Mobility of photosynthetic proteins
Language English Country Netherlands Media print-electronic
Document type Journal Article, Research Support, Non-U.S. Gov't, Review
- MeSH
- Diffusion MeSH
- Photosynthesis * MeSH
- Phycobilisomes metabolism MeSH
- Plant Proteins metabolism MeSH
- Protein Transport MeSH
- Thylakoids metabolism MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Review MeSH
- Names of Substances
- Phycobilisomes MeSH
- Plant Proteins MeSH
The mobility of photosynthetic proteins represents an important factor that affects light-energy conversion in photosynthesis. The specific feature of photosynthetic proteins mobility can be currently measured in vivo using advanced microscopic methods, such as fluorescence recovery after photobleaching which allows the direct observation of photosynthetic proteins mobility on a single cell level. The heterogeneous organization of thylakoid membrane proteins results in heterogeneity in protein mobility. The thylakoid membrane contains both, protein-crowded compartments with immobile proteins and fluid areas (less crowded by proteins), allowing restricted diffusion of proteins. This heterogeneity represents an optimal balance as protein crowding is necessary for efficient light-energy conversion, and protein mobility plays an important role in the regulation of photosynthesis. The mobility is required for an optimal light-harvesting process (e.g., during state transitions), and also for transport of proteins during their synthesis or repair. Protein crowding is then a key limiting factor of thylakoid membrane protein mobility; the less thylakoid membranes are crowded by proteins, the higher protein mobility is observed. Mobility of photosynthetic proteins outside the thylakoid membrane (lumen and stroma/cytosol) is less understood. Cyanobacterial phycobilisomes attached to the stromal side of the thylakoid can move relatively fast. Therefore, it seems that stroma with their active enzymes of the Calvin-Benson cycle, are a more fluid compartment in comparison to the rather rigid thylakoid lumen. In conclusion, photosynthetic protein diffusion is generally slower in comparison to similarly sized proteins from other eukaryotic membranes or organelles. Mobility of photosynthetic proteins resembles restricted protein diffusion in bacteria, and has been rationalized by high protein crowding similar to that of thylakoids.
See more in PubMed
Science. 1997 Jun 27;276(5321):2039-42 PubMed
Biophys J. 2012 Apr 4;102(7):1656-65 PubMed
Nat Rev Mol Cell Biol. 2001 Jun;2(6):444-56 PubMed
Plant Physiol. 1998 Sep;118(1):103-13 PubMed
Trends Plant Sci. 2008 May;13(5):201-7 PubMed
Biophys J. 1983 Jan;41(1):95-7 PubMed
Curr Opin Biotechnol. 2011 Feb;22(1):117-26 PubMed
Biochim Biophys Acta. 2012 Aug;1817(8):1237-47 PubMed
Ann Bot. 2010 Jul;106(1):1-16 PubMed
Plant Cell. 2008 Apr;20(4):1029-39 PubMed
Biochim Biophys Acta. 2001 Apr 2;1504(2-3):229-34 PubMed
Proc Natl Acad Sci U S A. 2010 Feb 2;107(5):2337-42 PubMed
Proc Natl Acad Sci U S A. 2012 Jul 10;109(28):11431-6 PubMed
J Exp Bot. 2004 Aug;55(403):1697-706 PubMed
Biochim Biophys Acta. 2013 Mar;1827(3):411-9 PubMed
Biochemistry. 2005 May 10;44(18):7085-94 PubMed
Nat Cell Biol. 2000 May;2(5):288-95 PubMed
Biochim Biophys Acta. 2005 Aug 15;1709(1):58-68 PubMed
Photosynth Res. 2008 Oct-Dec;98(1-3):621-9 PubMed
PLoS One. 2012;7(1):e29700 PubMed
PLoS One. 2009;4(4):e5295 PubMed
J Cell Biol. 1997 Sep 22;138(6):1193-206 PubMed
Nat Mater. 2012 May 22;11(6):481-5 PubMed
Plant Physiol. 1970 Mar;45(3):289-99 PubMed
Proc Natl Acad Sci U S A. 2006 Feb 14;103(7):2098-102 PubMed
Photosynth Res. 2012 Mar;111(1-2):71-9 PubMed
Biochemistry. 2008 Jun 24;47(25):6583-9 PubMed
FEBS Lett. 2003 Oct 23;553(3):295-8 PubMed
Biochemistry. 2008 Sep 16;47(37):9747-55 PubMed
Biochim Biophys Acta. 2007 Jun;1767(6):750-6 PubMed
Biochemistry. 2005 Dec 27;44(51):16939-48 PubMed
Biophys J. 2002 Jul;83(1):407-15 PubMed
Mol Microbiol. 1999 Sep;33(5):1050-8 PubMed
Biochemistry. 1996 Jul 23;35(29):9435-45 PubMed
Curr Biol. 2007 Mar 6;17(5):462-7 PubMed
Photosynth Res. 2009 Mar;99(3):161-71 PubMed
J Cell Biol. 1998 Feb 23;140(4):821-9 PubMed
Biochim Biophys Acta. 2010 Nov;1798(11):2022-32 PubMed
Arch Biochem Biophys. 1968 Jul;126(1):16-26 PubMed
Nature. 1997 Jul 24;388(6640):355-8 PubMed
Curr Opin Cell Biol. 2010 Jun;22(3):403-11 PubMed
Proc Natl Acad Sci U S A. 2007 Apr 17;104(16):6672-7 PubMed
Biochem Soc Trans. 2008 Oct;36(Pt 5):967-70 PubMed
Biophys J. 1976 Sep;16(9):1055-69 PubMed
J Biol Chem. 2004 Aug 27;279(35):36514-8 PubMed
FEBS Lett. 2009 Feb 18;583(4):670-4 PubMed
Proc Natl Acad Sci U S A. 1982 Nov;79(22):6866-70 PubMed
Exp Cell Res. 1997 May 25;233(1):128-34 PubMed
Biochim Biophys Acta. 2012 Feb;1817(2):319-27 PubMed
Mol Microbiol. 2003 Jun;48(6):1481-9 PubMed
EMBO Rep. 2005 Aug;6(8):782-6 PubMed
Proc Natl Acad Sci U S A. 2012 Dec 4;109(49):20130-5 PubMed
Biochim Biophys Acta. 2012 Jan;1817(1):167-81 PubMed
Proc Natl Acad Sci U S A. 1981 Jun;78(6):3576-80 PubMed
Science. 1976 Feb 6;191(4226):466-8 PubMed
Plant J. 2012 Jan;69(2):289-301 PubMed
EMBO J. 2007 Mar 7;26(5):1467-73 PubMed
Biochemistry. 2007 Oct 2;46(39):11169-76 PubMed
Biophys J. 2010 Jun 16;98(12):3093-101 PubMed
Biol Chem. 2009 Aug;390(8):731-8 PubMed
FEBS Lett. 1996 Feb 5;379(3):302-4 PubMed
Annu Rev Biophys. 2008;37:247-63 PubMed
Mol Plant. 2009 Nov;2(6):1359-72 PubMed
Plant Cell. 2011 Apr;23(4):1468-79 PubMed
Plant Biol (Stuttg). 2009 Sep;11(5):744-50 PubMed
Photosynth Res. 2008 Feb-Mar;95(2-3):175-82 PubMed
Plant J. 2010 Jun 1;62(6):948-59 PubMed
Trends Plant Sci. 2002 Jun;7(6):237-40 PubMed
J Biol Chem. 2013 Feb 1;288(5):3632-40 PubMed
J Cell Biol. 1970 Nov 1;47(2):332-51 PubMed
Curr Opin Plant Biol. 2012 Jun;15(3):245-51 PubMed
Photosynth Res. 2007 Jul-Sep;93(1-3):7-16 PubMed
Proc Natl Acad Sci U S A. 2008 Mar 11;105(10):4050-5 PubMed
Proc Natl Acad Sci U S A. 2009 Sep 8;106(36):15160-4 PubMed
Photochem Photobiol. 2008 Nov-Dec;84(6):1310-6 PubMed
Biochemistry. 2005 Aug 23;44(33):10935-40 PubMed
Biochim Biophys Acta. 2013 Jul;1827(7):834-42 PubMed
Biochim Biophys Acta. 2007 Jan;1767(1):15-21 PubMed
Biophys J. 1997 Apr;72(4):1900-7 PubMed
J Biol Chem. 2013 Aug 9;288(32):23529-42 PubMed
Proc Natl Acad Sci U S A. 2000 Jun 20;97(13):7237-42 PubMed
Plant Physiol. 2008 Apr;146(4):1571-8 PubMed
Biochim Biophys Acta. 2009 Oct;1787(10):1170-8 PubMed
J Biol Chem. 2010 May 28;285(22):17020-8 PubMed
Biochim Biophys Acta. 2005 Jan 7;1706(1-2):12-39 PubMed
Plant Cell. 2006 Feb;18(2):457-64 PubMed
Plant Cell. 2007 Nov;19(11):3640-54 PubMed
Proc Natl Acad Sci U S A. 2011 Aug 16;108(33):13516-21 PubMed
Plant Physiol. 2011 Apr;155(4):1486-92 PubMed
Methods Enzymol. 2004;375:393-414 PubMed
Proc Natl Acad Sci U S A. 2011 Dec 13;108(50):20248-53 PubMed
J Cell Biol. 2000 Nov 13;151(4):945-50 PubMed
Plant Cell. 2007 Mar;19(3):1039-47 PubMed
Biochim Biophys Acta. 1991 Nov 4;1069(2):131-8 PubMed
Trends Cell Biol. 2005 Feb;15(2):84-91 PubMed
Annu Rev Biochem. 2008;77:51-76 PubMed
Plant Physiol. 2004 Aug;135(4):2112-9 PubMed
J Exp Bot. 2005 Jan;56(411):389-93 PubMed
Plant Physiol. 2013 Jan;161(1):497-507 PubMed
Trends Plant Sci. 2004 Jul;9(7):349-57 PubMed
J Biol Chem. 2001 Dec 14;276(50):46830-4 PubMed
J Cell Sci. 2000 Nov;113 ( Pt 22):3921-30 PubMed
J Bacteriol. 2006 May;188(10):3442-8 PubMed
Biochim Biophys Acta. 2004 Nov 4;1659(1):63-72 PubMed
Nat Cell Biol. 2001 Jun;3(6):E145-7 PubMed
Biochim Biophys Acta. 2011 Aug;1807(8):897-905 PubMed
Biochim Biophys Acta. 2012 Aug;1817(8):1220-8 PubMed
J Exp Bot. 2004 May;55(400):1207-11 PubMed
FEBS Lett. 2008 May 28;582(12):1749-54 PubMed
Biochemistry. 2004 Jul 20;43(28):9204-13 PubMed
Fast Diffusion of the Unassembled PetC1-GFP Protein in the Cyanobacterial Thylakoid Membrane
Plasticity of Cyanobacterial Thylakoid Microdomains Under Variable Light Conditions
Role of Ions in the Regulation of Light-Harvesting
Phycobilisome Mobility and Its Role in the Regulation of Light Harvesting in Red Algae