Jul;83(1):407-15 PubMed

Mol Microbiol. 1999 Sep;33(5):1050-8 PubMed

Biochemistry. 1996 Jul 23;35(29):9435-45 PubMed

Curr Biol. 2007 Mar 6;17(5):462-7 PubMed

Photosynth Res. 2009 Mar;99(3):161-71 PubMed

J Cell Biol. 1998 Feb 23;140(4):821-9 PubMed

Biochim Biophys Acta. 2010 Nov;1798(11):2022-32 PubMed

Arch Biochem Biophys. 1968 Jul;126(1):16-26 PubMed

Nature. 1997 Jul 24;388(6640):355-8 PubMed

Curr Opin Cell Biol. 2010 Jun;22(3):403-11 PubMed

Proc Natl Acad Sci U S A. 2007 Apr 17;104(16):6672-7 PubMed

Biochem Soc Trans. 2008 Oct;36(Pt 5):967-70 PubMed

Biophys J. 1976 Sep;16(9):1055-69 PubMed

J Biol Chem. 2004 Aug 27;279(35):36514-8 PubMed

FEBS Lett. 2009 Feb 18;583(4):670-4 PubMed

Proc Natl Acad Sci U S A. 1982 Nov;79(22):6866-70 PubMed

Exp Cell Res. 1997 May 25;233(1):128-34 PubMed

Biochim Biophys Acta. 2012 Feb;1817(2):319-27 PubMed

Mol Microbiol. 2003 Jun;48(6):1481-9 PubMed

EMBO Rep. 2005 Aug;6(8):782-6 PubMed

Proc Natl Acad Sci U S A. 2012 Dec 4;109(49):20130-5 PubMed

Biochim Biophys Acta. 2012 Jan;1817(1):167-81 PubMed

Proc Natl Acad Sci U S A. 1981 Jun;78(6):3576-80 PubMed

Science. 1976 Feb 6;191(4226):466-8 PubMed

Plant J. 2012 Jan;69(2):289-301 PubMed

EMBO J. 2007 Mar 7;26(5):1467-73 PubMed

Biochemistry. 2007 Oct 2;46(39):11169-76 PubMed

Biophys J. 2010 Jun 16;98(12):3093-101 PubMed

Biol Chem. 2009 Aug;390(8):731-8 PubMed

FEBS Lett. 1996 Feb 5;379(3):302-4 PubMed

Annu Rev Biophys. 2008;37:247-63 PubMed

Mol Plant. 2009 Nov;2(6):1359-72 PubMed

Plant Cell. 2011 Apr;23(4):1468-79 PubMed

Plant Biol (Stuttg). 2009 Sep;11(5):744-50 PubMed

Photosynth Res. 2008 Feb-Mar;95(2-3):175-82 PubMed

Plant J. 2010 Jun 1;62(6):948-59 PubMed

Trends Plant Sci. 2002 Jun;7(6):237-40 PubMed

J Biol Chem. 2013 Feb 1;288(5):3632-40 PubMed

J Cell Biol. 1970 Nov 1;47(2):332-51 PubMed

Curr Opin Plant Biol. 2012 Jun;15(3):245-51 PubMed

Photosynth Res. 2007 Jul-Sep;93(1-3):7-16 PubMed

Proc Natl Acad Sci U S A. 2008 Mar 11;105(10):4050-5 PubMed

Proc Natl Acad Sci U S A. 2009 Sep 8;106(36):15160-4 PubMed

Photochem Photobiol. 2008 Nov-Dec;84(6):1310-6 PubMed

Biochemistry. 2005 Aug 23;44(33):10935-40 PubMed

Biochim Biophys Acta. 2013 Jul;1827(7):834-42 PubMed

Biochim Biophys Acta. 2007 Jan;1767(1):15-21 PubMed

Biophys J. 1997 Apr;72(4):1900-7 PubMed

J Biol Chem. 2013 Aug 9;288(32):23529-42 PubMed

Proc Natl Acad Sci U S A. 2000 Jun 20;97(13):7237-42 PubMed

Plant Physiol. 2008 Apr;146(4):1571-8 PubMed

Biochim Biophys Acta. 2009 Oct;1787(10):1170-8 PubMed

J Biol Chem. 2010 May 28;285(22):17020-8 PubMed

Biochim Biophys Acta. 2005 Jan 7;1706(1-2):12-39 PubMed

Plant Cell. 2006 Feb;18(2):457-64 PubMed

Plant Cell. 2007 Nov;19(11):3640-54 PubMed

Proc Natl Acad Sci U S A. 2011 Aug 16;108(33):13516-21 PubMed

Plant Physiol. 2011 Apr;155(4):1486-92 PubMed

Methods Enzymol. 2004;375:393-414 PubMed

Proc Natl Acad Sci U S A. 2011 Dec 13;108(50):20248-53 PubMed

J Cell Biol. 2000 Nov 13;151(4):945-50 PubMed

Plant Cell. 2007 Mar;19(3):1039-47 PubMed

Biochim Biophys Acta. 1991 Nov 4;1069(2):131-8 PubMed

Trends Cell Biol. 2005 Feb;15(2):84-91 PubMed

Annu Rev Biochem. 2008;77:51-76 PubMed

Plant Physiol. 2004 Aug;135(4):2112-9 PubMed

J Exp Bot. 2005 Jan;56(411):389-93 PubMed

Plant Physiol. 2013 Jan;161(1):497-507 PubMed

Trends Plant Sci. 2004 Jul;9(7):349-57 PubMed

J Biol Chem. 2001 Dec 14;276(50):46830-4 PubMed

J Cell Sci. 2000 Nov;113 ( Pt 22):3921-30 PubMed

J Bacteriol. 2006 May;188(10):3442-8 PubMed

Biochim Biophys Acta. 2004 Nov 4;1659(1):63-72 PubMed

Nat Cell Biol. 2001 Jun;3(6):E145-7 PubMed

Biochim Biophys Acta. 2011 Aug;1807(8):897-905 PubMed

Biochim Biophys Acta. 2012 Aug;1817(8):1220-8 PubMed

J Exp Bot. 2004 May;55(400):1207-11 PubMed

FEBS Lett. 2008 May 28;582(12):1749-54 PubMed

Biochemistry. 2004 Jul 20;43(28):9204-13 PubMed

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...